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Abstract. The detection and description of locally
salient regions is one of the most widely used low-level
processes in modern computer vision systems. The
general approach relies on the detection of stable and
invariant image features that can be uniquely charac-
terized using compact descriptors. Many detection and
description algorithms have been proposed, most of
them derived using different assumptions or problem
models. This work presents a comparison of different
approaches towards the feature extraction problem,
namely: (1) standard computer vision techniques;
(2) automatic synthesis techniques based on genetic
programming (GP); and (3) a new local descriptor
based on composite correlation filtering, proposed for
the first time in this paper. The considered methods are
evaluated on a difficult real-world problem, vision-based
simultaneous localization and mapping (SLAM). Using
three experimental scenarios, results indicate that
the GP-based methods and the correlation filtering
techniques outperform widely used computer vision
algorithms such as the Harris and Shi-Tomasi detectors
and the Speeded Up Robust Features descriptor.

Keywords. Local features, genetic programming,
composite correlation filter, SLAM.

1 Introduction

Over the last fifteen years, a popular trend in
computer vision (CV) has been the extensive use
of locally salient regions to develop solutions for
a large variety of visual tasks, such as object
detection and recognition, image indexing and
retrieval, image stitching, and visual simultaneous
mapping and localization. Locally salient regions
can be used to uniquely represent an observed
scene and construct visual appearance models
[22, 33].

1.1 Background

To characterize a particular scene or object
through locally salient regions, a general three
stage process takes place. First, features need
to be detected, using interest point or interest
region detectors [33]. Second, a unique and
informative numerical vector is constructed taking
the local image region as input; these vectors are
commonly referred to as local image descriptors
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[22]. Finally, the detected image regions and their
corresponding local descriptors are used as input
to construct a problem specific representation or
model. Afterwards, the stored models can be used
to detect previously seen features by matching
stored visual models with features detected online
by the system.

In the process described above, the quality
and synergy of a particular detector/descriptor
combination is paramount, however the variety of
available methods makes it difficult to determine
which combination of methods are best suited for
common tasks. CV literature is filled with many
different proposals, such as the Harris detector [9],
Shi-Tomasi detector [27] or the FAST detector [26].
In the case of local descriptors, popular algorithms
include SIFT [21] and SURF [1], techniques that
are now widely used and available in popular
programming libraries, such as OpenCV or Matlab
toolboxes.

1.2 Experimental Approach

The current paper compares these popular
techniques with two more recent approaches
towards the feature detection and description
problem. In particular, we consider the Harris and
Shi-Tomasi detectors and the SURF local region
descriptor as standard machine baseline methods.
Moreover, we explore other recent approaches to
address these tasks.

First, we consider proposals that derive feature
extraction algorithms using an automated design
process based on meta-heuristic and global search
algorithms. In particular, proposals that relied on
genetic programming (GP), a form of evolutionary
computation [19], to automatically synthesize
feature detectors [31, 24, 25] and descriptors [32,
30]. In the case of feature detectors, [31, 24, 25]
used widely accepted performance measures to
pose an optimization problem and solve it using
GP to produce novel image operators. Similarly,
[30] used GP to optimize the Hölder image
descriptor [32], providing a fast and simplified
feature description algorithm. It is important to
note that automatically designing computer vision
algorithms through GP is not a commonly used
approach within the CV community. Moreover,

those works present a limited and controlled
experimental validation of the new methods, so it
is still not clear if the GP-generated methods can
compete with standard techniques in real-world
scenarios.

Second, this work proposes a new approach
towards feature description, based on popular
techniques from statistical image processing and
optics literature [8]. In particular, we develop a new
local description method based on an improved
version of the synthetic discriminant filter (SDF)
[7], a type of composite correlation filter that is
widely used in distortion tolerant object recognition
and target tracking applications [14, 12], but not
often used in computer vision applications based
on local features.

To compare these different paradigms we have
chosen a difficult real-world problem, widely
addressed in vision based robot navigation,
referred to as visual simultaneous localization and
mapping, or visual SLAM.

Klippenstein and Zhang [18, 17] also present a
comparison of feature extraction methods applied
to visual SLAM, using several well-known computer
vision methods. The authors used two comparative
metrics to evaluate a SLAM system based on
the Extended Kalman Filter. First they determine
if the estimated trajectory is consistent with the
ground truth trajectory, based on the normalized
estimation error squared (NEES). However, their
results showed that the SLAM system was
almost never consistent, so they relaxed this
criteria in their comparative work. Therefore,
as a second evaluation measure they used the
accumulated uncertainty as their comparative
measure. Their experimental work showed
no significant difference between the considered
methods. On the other hand, the recently proposed
SLAMBench evaluation platform [23] identifies the
average trajectory error (ATE) error as the most
important comparative measure between SLAM
systems; i.e., the error between the estimated
robot trajectory and the ground truth trajectory,
This measure is useful since most visual SLAM
systems will not produce consistent trajectories,
making uncertainty a misleading measure [18, 17].
Moreover, it is easier to determine the ground
truth position and trajectory of the robot than the
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position of the scene landmarks. However, a
more direct comparison of local feature extractors
is to consider the accuracy they provide when
detecting previously stored landmarks; the main
task they are intended to solve. It is also important
to consider the computational efficiency of each
method, since real-time performance is necessary.

In this work we use the well known Mono-SLAM
system of Davison et al. [4], a visual SLAM
system that builds a sparse map using local
features as landmarks. In all our experimental
test, three detectors are considered: two
common computer vision approaches (Harris
and Shi-Tomasi) and an automatically generated
detector (MOP). Also, four local descriptors are
tested: Normalized Cross Correlation (NCC, the
method used in Mono-SLAM), a common computer
vision method (SURF), a GP optimized descriptor
(Hölder descriptor) and the newly proposed SDF
descriptor. Every detector/descriptor combination
is tested on the Mono-SLAM system, using two
experimental environments: (1) two paths in a
controlled environment where the real trajectory
of the robot is known; (2) a freely captured video
sequence provided with the Mono-SLAM system.

