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1 Benemérita Universidad Autónoma de Puebla, FCFM,
Mexico

2 CONACYT - Universidad Veracruzana,
Mexico

juanpablo.munoz@alumno.buap.mx, iebarcenaspa@conacyt.mx,
{imartinez, arrazola}@fcfm.buap.mx

Abstract. Description logics (DL) form a well-known
family of knowledge representation languages. One
of its main applications is on the Semantic Web as
a reasoning framework in the form of the Ontology
Web Language (OWL). In this paper, we propose a
cut-free tree hypersequent calculus for terminological
reasoning in the Description Logic ALC. We show the
calculus is sound and complete. Also, an implementation
is provided together with a complexity analysis. In
addition, we also describe a cut-free sequent calculus
for the description logic ALC with reflexive and transitive
roles. Soundness and completeness are proven, and
a complexity analysis and an implementation are also
provided.

Keywords. Description logics, (Hyper)sequents, proof
theory, automated reasoning.

1 Introduction

Description logic languages (DL) are nowadays
a well-established formalism for knowledge repre-
sentation [1]. Closing the gap between theory and
practice is one of the most appreciated features
in DL. This is well exemplified by the success of
the Web Ontology Language (OWL) and related
reasoning technologies in the Semantic Web [11].

On the theoretical side, from the seminal work
of Schild [17], a close relationship between
modal and description logics is know, namely,
that basic propositionally closed concept language
ALC is a notational variant of the multi-modal
logic Km. Other relationships between more

expressive logics such as propositional dynamic
logic and ALCreg were later reported in [6].
These observations have been very useful
in the translation of results, mostly regarding
computational complexity, from the modal family to
the description one [12]. However, mainly due to
the semantic tradition of modal logic, there is still
an overall perception of unsatisfactory proof theory
on description logics [14].

The formal deductive systems of sequents for
first order classical and intuitionistic logics were
first developed by Gentzen in his search for
arithmetic consistency [7]. Since then, sequent
calculi have been an important tool in the syntactic
analysis of proofs and in the automation of
reasoning tasks.

More recent generalization of sequents systems
such as (tree) hypersequents have lead to
important proof theoretic results on large classes
of logics, not including description ones [9, 14, 15].
In this paper, we describe a sequent system for
ALC with reflexive and transitive roles, that is,
the notational variant of the modal logic S4. A
complexity analysis of this system is also provided
together with an implementation.

Also, a tree hypersequent system for ALC with
general roles, i.e., the notational variant of the
modal logic K, is also described together with its
complexity analysis and implementation.
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1.1 Motivations and Related Work

The proof theory of modal logic is not as well
understood as its classical counterpart [15, 14].
Negri outlines very well in [14] the development
and difficulties in the syntactic analysis of proofs
for modal logics. In Poggiolesi’s thesis [15], there
is a detailed description from the sequent systems
perspective. In particular, a tree hypersequent
system for the modal logic K is proposed, which
is a notational variant from the system proposed
in the current work for ALC. We, in addition,
provide a complexity analysis of the system and an
implementation.

Regarding the proof theory of description logic,
we find the works of Rademaker [16], and more
recently, Su and Sui [19]. In this last work, a
sequent system for ALC is prpoposed. However,
cut elimination does not hold, and the system is
undecidable. In [16], a cut-free sequent system is
also proposed for ALC, and counter-models may
be extracted from unsuccessful proofs. In the
current work, we propose a cut-free deduction
system based on tree of hypersequents, which
in addition is contraction-free. This allows an
implementation of the system, which is also
provided.

We also propose a cut and contraction free
sequent system for ALC with reflexive and
transitive roles, which we name ALCS4 due to its
obvious correspondence with the multi-modal logic
S4. We also provide an implementation and a
complexity analysis of this system.

1.2 Contributions and Outline

In Section 2, we describe the basic propositionally
closed concept language ALC. Axiomatizations
for ALC with general, and reflexive and transitive
roles are also provided. A cut and contraction
free sequent system for ALC with reflexive and
transitive roles is described in Section 3. Also, the
system is proven correct and to be in EXPTIME.
An implementation of the system is also described.
In Section 4, we describe a tree hypersequent
system for ALC. The system is also cut and
contraction free, which allows to implement it.
The implementation is also given in this Section.
Correctness and complexity proofs are described.

Finally, in Section 5, we give an outline of the
current work together with a discussion of further
research perspectives.

2 Description Logics

In this Section, we describe two concept lan-
guages, the basic propositionally closed concept
language ALC introduced by Schmidt-Schaußand
Smolka [18], and a restriction of ALC with reflexive
and transitive roles, which we name ALCS4 due to
its correspondence to multi-modal logic S4. We de-
fine the syntax and semantics of the logics, and we
also describe the corresponding axiomatizations,
which are used in the completeness proofs of the
derivation system proposed in the current paper.

2.1 Syntax and Semantics

We assume a fixed alphabet language composed
by sets of concept and role names.

Definition 1 (Syntax). Concept descriptions in
the basic propositionally closed concept language
(ALC) are given by the following grammar:

C := A | ¬C | C u C | ∀r.C,

where A is a concept name and r is a role name.

Concepts names are interpreted on relational
structures as node subsets: names A are used
as node labels; negation ¬C is interpreted as
set complement; semantics for conjunction C u D
corresponds to set intersection; and concepts ∀r.C
denote nodes where all their accessible nodes
through the role r satisfy C.

We also consider the following notation: C t
D := ¬ (¬C u ¬D), ⊥ := ¬A u A, > := ¬⊥,
C v D := ¬C tD, C ≡ D := (C v D) u (D v C),
and ∃r.C := ¬∀r.¬C. Note then that disjunctions
C t D are interpreted as set unions, ⊥ and >
denote contradictions and tautologies, respectively,
concepts C v D are interpreted as implications,
C ≡ D as double implication, and the semantics
of concepts ∃r.C corresponds to nodes where
there is at least one accessible node through r
satisfying C.
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Consider for instance the following concept
description [5]:

Man u ∃married.Doctor u ∀child.Happy.

This concept description can be interpreted as
men married with a doctor and with happy children
only. In Figure 1, a model (as a relational structure)
of this concept is depicted.

n1

Man

n3

Happy

n4

Happy

n2

Doctor

child

child

married

Fig. 1. A relational model for Man u ∃married.Doctor u
∀child.Happy holding at n1

Before giving a formal description of ALC
semantics we first introduce the notion of
interpretation, which is a pair I = (∆I , ·I), where
∆I is a non-empty set called the domain of I, and
·I is the interpretation function, which assings to
each concept name A a domain subset AI ⊆ ∆I

and to each role name r a binary relation on the
domain rI ⊆ ∆I ×∆I .

Definition 2 (Semantics). Given an interpretation
I = (∆I , ·I), a semantics of concept descriptions is
defined as follows.

(¬C)
I

=∆I \ CI ,

(C uD)
I

=CI ∩DI ,

(∀r.C)
I

=
{
d ∈ ∆I | ∀e.(d, e) ∈ rI → e ∈ CI

}
.

An interpretation I is a model of a concept
description C when CI 6= ∅, and it is written
I |= C, we also say C is satisfiable by I. If any
interpretation is a model C, then we say C is valid,
and we write |= C.

2.2 ALC Axiomatization

It is well-known that ALC is a notational variant of
multi-modal logic K [17], hence, an axiomatization
for K is also an axiomatization for ALC, which is
composed by the axioms of classical logic together
with the normality scheme and the rules of Modus
Ponens and Necessitation.

We now give an axiomatization of ALC as given
in [16].

Definition 3 (ALC axiomatization). Axioms are
given as follows:

A1 ¬(C u (D u ¬C)),

A2 ¬((¬(C u (Du (¬E))))u ((¬(C u (¬D)))u (C u
(¬E)))),

A3 ¬((¬((¬C)uD))u((¬((¬C)u(¬C)))u(¬C))),

A4 ¬((∀r.(¬(C u (¬D))))u ((∀r.C)u (¬(∀r.D)))).

Inference rules are Modus Ponens (MP ) and
Necessitation (Nec).

¬(C u ¬D) C

D
MP

,
C
∀r.C

Nec
.

The axioms A1-A3 can be understood as a
notational variant of the corresponding axioms
in classical propositional calculus, while Axioma
A4 corresponds to normality in the multi-modal
logic K.

If a concept description C is derivable with the
ALC axiomatization, then we write ` C.

The correctness of the ALC axiomatization
trivially follows.

Theorem 1 ([5, 16]). ALC axiomatization is sound
and complete, that is, for any ALC concept
description C, we have that

` C if and only if |= C.
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2.3 ALCS4

Given a binary relation R over a set S, we say R
is reflexive if and only if for all s ∈ S, we have that
(s, s) ∈ R. In the same context, we say that R is
transitive, if and only if, for all s1, s2, s3 ∈ S, we have
that if (s1, s2) ∈ R and (s2, s3) ∈ R, then (s1, s3) ∈
R.

In the setting of ALC concept descriptions, we
say an interpretation I = (∆I , ·I) is reflexive
(transitive), if and only if, for any role r, we have
that rI is reflexive (transitive) over ∆I .

Definition 4 (ALCS4). ALCS4 is the logic of
concept descriptions described by the ALC syntax
(Definition 1), but whose semantics (Definition 2)
considers reflexive and transitive interpretations
only.

As expected, the axiom system for ALCS4 cor-
responds to the axiom system of the multi-modal
logic S4.

A usual way to study a formal logic consists in
defining a set of axioms and inference rules and
then, if possible, obtaining an adequate semantic
system for it. However, to study DL, it is more
natural to proceed in the opposite direction, i.e.,
starting from a semantic interpretation we analyze
the valid consequences of the corresponding logic
and then, if possible, define a set of axioms and
rules for it.