To evaluate each feature detector and descriptor
algorithm, three performance measures are used.
Firstly, the average error between the estimated
robot trajectory and the ground truth trajectory
(ATE), in some experiments a precise ground truth
is obtained by using a high-precision industrial
robotic arm to perform the trajectory in a hand-eye
configuration of the visual SLAM system.

Secondly, an evaluation based on the ability
of the system to detect and match previously
seen landmarks within the scene, this measure
is particularly useful since it only considers the
feature matching process.

Thirdly, the computational efficiency of each
detector and descriptor algorithm, which is
reported in CPU time. Results suggest that the
non-standard approaches towards local feature
extraction can help to improve the accuracy of the
matching process, achieve high quality estimations
of the trajectory of the camera produced by
the Mono-SLAM system, while also substantially
reducing the total computational costs.

1.3 Contributions and Organization

Let us summarize the main contributions of the
present research work. First, we propose a
new local feature descriptor based on the SDF,
a technique from optical and signal processing
that is not widely known or studied within the
computer vision community. Second, we evaluate
and compare a GP-based point detector (MOP),
a GP-optimized descriptor (Hölder descriptor)
and the proposed SDF-based descriptor, with
common techniques from CV literature on a difficult
real-world problem. Finally, our experimental work
suggests that these unconventional approaches
to the local feature extraction problem compare
favorably with widely used CV techniques.

The paper is organized as follows. Section
2 provides a short review of the more popular
methods towards local feature extraction in
computer vision systems. Section 3 provides
alternative approaches for feature extraction,
namely: automatic design methods based on the
GP [24, 25, 31, 32, 30] and a method based
on composite correlation filtering [7]. Section 4
provides a brief overview of the SLAM problem
and the Mono-SLAM system. Section 5 presents
the experimental work and main results. Finally,
Section 6 presents our concluding remarks.

2 Local Feature Extraction Methods in
Computer Vision

This section provides a short review of standard
approaches towards local feature extraction in
computer vision systems. Comprehensive surveys
on this topic can be found in [22, 33]. Here, we
briefly describe some of the more popular meth-
ods, particularly those used in the experimental
work of this paper. However, lets first summarize
the different tasks involved in the local feature
extraction process:

— First, an interest point detector is applied to the
image, to detect salient and interesting regions
in an image. Popular techniques include the
Harris and the Shi-Tomasi detector.
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— Second, a local descriptor is extracted from
the detected regions, to characterize the local
image content. Popular techniques include the
SIFT and SURF descriptors.

— Finally, these local features are used to
characterize image content and solved a
higher-level task, such as object recognition or
SLAM.

2.1 Interest Point Detectors

Interest points are simple point features within an
image; that is, they are image pixels that are
salient or unique when compared with neighboring
pixels. The algorithms used to detect interest
points analyze the intensity patterns within local
image regions and only make weak assumptions
regarding the underlying structure. Interest points
are quantitatively and qualitatively different from
other points, and they usually represent only a
small fraction of the total number of image pixels.

A measure of how salient or interesting each
pixel is can be obtained using a mapping of the
form K(x) : R+ → R called an interest point
operator. Applying the mapping K to an image I
produces what can be called an interest image I∗.
Afterwards, most detectors follow the same basic
process: non-maxima suppression that eliminates
pixels that are not local maxima, and a thresholding
step that obtains the final set of points. Therefore, a
pixel x is tagged as an interest point if the following
conditions hold,

K(x) > max {K(xW)|∀xW ∈W,xW 6= x}
∧K(x) > h, (1)

where W is a square neighborhood of size n × n
around x, and h is an empirically defined threshold.
The first condition in Equation 1 accounts for
non-maximum suppression and the second is the
thresholding step (see Figure 1).

The problem of detecting interest points has
been well-studied and a large variety of proposals
exist in current literature. For instance, the most
widely used methods employ image operators that

are based on the local second-moment matrix
A(x,σI ,σD), defined as

A(x,σI ,σD) = σ2
D·GσI

∗
[

L2
x LxLy

LxLy L2
y

]
,

where σD and σI are the differentiation and
integration scales respectively, Gσ is a Gaussian
smoothing function, and Lu = Lu(x,σD) is the
Gaussian derivative in direction u of image I at
point x. For instance, the interest point operator
used by the Harris detector [10] is

KH(x) = Det(A)− k · Tr(A)2, (2)

where k is a scale parameter, Det defines the
determinant and Tr defines the trace. The
Shi-Tomasi operator [28] is given by

KS−T (x) = min {λ1,λ2} , (3)

where λ1,λ2 are the two eigenvalues of A. The
subindex of KH and KS−T are used as shorthand
to refer to the namesake of each operator.

2.2 Local Image Descriptors

The problem of local image description has been
extensively studied and many algorithms have
been proposed. One of the most popular
local descriptors is the Scale Invariant Feature
Transform (SIFT) [21], which is still widely used
and available in many computer vision libraries.
Similar to other state-of-the-art descriptors, SIFT
uses a distribution-based approach, characterizing
image information using histograms that attempt
to capture the main properties of local shape or
appearance. For instance, the simplest approach
would be to use histograms of pixel intensities.
However, SIFT builds an histogram of the gradient
distributions within the detected local region, a
3D histogram of gradient orientations at different
locations (discretized by a uniform grid), weighted
by the gradient magnitudes. Moreover, random
noise is suppressed using bilinear interpolation
and a Gaussian function is used to increase the
relative importance of pixels near the center of the
local region.

One important drawback of the SIFT descriptor
is its computational complexity, making it difficult
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to use in low performance computer systems or
in scenarios where real-time response is critical.
This is the case of a low cost embedded computing
system for a mobile robot that needs to solve a
visual SLAM problem.