Definition 5 (ALCS4 axiomatization). ALCS4 ax-
iomatization is formed by the axioms and inference
rules of the ALC axiomatization (Definition 3)
together with the following axioms:

A5 ¬(¬C u ∀r.C),

A6 ¬(¬(∀r.(∀r.C)) u ∀r.C).

Abusing notation, when clear from context,
we also write ` C when an ALCS4 concept
description C is derivable from its corresponding
axiomatization.

The following results present necessary and
sufficient conditions to verify axioms A5 and A6.

Proposition 1. An interpretation I is reflexive, if
and only if, it is a model for the concept description
∀r.C v C for any concept description C.

Proof. If x ∈ (∀r.C)I , then for all y that (x, y) ∈ rI ,
we know that y ∈ CI .

Now, since I is reflexive, then (x,x) ∈ rI ,
therefore, x ∈ CI .

Let x ∈ 4I and (x,x) 6∈ rI . If C is such that
CI = 4I \ {x}, then x ∈ (∀r.C)I , hence x ∈ C
which is a contradiction. Therefore (x,x) ∈ rI .

Proposition 2. An interpretation I is transitive, if
and only if, I is a model for the concept description
∀r.C v ∀r.∀r.C for any concept description C.

Proof. If x ∈ (∀r.C)I , then for all y that (x, y) ∈ rI ,
we have that y ∈ C.

Now, since I is transitive, then for all z that
(y, z) ∈ rI , we know that (x, z) ∈ rI , hence z ∈ CI

(recall x ∈ (∀r.C)I ).

Therefore x ∈ (∀r.∀r.C).

Now, let x, y, z ∈ 4I , such that (x, y) ∈ rI and
(y, z) ∈ rI , and let us assume that (x, z) 6∈ rI .

If C is such that CI = 4I \{z}, then x ∈ (∀r.C)I ,
hence x ∈ (∀r.(∀r.C))I and as (x, y) ∈ rI y (y, z) ∈
rI , then z ∈ CI , which is a contradiction.

We then conclude that (x, z) ∈ rI .

Theorem 2. ALCS4 axiomatization is sound and
complete, that is, for any concept description C
and any reflexive and transitive interpretation I, we
have that

` C if and only if I |= C.

Proof. We proceed as in the proof of Theorem 1
([5, 16]), with the additional condition that the rules
are reflexive and transitive, which are supported by
Propositions 1 and 2.

3 Sequents for ALCS4

We first introduce in this Section a cut and
contraction free sequent system for ALCS4.
Then we prove its correctness. A complexity
analysis of the sequent system together with an
implementation are also provided.
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3.1 The Calculus

The notion of sequent is first described. A sequent
is a pair (Γ, Λ), written Γ ⇒ Λ, where Γ and Λ
are sets of concept descriptions, such that both
of them cannot be empty. Intuitively, the symbol
⇒ denotes that the union of concepts in Γ implies
the disjunction of concepts in Λ. We often write
Γ,C1, . . . ,Ck instead of Γ ∪ {C1, . . . ,Ck}.

We denote
d

Γ and
⊔

∆ instead of
d

C∈Γ

C and⊔
C∈∆

C respectively.

A sequent rule is a non-empty tuple of sequents
(S0,S1,S2, . . . ,Sn), and it is written as follows:

S1 S2 . . . Sn

S0
.

If a sequent rule contains only one sequent, then
it is called an initial sequent. The intuitive meaning
of a sequent rule is that the first sequent S0 is
derived from assumption of the other sequents Si

(i > 0).

If the rule is an initial sequent, then that sequent
can be interpreted as an axiom, because there is
no need of assumptions to derive it. A non-empty
set of sequent rules is called a sequent system.

Before defining a sequent system for ALCS4,
we define the following notation: ∀r.Γ instead of
{∀r.C1, . . . ,∀r.Ck}, where Γ = {C1, . . . ,Ck}.

Definition 6 (ALCS4 sequent system). We define
a sequent system for ALCS4 by the following rules.

C, Γ⇒ C, Λ
Ax

Γ⇒ C, Λ

¬C, Γ⇒ Λ
¬A

C, Γ⇒ Λ

Γ⇒ ¬C, Λ
¬K

C,D, Γ⇒ Λ

C uD, Γ⇒ Λ
uA

Γ⇒ C, Λ Γ⇒ D, Λ

Γ⇒ C uD, Λ
uK

C, Γ⇒ Λ

∀r.C, Γ⇒ Λ
∀A ∀r.Γ⇒ C

∀r.Γ⇒ ∀r.C
∀K

.

Intuitively, a proof is defined as a tree of
sequents where each step is obtained by a rule of a
given sequent system, and where all the branches
are finite and begin with initial sequents.

Consider for instance the following proof of
axiom A1 in the sequent system ALCS4.

C,D ⇒ C
Ax

(¬C),D,C ⇒ ¬A

(D u (¬C)),C ⇒ uA

(C u (D u (¬C)))⇒ uA

⇒ (¬(C u (D u (¬C))))
¬K

.

A substitution is a function from the set of names
concepts to the set of arbitary concepts which has
finite support.

Definition 7 (Proof tree). Given a sequent system,
a derivation tree is inductively defined as follows:

— any rule of the sequent system, up to
substitution, is a derivation tree;

— the following expression is a derivation tree

T1 . . . Tn

S0

provided that Ti (i = 1, . . . ,n) are derivation
trees, and

S1 . . . Sn

S0

is a rule, up to substitution, such that Si is the
corresponding root (lowest sequent) of Ti.

A derivation tree is a proof tree, or simply a proof,
if all its branches are finite and begin with initial
sequents. If there is a proof for a sequent ⇒ Γ,
then we write `G Γ (G due to Gentzen).

3.2 Correctness

In order to show ALCS4 is correct, we then show
soundness and completeness.

We now state the following lemma required to
prove soundness.

Lemma 1. If ∀r.C v D is valid, then ∀r.∀r.C v
∀r.D also does.
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Proof. If x ∈ (∀r.C v D)I for some interpretation
I, then x ∈ DI when x ∈ (∀r.C)I .

Now, assume the last. There are two cases,
when there is a y, such that (y,x) ∈ rI , and when
there is not.

The second case is straightforward since x ∈
(∀r.∀r.C)I .

In the first case, it is clear that y ∈ (∀r.∀r.C)I ,
now, by assumption we know x ∈ DI , and thus
y ∈ (∀r.D)I .

We are now ready to prove soundness.

Theorem 3 (Soudness). If there is a proof of
sequent Γ ⇒ Λ in ALCS4 sequent system, then
formula

d
Γ v

⊔
Λ is valid on ALCS4, that is, every

reflexive and transitive interpretation is a model of
the formula.

Proof. We proceed by induction on the height of
the proof tree of Γ⇒ Λ.

The base case for C, Γ⇒ C, Λ is trivial.
If it is now assumed that we have a proof

T

Γ′ ⇒ Λ′ ,

we then have to show that if there is also proof

T
Γ′ ⇒ Λ′

Γ⇒ Λ ,

then
d

Γ v
⊔

Λ is valid.
Consider the case when the last step in the proof

is the following

Γ⇒ C, Λ

¬C, Γ⇒ Λ
.

Then by induction we have that
d

Γ v C t
⊔

Λ
is valid, that is, for any reflexive and transitive
interpretation I, there is a x ∈ ∆I , such that if
x ∈ (

d
Γ)I , then x ∈ (C)I or x ∈ (

⊔
Λ)I .

It is then not difficult to conclude that if x ∈ (
d

Γ)I

and x 6∈ (C)I , then x ∈ (
⊔

Λ)I , that is,
d

Γ u ¬C v⊔
Λ is also valid.
We proceed analogously for the cases when

the last step of the proof are rules for boolean
operators.

Consider now the last proof step is the following:

C, Γ⇒ Λ

∀r.C, Γ⇒ Λ
.

By induction we thus know that for any reflexive
and transitive interpretation I, the following holds:(

C u
l

Γ
)I
⊆
⊔

ΛI .

It is also known that (∀r.C)I ⊆ (C)I (by
Proposition 1), due to reflexivity.

It is then clear that (∀r.C u
d

Γ)
I ⊆ (

⊔
Λ)

I .

We consider now the final case:

∀r.Γ⇒ C

∀r.Γ⇒ ∀r.C
.

By induction ∀r.Γ v C is valid.

Now, we know that ∀r.∀r.Γ v ∀r.C is valid, due
to Lemma 1 and that ∀r.C u D ≡ ∀r.C u ∀r.D is
also valid for any C, D and r.

Since all interpretations are transitive, then we
also know that ∀r.Γ v ∀r.∀r.Γ (Proposition 2) is
valid.

Therefore, ∀r.Γ v ∀r.C is valid.

We are going to show completeness by means
of ALCS4 axiomatization completeness.

Theorem 4. If a concept description C is derivable
in ALCS4 axiomatization, then there is a proof in
ALCS4 sequent system, that is,

if ` C, then `G C.