The Speeded-Up Robust Features (SURF)
descriptor was proposed as a more efficient
method [1], and it has achieved strong results
in many scenarios [3, 11]. This descriptor is
also distribution-based, building a histogram of
Haar-wavelet responses within the interest point
neighborhood. Basically, building the SURF
descriptor consists of the following steps. First,
the dominant gradient orientation of the local image
region is determined. Afterwards, a square region
is aligned with the dominant orientation. The
region is then divided into a 4 by 4 grid, and
the Haar-wavelets responses are then estimated
based on a uniform sampling, using the sum of the
response in each direction (vertical and horizontal)
and the sum of the absolute values. Note that
a total of four attributes for each subregion are
obtained. This gives a descriptor of 64 dimensions,
half the size of the SIFT descriptor. Moreover,
integral images are used to increase efficiency,
since they allow for a fast implementation of box
convolution filters.

3 Alternative Approaches for Feature
Extraction

In this section, we review alternative approaches
towards local feature extraction, based on an
automatic design methodology with GP and
on image processing techniques with composite
correlation filters.

3.1 Automatic Design of Local Feature
Extractors with Genetic Programming

It is instructive to consider that most published
feature detectors and descriptors are normally
accompanied with experimental evidence from a
particular domain that illustrates the superiority
of the method under some conditions when
compared with other techniques. However,
such results can rarely provide assurance that a
particular method will be well suited for a new

or unique scenario. Therefore, researchers have
performed extensive experimental evaluations and
comparisons of these methods, using domain
independent criteria that capture the underlying
characteristics that such methods are expected to
have [22, 32, 30].

Based on those works, recent contributions
have followed the opposite approach, using
these experimental criteria as the basis for
objective functions, and then posed a search and
optimization problem to automatically synthesize
high-performance feature detectors or descriptors
[24, 25, 31, 32, 30]. The general goal is to
exploit meta-heuristic and hyper-heuristic search
methods to help researchers during the design
process of specialized operators. However, we do
not suggest that such an approach is in some way
superior to a traditional design process. Instead,
we agree with [24], hyper-heuristic searchers such
as GP can produce novel designs that can assist in
the development of high-performance and possibly
unconventional solutions to difficult problems. In
particular, this paper studies the interest point
detector generated with a multi-objective GP [24,
31, 25], and the GP-optimized Hölder descriptor
from [32, 30], both of which are described next. But
first a brief introduction to GP is provided, which is
the core algorithm used to derive both operators.

3.1.1 Genetic Programming

Evolutionary algorithms (EA) are population-based
search methods, where candidate solutions are
stochastically selected and varied to produce new
solutions for a specified problem. This process is
carried out iteratively until a predefined termination
criterion is met. In general, to apply an EA
the following aspects must be defined based on
domain knowledge. First, an encoding scheme
to represent and manipulate candidate solutions
for a given problem. Second, an evaluation or
fitness function f that measures the quality of
each solution based on the high-level goal of the
problem. Third, an EA applies variation operators
that take one or more solutions from the population
as input and produce one or more solutions as
output. Fourth, solutions are chosen by the
variation operators based on their fitness using
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a predefined selection mechanism. Finally, a
survival strategy decides which individuals within
the population will appear in the following iteration.

Among EAs, GP is arguably the most advanced
technique, since it can be used for automatic
program induction [20]. In standard GP each
individual is represented by a syntax-tree, because
such structures can efficiently express simple
computer programs, functions, or mathematical
operators. Tree nodes contain a single element
from a specified finite set of primitives P = T

⋃
F .

Leaf nodes contain elements from the set of
terminals T , which normally correspond to inputs,
while internal nodes contain elements from the set
of functions F , which are the basic operations used
to build more complex expressions. In essence,
P defines the nature of the underlying search
space for the evolutionary search, and even when
a maximum depth or size limit for individual trees is
enforced, normally the search space is very large
but finite.

3.1.2 Multi-Objective Interest Point Detector

In [24, 25], a multi-objective GP was used to
design the MOP point detector, optimized based
on two competing objectives, point dispersion and
repeatability rate. The terminal set included the
input image, as well as first and second order
derivatives, which are widely used by other interest
point detectors. The function set included several
arithmetic operations and image filters, also based
on the type of operations performed by a large
subset of point detectors. The multi-objective
search was carried out using the second version
of the Strength Pareto Evolutionary Algorithm
(SPEA-2) [34] and implemented using the GPLAB
Matlab toolbox for GP [29].

The final MOP detector was constructed by
carefully analyzing the Pareto front and the
Pareto-optimal set of solutions generated by the
GP search. The symbolic expression of the MOP
operator OMOP is

OMOP (I) =

G2 ∗
∣∣G1 ∗ log(G1 ∗ I2) + h ·G2 ∗ |G1 ∗ I − I|

∣∣2 ,
(4)

N(Omop(I ))Omop(I )

Input

Image

Operator

image

Interest

points

Fig. 1. Example of the interest point detection
process, where OMOP (I) is the MOP operator and
the N(·) represents the non-maxima suppression and
thresholding function

where I is the input image, Gσ denotes Gaussian
smoothing filters with scale σ, h = 0.05 is
a weight factor that controls the disparity of
the detected points, and ∗ denotes convolution
operation. After applying the MOP operator,
non-maxima suppression and thresholding are
used to select the interest points; this process is
illustrated in Figure 1. The experimental work
presented in [24, 25] clearly showed that the MOP
detector performed quite competitively, in terms
of repeatability and robustness using standard
benchmarks.

3.2 GP-Optimized Regularity-based Descriptor

The Hölder descriptor was proposed in [32], and is
based on capturing the regularity (or irregularity) of
each element of a 2D signal, given by the pointwise
Hölder exponent. After computing the regularity of
each image element, we are left with a regularity
matrix H, that characterizes how the signal varies
over the image plane. Then, for an image region
extracted with an interest point detector, the Hölder
descriptor is constructed by sampling the regularity
matrix in a polar grid around the central point,
and ordering the sampling based on the dominant
orientation; this process is illustrated in Figure 2.