Proof. We proceed by induction on derivations in
ALCS4 axiomatization. The base cases are the
axioms and Modus Ponens. A1 has already been
shown in an example above. We now show only
A4, A5 and A6, which are the representatives
axioms of S4.
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— A4:

C ⇒ D,C
Ax

C,D ⇒ D
Ax

C ⇒ (¬D),D
¬K

C ⇒ (C u (¬D)),D
uK

(¬(C u (¬D))),C ⇒ D
¬A

(∀r.(¬(C u (¬D)))),C ⇒ D
∀rA

(∀r.C), (∀r.(¬(C u (¬D))))⇒ D
∀rA

(∀r.C), (∀r.(¬(C u (¬D))))⇒ (∀r.D)
∀rK

(¬(∀r.D)), (∀r.C), (∀r.(¬(C u (¬D))))⇒ ¬A

((∀r.C) u (¬(∀r.D))), (∀r.(¬(C u (¬D))))⇒ uA

((∀r.(¬(C u (¬D)))) u ((∀r.C) u (¬(∀r.D))))⇒ uA

⇒ (¬((∀r.(¬(C u (¬D)))) u ((∀r.C) u (¬(∀r.D)))))
¬K,

— A5:

(∀r.C)⇒ (∀r.C)
Ax

(∀r.C)⇒ (∀r.(∀r.C))
∀rK

(¬(∀r.(∀r.C))), (∀r.C)⇒ ¬A

((∀r.C) u (¬(∀r.(∀r.C))))⇒ uA

⇒ (¬((∀r.C) u (¬(∀r.(∀r.C)))))
¬K

,

— A6:
C ⇒ C

Ax

(∀r.C)⇒ C
∀rA

(¬C), (∀r.C)⇒ ¬A

((∀r.C) u (¬C))⇒ uA

⇒ (¬((∀r.C) u (¬C)))
¬K

,

— Modus Ponens:

C ⇒ D,C
Ax

C,D ⇒ D
Ax

C ⇒ (¬D),D
¬K

C ⇒ (C u (¬D)),D
uK

(¬(C u (¬D))),C ⇒ D
¬A

.

Here (¬(C u (¬D))) corresponds to C v D by
translating subsumption and disjuntion.

For the induction step, we assume we have a
proof for a concept description C, then we show
the necessitation rule:

⇒ C
⇒ (∀r.C)

∀rK
.

We are now ready to show completeness, which
is immediate from Theorem 4 and Theorem 2.

Corollary 1 (Completeness). For any reflexive and
transitive interpretation I, if I is a model for a
concept description C, then there is a proof of C
in ALCS4 sequent system, that is, `G C.

It is important to state the existence of a
hierarchy for the application of the rules. We
first apply logical rules, followed by the right
quantification rule (if possible) and concluding with
the left quantification rule.

3.3 Complexity and Implementation

We now show the sequent system for ALCS4 is in
EXPTIME. This is mainly due to the fact that proofs
are binary tree shaped and there is an exponential
bound on the number of binary trees.

Theorem 5 (Complexity). ALCS4 sequent system
is in EXPTIME.

Proof. First notice that the system satisfies the
subformula property, that is, for each rule (S0,S1)
or (S0,S1,S2), formulas in S1 or S2 are all
subformulas of the ones occurring in S0.

It is then clear that the height of the proofs
(number of proof steps) is linear with respect to the
size of the input sequents.

Now notice that due to the conjunction on the
right rule, proofs are binary tree shaped.

The exponential bound comes from the fact
that the number of nodes in binary trees are
exponentially bounded with respect to height of the
tree.

Regarding implementation, we followed a func-
tional approach as in [13], more precisely, the
ALCS4 system was implemented in ML [8].

We consider three fundamental data types:
concept descriptions, whose alphabet is formed by
concept names and roles; sequents, defined as
a pair of concept lists; and rules, which can be
axioms, and rules with one or two hypothesis. They
are depicted in Figure 2.

The code for the implementation of rules
described in Definition 6 is depicted in Figure 3.



Computación y Sistemas, Vol. 20, No. 1, 2016, pp. 67–79
doi: 10.13053/CyS-20-1-2186

Juan Pablo Muñoz, Everardo Bárcenas, Iván Martínez, José Ramón Enrique Arrazola74

ISSN 2007-9737

datatype Roles= r o l e of s t r i n g ;

datatype Conc= conc of s t r i n g |
nega of Conc |
conj of Conc ∗ Conc |
cuan of Roles ∗ Conc ;

type Seq = Conc l i s t ;

datatype Sequent = l r of Seq ∗ Seq ;

datatype SystemG = Ax of Sequent |
InRuOne of Sequent |
InRuTwo of Sequent ∗ Sequent ;

Fig. 2. Data Types in ML for ALCS4 sequent system

The entire code for the implementation is in
http://aleteya.cs.buap.mx/~iebp/ALCS4_Fin.

ML, which was tested in PC with Intel Core i5 1.8
GHz, Windows 8.1, in the Moscow ML version
2.01.