However, as noted in [32], the Hölder descriptor
is not useful in real-time scenarios given the
high computational cost of estimating the Hölder
exponent for each image point. Therefore, in [30]
GP is used to synthesize an operator OHolder to
estimate image regularity more efficiently, given by

OHölder(I) = G1 ∗ |log(|G1 ∗ (k · (I −G1 ∗ I))|)| .
(5)
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Operator Sampling V ector

Input 

image
Regularity 

Matrix

Sample 

regularity

Hölder 

descriptor

Fig. 2. Example of the basic process used to construct
the Hölder image descriptor as proposed in [32]

The proposed evolutionary process used a
similar function and terminal set as the one
proposed in [24, 25], and was also implemented
in GPLAB [29]. Two different fitness functions were
used to drive the search process. First, the goal
was to evolve operators that could compute the
ground-truth regularity of synthetically generated
images, where the underlying regularity can be
prescribed and is given as the ground truth. While
the evolved operators achieved a high accuracy on
the synthetic images, they were overfitted and did
not generalize to real-world scenes.

Therefore, the second approach was to re-
produce the estimated regularity of a known
but computationally expensive method. In [30]
we showed that the operator generated by GP
could estimate image regularity at a fraction of
the computational cost of traditional methods,
without sacrificing performance on the feature
description problem evaluated over a set of
standard benchmarks. However, such as in [24,
25], the evolved operators have not been evaluated
in real-world scenarios, where the computed local
features are used as input to a higher level process.
In what follows, the SLAM problem is described
emphasizing how local image features are used in
this common robotics task.

3.3 Synthetic Discriminant Functions Filter for
Local Feature Description

Composite correlation filters are widely used
for distortion tolerant object recognition, and in
tracking applications for computer vision [16, 2].
These filters represent the impulse response of
a linear system designed in such a manner that
the coordinates of the system’s maximum output

are estimates of the target’s location within an
observed scene. In the last decades plenty of
proposals have been suggested for the design
of composite filters for distortion tolerant pattern
recognition, by optimization of several performance
criteria [16].

In the present work, we are interested in the
design of a filter capable of matching a local
image feature when it is embedded in a disjoint
background and the observed scene is corrupted
with additive noise. Additionally, the filter must be
able to recognize geometrically distorted versions
of the target, such as rotated and scaled versions.

Let I = {ti(x, y); i = 1, · · · ,N} be a set of
availabe image templates representing different
views of the image feature t(x, y) to match. We
assume that the observed scence patch f(x, y)
contains an arbitrary view of the target ti(x, y)
embedded into a disjoint background b(x, y) at
unknown coordinates (τx, τy), and the image is
corrupted with zero-mean additive white noise
n(x, y), as follows:

f(x, y) = ti(x− τx, y − τy)

+b(x, y)w̄(x− τx, y − τy)

+n(x, y), (6)

where w̄(x, y) is the region of support of the target
(binary function) defined as zero within the area
occupied by the target, and unity elsewhere. It
is known that the best filter for detecting a single
view of the target t(x, y) in Equation 6, in terms of
the signal to noise ratio (SNR) and the minimum
variance of measurments of location errors (LE), is
the matched filter (MF) whose frequency response
is given by [15]:

H∗(u, v) =
T (u, v) + µbW̄ (u, v)

Pb(u, v) ∗ W̄ (u, v) + Pn(u, v)
. (7)

In Equation 7, T (u, v) and W̄ (u, v) are
the Fourier transforms of t(x, y) and w̄(x, y),
respectively, µb is the mean value of b(x, y), and
Pb(u, v) and Pn(u, v) are the spectral densities
functions of b0(x, y) = b(x, y) − µb and n(x, y),
respectively.

To successfully employ the MF for the feature
description problem used by a SLAM system, the
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following issues must be addressed. First, the
support function w̄(x, y) of the target is explicitly
unknown, since new unseen image features are
matched online during system operation. Second,
the statistical properties of the background and the
additive noise process, required to synthesize the
MF, are unknown; so, they need to be estimated
online.

Note that the target can be located at any
coordinates within the observed scene patch. Thus
the support function of the whole patch can be
taken as w̄(x, y). In such a case, the MF
for detecting a target with an explicitly unknown
support function, is given by

H∗(u, v) =
T (u, v)

Pb(u, v) + Pn(u, v)
. (8)

Now, suppose that the background within
the scene patch has a separable exponential
covariance function; then, Pb(u, v) can be
computed as [13]

Pb(u, v) =

∫∫ ∞
−∞

σ̂b
2ρ|x|x ρ|y|y exp [−i (ux+ vy)]dxdy,

(9)
where σ̂b

2 is the variance of b0(x, y), and ρx and
ρy are correlation coefficients of the background
in x and y directions. These parameters can be
known beforehand, otherwhise, they can be easily
estimated from input signals [5].

Furthermore, assume that the noise-free image
p(x, y) = ti(x − τx, y − τy) + b(x, y)w̄(x − τx, y −
τy) within the scene patch, and the zero-mean
additive noise n(x, y) are independent. So, the
covariance funtion of the observed scene patch is
Cf (x, y) = Cp(x, y) + Cn(x, y), where Cp(x, y) is
the covariance function of p(x, y) and Cn(x, y) =
σ2
nδ(x, y) is the covariance function of white noise.