The proof of axiom A5, which is part of the proof
of Theorem 4, takes 16.4844 milliseconds in our
implementation.

fun reduce2tex1 ( l r ( nega ( a ) : : gamma, de l t a ) ) =
InRuOne ( l r (gamma, a : : de l t a ) )
| reduce2tex1 ( l r ( con j ( a , b ) : : gamma, de l t a ) ) =
InRuOne ( l r ( a : : b : : gamma, de l t a ) )
| reduce2tex1 ( l r (gamma, nega ( a ) : : de l t a ) ) =
InRuOne ( l r ( a : : gamma, de l t a ) )
| reduce2tex1 ( l r (gamma, con j ( a , b ) : : de l t a ) ) =
InRuTwo ( l r (gamma, a : : de l t a ) , l r (gamma, b : : de l t a ) )
| reduce2tex1 ( l r (gamma, cuan ( c ) : : n i l ) ) =
i f F o r a l l I n ( r ,gamma)
then InRuOne ( l r (gamma, c : : n i l ) )
else Ax ( l r (gamma, cuan ( c ) : : n i l ) )
| reduce2tex1 ( l r ( cuan ( a ) : : gamma, de l t a ) ) =
InRuOne ( l r ( a : : gamma, de l t a ) )
| reduce2tex1 ( l r (gamma, cuan ( c ) : : r e s t ) ) =
i f HaveNeg ( r e s t )
then InRuOne ( l r (gamma, cuan ( c ) : : r e s t ) )
else
( Ax ( l r (gamma, cuan ( c ) : : r e s t ) ) )
| reduce2tex1 ( any ) = ( decide ( any ) ) ;

Fig. 3. ML implementation of ALCS4 sequent system

4 Tree Hypersequents for ALC

In this Section, we first introduce the notion of
tree hypersequents, which is a generalization of
sequents. Then a tree hypersequent system for
ALC is introduced, without any restriction to roles.
Proofs for correctness and complexity (2EXPTIME)
are also given. The corresponding implementation
is also described.

4.1 The Calculus

Tree hypersequents as their name suggest is a tree
structure, where each of its nodes is a sequent.
The following is a more precise definition.

Definition 8 (Tree hypersequents). Tree hyper-
sequents (THS) are inductively defined by the
following grammar:

T :=S/MT

MT :=∅ | T ;MT ,

where S is a sequent.

Regarding notation, instead of S/∅, we write S.
As in [10], we now define the zoom for tree

hypersequents.

Definition 9. The set of zoom tree hypersequents
(ZTHS) is inductively defined in the following way:

— [−] ∈ ZTHS.

— If T1, ...,Tn ∈ THS, r1, ..., rn are roles names,
then [−]/r1 : T1; ...; rn : Tn ∈ ZTHS.

— If S is a sequent, T2, ...,Tn ∈ THS, r1, ..., rn
are roles names and T1[−] ∈ ZTHS, then
S/r1 : T1[−]; r2 : T2; ...; rn : Tn ∈ ZTHS.

T [T ′] denote the substitution of T ′ in T [−] which
is defined as follows:

— If T [−] = [−], then T [T ′] = T ′.

— If T [−] = [−]/r1 : T1; ...; rn : Tn and T ′ =
S′/w1 : T ′

1; ...;wk : T ′
k, then T [T ′] = S′/r1 :

T1; ...; rn : Tn;w1 : T ′
1; ...;wk : T ′

k.

— If T [−] = S/r1 : T1[−]; r2 : T2; ...; rn : Tn, then
T [T ′] = S/r1 : T1[T ′]; r2 : T2; ...; rn : Tn.

http://aleteya.cs.buap.mx/~iebp/ALCS4_Fin.ML
http://aleteya.cs.buap.mx/~iebp/ALCS4_Fin.ML
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Definition 10 (ALC tree hypersequent system).
We define a tree hypersequent system for ALC by
the following rules.

T [C, Γ⇒ C, Λ]
Ax

,

T [Γ⇒ C, Λ]

T [¬C, Γ⇒ Λ]
¬A

,

T [C, Γ⇒ Λ]

T [Γ⇒ ¬C, Λ]
¬K

,

T [C,D, Γ⇒ Λ]

T [C uD, Γ⇒ Λ]
uA

,

T [Γ⇒ C, Λ] T [Γ⇒ D, Λ]

T [Γ⇒ C uD, Λ]
uK

,

T [(∀r.C, Γ⇒ Λ)/r : (C, Γ′ ⇒ Λ′/MT ′);MT ]

T [(∀r.C, Γ⇒ Λ)/r : (Γ′ ⇒ Λ′/MT ′);MT ] ,
∀rA

,

T [(Γ⇒ Λ)/r(⇒ C)]

T [Γ⇒ ∀r.C, Λ],
∀rK

.

Notice that the ∀rA rule can be applied to an
hypersequent T [(∀r.C, Γ ⇒ Λ)/MT ] provided that
there exists an hypersequent in MT that is labeled
by the r role. Hence, if every hypersequent in
M labeled by r contains the concept C in the
antecedent of the root, then the rule ∀rA can not
be applied and we can thus no longer consider the
concept ∀r.C.

As an example of the use of the tree
hypersequent system, consider the following proof
of A4:

⇒ /r : (C ⇒ D,C)
Ax

⇒ /r : (D,C ⇒ D)
Ax

⇒ /r : (C ⇒ (¬D),D)
¬K

⇒ /r : (C ⇒ (C u (¬D)),D)
uA

⇒ /r : ((¬(C u (¬D))),C ⇒ D)
¬A

(∀r.(¬(C u (¬D))))⇒ /r : (C ⇒ D)
∀rA

(∀r.C), (∀r.(¬(C u (¬D))))⇒ /r : (⇒ D)
∀rA

(∀r.C), (∀r.(¬(C u (¬D))))⇒ (∀r.D)
∀rK

(¬(∀r.D)), (∀r.C), (∀r.(¬(C u (¬D))))⇒ ¬A

((∀r.C) u (¬(∀r.D))), (∀r.(¬(C u (¬D))))⇒ uA

((∀r.(¬(C u (¬D)))) u ((∀r.C) u (¬(∀r.D))))⇒ uA

⇒ (¬((∀r.(¬(C u (¬D)))) u ((∀r.C) u (¬(∀r.D)))))
¬K.

4.2 Correctness

We now show the ALC tree hypersequent system
is correct.

Tree hypersequents are interpreted as a
disjunction composed by its branches. More
precisely, we inductively define the following
interpretation function:

— (C1, . . . ,Cn ⇒ D1, . . . ,Dm)H =
nd

i=1

Ci v
m⊔
i=1

Di, and

— (S/r1 : T1, . . . , rk : Tk)H = SH t
k⊔

i=1

∀ri.(Ti
H).

Theorem 6 (Soundness). If there is a proof of the
tree hypersequent T in the ALC tree hypersequent
system, then TH is valid.

Proof. We proceed by induction on the proof height
of T .

In the base case, we distinguish two cases: one
when C, Γ ⇒ C, Λ occurs at the root of T , and the
other when it does not.

In the first case it is clear that C u
d

Γ v C t
⊔

Λ
is valid.

In the second case, it is also not difficult to see
the validity of ∀r1. . . . .∀rn. (C u

d
Γ v C t

⊔
Λ),

such that a concept D is satisfied, then ∀rD is
also satisfied for any role r, given that ∆I ⊆ DI

is complied.
In the induction step we assume a proof of a tree

T ′, and then we show by cases the rule T ′

T can be
applied.

Consider now the case when the last proof step
is the following:

T [Γ⇒ C, Λ]

T [¬C, Γ⇒ Λ].

In this case, we also distinguish two subcases:
when ¬C, Γ⇒ Λ occurs as the root of T , and when
it does not.

In the first case, we know that Γ ⇒ C, Λ occurs
also in the root of T and it is also valid (inductive
hypothesis). Then for any interpretation I, we know
that (

d
Γ)

I ⊆ CI ∪ (
⊔

Λ)
I . From this, we imply

(
d

Γ)
I ∩

(
CI
)c ⊆ (

⊔
Λ)

I ∩ (CI)c ⊆ (
⊔

Λ)
I , and

hence ¬C, Γ⇒ Λ is valid.
The other cases when the last proof step

involves boolean operators are proven in an
analogous manner.
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We focus now on the case of the quantification
on the left.

T [(∀r.C, Γ⇒ Λ)/r : (C, Γ′ ⇒ Λ′/MT ′)]

T [(∀r.C, Γ⇒ Λ)/r : (Γ′ ⇒ Λ′/MT ′)] .

We only prove the basic case and when MT ′ =
∅, the arguments for the other cases are similar.
Then, by inductive hypothesis, we obtain that the
following concept is valid.

¬
(
∀r.C u

l
Γ
)
t
⊔

Λ

t ∀r.
(
¬
(
C u

l
Γ′
)
t
⊔

Λ′
)

.

Then, by De Morgan’s laws:

¬∀r.Ct¬
l

Γt
⊔

Λt∀r.
(
¬C t ¬

l
Γ′ t

⊔
Λ′
)

.

And by normality:

¬∀r.C t ¬
l

Γ t
⊔

Λt

∀r.¬C t ∀r.
(
¬

l
Γ′ t

⊔
Λ′
)

and since ∀r.¬C v ¬∀r.C is satisfied, then it
clearly implies that ((∀r.C, Γ⇒ Λ)/r : (Γ′ ⇒ Λ′))H

is valid.
Quantification on the right:

T [(Γ⇒ Λ)/r(⇒ C)]

T [Γ⇒ ∀r.C, Λ] .

We again only prove the base case when T [−] =
[−]. By induction, we know that the following
concept is valid (¬

d
Γ) t

⊔
Λ t ∀r.(¬> t C).

Then (¬
d

Γ) t
⊔

(∀r.C, Λ) is valid which clearly
implies that the root hypersequent is valid under
the function H.

Completeness is also proven with respect to ALC
axiomatization completeness. We then first show
the ALC tree hypersequent system is complete with
respect to ALC axiomatization.