The noise variance can be estimated as σ2
n =

Cp(0, 0) − Cf (0, 0); however, Cp(0, 0) is unknown.
Note that Cn(x, y) = 0, ∀(x, y) 6= 0. So, the values
of {Cf (x, y); (x, y) 6= 0} can be used to estimate
Cp(0, 0). This can be done using simple linear
extrapolation, as follows:

Cp(0, 0) = Cf (0, 1) + [Cf (0, 1)− Cf (0, 2)] . (10)

Now, let hi(x, y) be the impulse response of
a MF constructed to match the i th available

view of the target ti(x, y) in I. Let H =
{hi(x, y); i = 1, · · · ,N} be the set of all MF impulse
responses constructed for all training images
ti(x, y). We want to synthesize a filter capable
to recognize all target views in I, by combining
the optimal filter templates contained in H, and
by using only a single correlation operation. The
required filter p(x, y) is designed according to the
SDF filter model, whose impulse response is given
by [16]

p(x, y) =

N∑
i=1

αihi(x, y), (11)

where {αi; i = 1, · · · ,N} are weighting coefficients
that are chosen to satisfy the following conditions:
〈p(x, y), ti(x, y)〉 = ui; where ”<,>” denotes inner-
product, and ui are prespecified output correlation
values at the origin, produced by the filter p(x, y) in
response to the training patterns ti(x, y).

Let us denote a matrix R with N columns
and d rows (d is the number of pixels), where
its i th column contains the elements of the i th
member of H in lexicographical order. Let
a = [αi; i = 1, · · · ,N ]

T be a vector of weighting
coefficients. Thus, Equation 11 can be rewritten as

p = Ra. (12)

Furthermore, let u = [ui = 1; i = 1 . . . ,N ]
T be

a vector of correlation constraints imposed to the
filter’s output in response to the training patterns
ti(x, y), and let Q be a d × N matrix whose i th
column is given by the vector version of the i th view
of the target in I. Note that the filter’s constraints
can be expressed as

u = Q+p, (13)

where superscript ”+” denotes conjugate trans-
pose. By substituting (12) into (13), we obtain
u = Q+Ra. Thus, if matrix Q+R is nonsingular
the solution for a, is

a =
[
Q+R

]−1
u. (14)

Finally, by substitution of (14) into (12), the
solution for the SDF filter is given by

p = R
[
Q+R

]−1
u. (15)
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Fig. 3. Procedure to obtain an image descriptor based
on the SDF filter. Left: target object; Center: training
templates used to construct the matrices R and Q;
Right: the SDF image template. The images are
normalized for easier understanding

For the purpose of local feature description, we
propose the following process based on the SDF
filter design, depicted in Fig. 3. First, given
an interest point x, we extract a scene patch
of 11 × 11 pixels around x; this represents our
reference target pattern t(x, y). Next we create
two synthetically rotated versions of t(x, y), one
rotated 15 degrees clockwise and another rotated
15 counterclockwise, and construct a three element
set I. Next, set H is created by syhthetising the
MF impulse responses of all patterns in I. Finally,
an SDF filter template is synthesized with Equation
15.

4 Visual-based Simultaneous
Localization and Map Building

When a robot is placed in an unfamiliar place
an important task is to gradually build a map of
the surrounding environment and simultaneously
determine the current location within this map.
This is formally known as the SLAM problem [6].
One approach towards solving SLAM is through
computer vision techniques, where a camera is
used as the navigation sensor and CV techniques
are used to extract and analyze the captured
information (for instance, detection and description
of locally salient features). An example of this
approach is the Mono-SLAM system developed by

Davison et al. [4]. Mono-SLAM is a real-time
algorithm that solves the problem of SLAM using
a monocular camera as its only sensor, from
which it recovers a 3D trajectory and map of its
environment.

Mono-SLAM has to overcome several chal-
lenges, starting with the fact that it cannot
determine the depth of an object with just one
frame capture of the scene. Instead, it requires
several views of the same scene, and it must
account for the fact that the pose of the camera
can change during operation. Other challenges
are the unconstrained movement of the camera,
and being able to perform real-time localization.
With this in mind, Mono-SLAM solves these, and
other challenges, using a specialized initialization
procedure. This procedure combines several
techniques such as the extended Kalman filter
(EKF), a particle filter, an active search heuristic,
as well as local feature detection and matching to
identify and recognize useful landmarks. We begin
our overview of Mono-SLAM with the initialization
step. First, the intrinsic parameters of the camera
must be obtained off-line through calibration.
Afterwards the extrinsic pose parameters of the
camera (robot) are determined relative to a fixed
initialization pattern. This process is needed
to initialize the state vector in the prediction
step of the EKF. Next, the operation of the
EKF encompass three basic steps, prediction,
measurement and correction. First, the state
vector x̂ and covariance matrix P of the system are
given by,

x̂ =


x̂v
ŷ1
ŷ2
...

 , P =


Pxx Pxy1 Pxy2 · · ·
Py1x Py1y1 Py1y2 · · ·
Py2x Py2y1 Py2y2 · · ·

...
...

...

 ,

(16)
where ŷn are the estimated feature states
composed of the 3D position vector of the location
of scene landmarks, x̂v is the estimated camera
state vector given by

x̂v =


rW

qWR

vW

wR

 , (17)
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rW is a 3D position vector, qWR is the orientation
quaternion, vW is the velocity vector, and wR is
the angular velocity vector relative to a fixed world
frame W and camera frame R. After initialization,
the first step is prediction, which provides prior
knowledge of where the next position of the
camera and features might be. In this stage, the
algorithm runs a visibility test to determine if the
known features are visible; those that do not pass
this test remain as unused features, otherwise
they are marked for measuring and those with
the highest level of uncertainty (large covariance)
are selected. Second, the measuring step is
divided into two tasks, active search and matching.
The active search is a method that reduces the
amount of computational cost of searching for a
feature within an image, using the camera model
and knowledge of the predicted localization of
previously detected features. In this case we
are searching for a given feature within a local
neighborhood given by the predicted location and
the associated uncertainty. Afterwards, features
are matched within the predicted search region of
the image, if the match is true then the feature is
labeled as a match and it is labeled as a non-match
otherwise. If a feature cannot be successfully
matched after a certain number of attempts, the
feature is discarded. Third, the correction step
is performed on the state vector to reduce the
uncertainty of the location of the camera and each
feature. After the EKF, map maintenance continues
by performing a detection of new landmarks and
using a particle filter to obtain an initial position
estimate. To detect new features, an interest point
detector is applied within a search box using a
heuristic rule, to search for new features when the
map is too sparse, and only doing so in scene
regions that do not already contain other visible
landmarks, by considering the movement model
and avoiding image boundaries. The particle filter
is used to determine the depth of a newly detected
feature; that is, there is no knowledge of the depth
of the feature when it is first detected and the
particle filter estimates it by tracing a line from the
first view of the feature and the current pose of
the camera, and filling the line with a uniformly
distributed set of candidate 3D locations. Then,
in an iterative process it attempts to match the