Theorem 7. If a concept description C is derivable
in ALC axiomatization, then there is a proof in the
ALC tree hypersequent system, that is,

if ` C, then `H C.

Proof. The proof goes by induction on derivations
in ALC axiomatization. In the base case, the only
interesting subcase is the proof of axiom A4, which
has been given in the example above. For the
induction step, we assume we already have a proof
of a concept C, then we prove the necessitation
rule.

⇒ /r : (⇒ C)

⇒ (∀r.C)
∀rK

.

Completeness is now clear from Theorem 7 and
Theorem 1.

Corollary 2 (Completeness). For any interpreta-
tion I, if I is a model for a concept description
C, then there is a proof of C in the ALC tree
hypersequent system, that is, `H C.

4.3 Complexity and Implementation

The complexity of the tree hypersequent system
for ALC is in 2EXPTIME. Intuitively, proofs in this
system are binary trees where the number of
nodes of a tree is exponentially bounded by its
height, which is itself exponentially bounded by the
size of the input concept.

Theorem 8 (Complexity). The ALC tree hyperse-
quent system is in 2EXPTIME.

Proof. The first exponential bound comes from the
bound on the number of nodes in binary trees
with respect to the tree height. Recall from the
complexity proof of the ALCS4 sequent system
that rules corresponding to boolean connectives
produce binary shaped proof trees, due to the
subformula property.

We now show the second exponential bound:
the height of proof trees is exponentially bounded
by the size of the input concept.

For this purpose, first recall that each node of
the proof tree is a tree hypersequent. We then
proceed to show that the number of nodes for each
tree hypersequent is exponentially bounded by the
concept size.

First, due to the subformula property, it is easy
to see that the rank of each tree hypersequent is
linearly bounded by the concept size. However,
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due to the universal quantification on the left
rule, there are duplications (nodes in the tree
hypersequents).

Now, there is a well-known and straightforward
linear reduction of n-ary trees to binary trees [2, 3,
4], such that the height of the binary trees is linearly
bounded by the rank of the n-ary trees.

Then, the height of the binary version of the tree
hypersequents is also linear.

Recalling again the exponential bound on the
number of nodes in binary trees with respect
to the height, we obtain that the size of each
tree hypersequent (proof node) is exponential with
respect to the input concept size.

The implementation of ALC tree hypersequent
system is similar to the one described for the
ALCS4 sequent system in Section 3. However,
in the case of the ALC system, the fundamental
data structure is composed by tree hypersequents,
which is described in Figure 4. In this Figure, a
data type for proof trees with tree hypersequents
as nodes is also displayed. This data type may
have no applicable rule, an axiom, or a rule with
one or two hypothesis. The proof of axiom A4,
depicted above, takes 19.0497 milliseconds in our
implementation. The full code is described in http:

//aleteya.cs.buap.mx/~iebp/ALC_Fin.ML.

datatype THS =
hyper of Sequent ∗
( ( Roles ∗ THS) l i s t ) ;

datatype SystemGH = NoRule
| AXITHS of THS
| InRuOneH of THS
| InRuTwoH of THS ∗ THS;

Fig. 4. Data structures for tree hypersequent proofs

5 Conclusions

In this paper, we introduce the proof theoretic
basics for two important description logics (DL): the
basic propositionally closed concept language ALC
and its variant with reflexive and transitive roles,

which we name ALCS4 due to the straightforward
correspondence with the multi-modal logic S4. The
system for ALCS4 enjoys of cut elimination, which
allows to prove decidability. In addition, this system
is also contraction-free. These two features are
important requirements for the implementation of
sequent-like systems. An implementation is also
provided. The system is also proven correct:
sound and complete. And the complexity of the
system is shown to be in EXPTIME.

We also introduce a proof system for ALC
without restrictions on roles. The system is based
on tree hypersequents, which is generalization of
sequents. This system is also cut and contraction
free. Correctness and complexity (2EXPTIME)
proofs of the system are also given together with
an implementation.

Since both systems described in this work con-
structively search for candidate proofs, counter-
models maybe extracted from unsuccessful proofs.
We are currently developing the corresponding
algorithms.

We believe the reasoning frameworks provided
in the current work will allow further studies
in description logics from a proof theoretic
perspective. In particular, we are interested in
constructive proofs of Craig interpolation in the DL
context.

Another immediate research perspective is the
study of sequent-like proof system for description
logics including terminological (TBoxes) and
assertional (ABoxes) reasoning.

Also in this setting, we plan to study more
expressive description logics, including arithmeti-
cal (numerical) restrictions, inverse roles and
nominals [2, 3, 4].
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Ghilardi, S., & Moss, L. S., editors, Advances
in Modal Logic 9, College Publications,
pp. 279–299.

10. Hill, B. & Poggiolesi, F. (2010). A
contraction-free and cut-free sequent calculus
for propositional dynamic logic. Studia Logica,
Vol. 94, No. 1, pp. 47–72.
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