Table 1. Summary of the detector/descriptor combina-
tions used in this work

Detector Descriptor
Shi-Tomasi NCC
Shi-Tomasi SURF
Shi-Tomasi Hölder
Shi-Tomasi SDF

MOP NCC
MOP SURF
MOP Hölder
MOP SDF
Harris NCC
Harris SURF
Harris Hölder
Harris SDF

particles until they form a Gaussian distribution,
at which point the features are fully initialized and
marked as unused. This sequence of steps if
performed in a loop, as depicted in Figure 4.

It is important to note that the Mono-SLAM
system depends on the quality of two low-level
processes, feature detection and description, in
order to add and recognize landmarks within the
3D map. The original Mono-SLAM system utilizes
the Shi-Tomasi detector in combination with basic
normalized cross-correlation for feature matching.

5 Experiments and Results

As stated before, the goal of the experimental
work is to evaluate the performance of a
particular detector/descriptor combination when it
is used within a visual SLAM system; all of the
combinations tested in this work are summarized
in Table 1. These methods are evaluated using the
Mono-SLAM system implemented in SceneLib2 by
Hanme Kim1, which is an extension of Davison’s
original SceneLib1. The camera used in the
experiments is a low-cost IEEE 1394 web-cam with
a frame rate of 30fps and an image resolution
of 320 × 240 pixels. The camera calibration
parameters are: the horizontal and vertical focal
lengths are fku = fkv = 195 pixels, the principal

1https://github.com/hanmekim/SceneLib2
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Fig. 4. Block diagram of the main processes within Mono-SLAM, the blocks for local feature detection and description
(the darker solid block and dotted block respectively) are emphasized

point is (u0, v0) = (162, 125), and the distortion
coefficient is K1 = 6 × 10?6. The Mono-SLAM
system is executed on a PC running on Ubuntu
Linux 12.04 LTS operating system with an Intel R©

Xeon(R) CPU E3-1226 v3 @ 3.30GHz with 4
cores. The MOP and Harris detectors, as well
as the Hölder, SDF and SURF descriptors were
implemented in C++ using the OpenCV v2.4.2
library. The MOP detector, Hölder descriptor and
SDF filters are available in the GPCV (GP for
computer vision) library under de GPL license,
available at www.tree-lab.org/index.php/gpcv.

The presented experimental work evaluates the
following performance measures:

— The number of scene features (landmarks)
that are correctly Matched at each iteration of
the Mono-SLAM system.

— The ATE (average trajectory error), computed
using the root mean squared error (RMSE)
between the estimated trajectory and the
ground truth.

— The efficiency of each feature detector and
descriptor, based on the required CPU time.

The work considers two test scenarios. In the
first scenario the ground truth trajectory is known,
generated by a camera mounted on the end
effector of a Staubli RX-60 manipulator robot with
six degrees of freedom in a hand-eye configuration,
as shown in Figure 5. Two test trajectories are
generated, respectively referred to as Experiment
A and Experiment B.

Experiment A uses a sine trajectory, where
the camera moves 0.14 meters across the z axis
(amplitude of the sine) and 0.5 meters along the x
axis, with no change in image scale (y axis of the
robot frame of reference). Experiment B uses a
straight line trajectory, where the camera moves 0.3
meters in all axes. In both experiments, the image
plane of the camera is parallel to the x− z plane of
the robot’s coordinate system, with y representing
a change in scale. The ground truth trajectory
of each experiment is presented in Figure 6. As
shown in Figure 5, the experiments are carried out
in an office environment with posters and paintings
on the walls to provide texture and interesting
visual features. The ground truth trajectory
is known with a precision of 0.05 millimeters
according to the Staubli RX-60 specification. The
video captured by the camera is recorded for



Computación y Sistemas, Vol. 20, No. 4, 2016, pp. 565–587
doi: 10.13053/CyS-20-4-2500

Víctor R. López-López, Leonardo Trujillo, Pierrick Legrand, Victor H. Díaz-Ramírez, Gustavo Olague576

ISSN 2007-9737

x y

z

Camera

RobotInitial 

pattern

Fig. 5. Physical scenario of the robot RX-60 with a web-
cam mounted in its end efector to generate the reference
trajectories

offline processing by the the Mono-SLAM system;
however the system can operate online at 30fps.

The second test scenario presents a less
controlled environment, referred to as Experiment
C. For this experiment, the video sequence is
provided with SceneLib2, which has an image
resolution of 320× 240 pixels and the Mono-SLAM
system requires 500 iterations to process the entire
video sequence; four sample frames of this test
video are shown in Figure 7. The Mono-SLAM
system is executed 30 times using the test video
from each experiment (A-C), to account for the
stochastic processes used by Mono-SLAM. Finally,
rank statistics over all runs are used to compare
each detector/descriptor combination.

5.1 Experimental Setup

The Mono-SLAM system is configured to use 10
visible features at each iteration with a patch size
of 11 × 11 pixels. The parameters of the methods
are given in Table 2.

The parameters in Table 2 were experimentally
tuned to obtain the lowest ATE for each
detector/descriptor combination. To determine a
match for the SURF and Hölder descriptors the
Euclidean distance between two descriptors is
computed, and a match is scored if the distance
is below a threshold tm. Similarly for the SDF
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Fig. 6. Illustration of ground truth trajectories for (a)
Experiment A and (b) Experiment B

Table 2. Parameters used with each method

Method Parameter
Shi-Tomasi Default values of Scenelib library

Harris k = 0.04
Non-Maxima Suppression: Block size = 10 pixels;

Threshold = 0.9
MOP h = 0.5;

Non-Maxima Suppression: Block size = 5 pixels;
Threshold = 0.9

NCC Default values of Scenelib library
SURF Descriptor vector size = 64
Hölder Descriptor vetor size = 64
SDF Γ = 0.005, ρx = ρy = 0.80

and NCC descriptors, a threshold for the output
correlation peak tc is used to determine a positive
match. The values of the threshold vary for each
descriptor to obtain the best possible performance;
the threshold values are given in Table 3.



Computación y Sistemas, Vol. 20, No. 4, 2016, pp. 565–587
doi: 10.13053/CyS-20-4-2500

Comparison of Local Feature Extraction Paradigms Applied to Visual SLAM 577

ISSN 2007-9737

(a)

(b)

Fig. 7. Sample frames from the video sequence used in
Experiment C

Table 3. Threshold values used by each feature
descriptor to determine a match

Descriptor Threshold
NCC 0.40
SURF 1.05
Hölder 7
SDF 0.49

5.2 Results

As stated above, the experimental results are
presented based on performing 30 independent
runs of the Mono-SLAM system with each de-

tector/descriptor combination for each experiment.
For experiments A and B, where the ground truth
is known, a graphical representation is provided by
plotting the average estimated trajectories relative
to the ground truth. We group the results based on
the interest point detector used and we show the
trajectories from four different perspectives: a 3D
view, and a view from each plane from the robot’s
frame of reference (X-Z, Z-Y, X-Z). Additionally,
the median of the ATE and of the total correct
matches are provided for each detector/descriptor
combination. For the number of correct matches,
we first take the median number of matches over
all the iterations of the system, and then take
the median over all 30 runs. In the best case
scenario, the trajectory error should be close to
zero, while the number of total matches should
tend to the total number of visible features (10 in
our setup). Statistical tests are performed using a
1XN setup (N methods are compared with a single
control method), where the base Mono-SLAM
detector/descriptor combination (Shi-Tomasi/NCC)
is used as the control method against which all
other methods are compared. The non-parametric
Friedman test is used to perform the statistical
tests, and the resulting p-values are corrected by
the Bonferroni-Dunn method. The null hypothesis
is rejected at the α = 0.05 confidence level.

Finally, to test the efficiency of each method the
following procedure is performed. We use a single
highly textured image of 640x480 pixels. Then we
detect a total of 100 interest points and extract
100 corresponding feature vectors. The total CPU
time required to detect and describe these interest
points is also reported.

5.2.1 Experiment A

Figures 8 to 10 show the average estimated tra-
jectories of each detector/descriptor combination
for Experiment A. For the Harris detector (Figure
8), the SDF descriptor provides the best trajectory
estimation. For the MOP detector (Figure 9),
SDF also provides a good estimation, as well as
the Hölder descriptor, while the SURF descriptor
is noticeably worse. Finally, for the Shi-Tomasi
detector, the best estimation is achieved by the
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(a) 3D view (b) View of the X-Y plane of a)

(c) View of the Y-Z plane of a) (d) View of the X-Z plane of a)

NCC

Fig. 8. Illustrations of the average estimated trajectories for the Harris detector for experiment A; where (a) 3D view, (b)
X-Y plane view, (c) Y-Z plane view, (d) X-Z plane view

Hölder descriptor, while NCC and SURF are
noticeably worse.

Table 4 summarizes the numerical comparisons
for Experiment A and Table 5 provides the p-values
of the statistical tests. For this experiment, the
ATE of the system appears to be quite robust
with respect to the detection/description process,
except for two outliers that did exhibit a statistical
difference with respect to the control method,
these are: ST-SDF and MOP-NCC. While the
MOP-Hölder combination shows the best ATE,
the only combination that is statistically different
with respect to the control method is ST-SDF,

while MOP-NCC is the only combination that
is statistically worse. However, if we focus
on the quality of the detection, description and
matching of visual landmarks the results are
somewhat different. The median and maximum
values are very similar for all combinations,
but several methods do outperform the control
method, these are: ST-SURF, ST-Hölder, ST-SDF,
MOP-SURF, MOP-Hölder, MOP-SDF, Harris-NCC
and Harris-Hölder. In summary, for Experiment
A the ST-SDF combination is able to improve
system performance based on both the ATE and
the total correct matches. Similarly, MOP-Hölder
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(a) 3D view (b) View of the X-Y plane of a)

(c) View of the Y-Z plane of a) (d) View of the X-Z plane of a)

NCC

Fig. 9. Illustrations of the average estimated trajectories for the MOP detector for experiment A; where (a) 3D view, (b)
X-Y plane view, (c) Y-Z plane view, (d) X-Z plane view

also exhibited a noticeable improvement relative to
the base Mono-SLAM algorithms.

5.3 Experiment B

In this experiment, while the trajectory is simpler
than the one used in Experiment A, it introduces
scale changes in the observed scene which were
not present in Experiment A. This is an important
issue, since the interest point detectors (Harris, ST
and MOP) are not scale invariant, so the detection
process is expected to degrade relative to the
performance reported for Experiment A. Therefore,
the heavy lifting in the detection process must be

done by the feature descriptors extracted from the
scene. Moreover, while scale invariant detectors
do exist, they are computationally expensive and
would degrade system efficiency substantially [33].

Table 6 summarizes the numerical comparisons
for Experiment B and Table 7 provides the p-values
of the statistical tests. For this experiment, the
ATE of the system is more dependent on the
detection/description process. We observe much
larger performance differences, the median ATE
of the best method (MOP-Hölder) is about 70%
smaller than the ATE of the worst (ST-NCC). In
this case, all combinations are statistically different
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(a) 3D view (b) View of the X-Y plane of a)

(c) View of the Y-Z plane of a) (d) View of the X-Z plane of a)

NCC

Fig. 10. Illustrations of the average estimated trajectories for the Shi-Tomasi detector for experiment A; where (a) 3D
view, (b) X-Y plane view, (c) Y-Z plane view, (d) X-Z plane view

with respect to the control method, based on the
p-values that allow us to reject that null hypothesis.
Therefore, to determine the best overall method
a multigroup statistical test is performed using
an NxN (all pairwise comparisons of N methods)
approach with all pairwise comparisons done the
Friedman test, and p-values corrected using the
Holm procedure. Results are reported in Table
8, where bold indicates that the null hypothesis is
rejected at the α = 0.05 confidence level. This

table clearly shows that the best ATE performance
is achieved by the MOP-Hölder, MOP-NCC and
MOP-SURF combinations, suggesting that the
MOP detector provides the best detection under
scale changes. Figure 11 shows the estimated
trajectories obtained with MOP-Hölder, MOP-NCC,
MOP-SURF and the control method ST-NCC.

In the case of feature matching, results are
quite similar. Most detector/descriptor combina-
tions (except Harris-NCC) outperform the control
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Table 4. Numerical comparisons for Experiment A, where bold indicates best results

Experiment A Match ATE [meters]
Max Median Max Min Median

ST-NCC 10 7 0.0551 0.0371 0.0471
ST-SURF 10 8 0.0543 0.0353 0.0446
ST-Hölder 10 7 0.0554 0.0343 0.0431
ST-SDF 10 6 0.0549 0.0363 0.0466

MOP-NCC 9 6 0.0566 0.0391 0.0502
MOP-SURF 8 5 0.0559 0.0370 0.0469
MOP-Hölder 10 7 0.0523 0.0335 0.0422
MOP-SDF 10 8 0.0544 0.0365 0.0450

Harris-NCC 10 8 0.0569 0.0354 0.0445
Harris-SURF 10 7 0.0555 0.0358 0.0442
Harris-Hölder 10 8 0.0546 0.0353 0.0441
Harris-SDF 10 7 0.0554 0.0343 0.0431

Table 5. Results of the 1xN statistical tests, showing the p-values of the Friedman test after Bonferroni-Dunn corrections
for Experiment A, with ST-NCC as the control method; bold indicates that the null hypothesis is rejected at the α = 0.05
confidence level

Experiment A
ST-NCC ST-SURF ST-HOL ST-SDF MOP- NCC MOP-SURF MOP-HOL MOP-SDF HA- NCC HA-SURF HA-HOL HA-SDF

ATE 1.5854 3.0065 0.0000 0.0001 11.0000 0.1165 3.0065 5.1173 5.1173 0.3131 3.0065
Match 0.0071 0.0005 0.0464 11.0000 0.0046 0.0439 0.0194 0.0469 9.2563 0.0046 2.2091

method. In particular, once again the MOP-Hölder
and MOP-SURF combinations achieve the best
performance, along with Harris-Hölder. This
suggest that the Hölder descriptor is robust to scale
changes even without the use of a scale invariant
detector. For this scenario both of the methods that
were automatically designed by a GP search (MOP
and Hölder) exhibit the best performance.

5.4 Experiment C

Table 10 summarizes the numerical comparisons
for Experiment C and Table 9 provides the
p-values produced by the statistical tests. For this
experiment, since the ground truth trajectory is not
known, we only compare the detector/descriptor
combinations based on matching performance.
The median values of the total correct matches
suggest that most combinations outperform the
control method; in particular MOP-SURF and
MOP-Hölder exhibit the best performance with
perfect median values. Moreover, the statistical
tests show that the null hypothesis is rejected

in all cases except for the ST-NCC combination.
The Shi-Tomasi detector exhibits the worst
performance, while the MOP detector achieves
the best overall performance. To visualize
these results, Figure 12 compares the matching
performance of the control method and the best
detector/descriptor combinations: MOP-SURF and
MOP-Hölder. The plots show the median value
of correct matches over all runs of the system
at each iteration, plus/minus the first and third
quartiles. Notice that the maximum number
of possible correct matches at each iteration
is 10, which is achieved at many iterations by
the MOP-SURF and MOP-Hölder combinations,
but not by ST-NCC. These plots confirm that
matching performance in the Mono-SLAM system
can be greatly improved by the appropriate
detector/descriptor combination.

5.5 Comparison of CPU Time

Finally, we evaluated each method based on
the total CPU time required to either detect a
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Table 6. Numerical comparisons for Experiment B, where bold indicates best results

Experiment B Match ATE [meters]
Max Median Max Min Median

ST-NCC 10 7 0.0497 0.0315 0.0424
ST-SURF 10 9 0.0245 0.0101 0.0187
ST-Hölder 10 9 0.0258 0.0101 0.0173
ST-SDF 10 9 0.0257 0.0090 0.0186

MOP-NCC 10 8 0.0222 0.0100 0.0168
MOP-SURF 10 10 0.0234 0.0080 0.0127
MOP-Hölder 10 10 0.0213 0.0060 0.0126
MOP-SDF 10 9 0.0262 0.0078 0.0181

Harris-NCC 10 7 0.0235 0.0098 0.0159
Harris-SURF 10 9 0.0231 0.0082 0.0137
Harris-Hölder 10 10 0.0229 0.0078 0.0133
Harris-SDF 10 9 0.0231 0.0090 0.0155

Table 7. Results of the 1xN statistical tests, showing the p-values of the Friedman test after Bonferroni-Dunn corrections
for Experiment B, with ST-NCC as the control method; bold indicates that the null hypothesis is rejected at the α = 0.05
confidence level

Experiment B ST-SURF ST-HOL ST-SDF MOP- NCC MOP-SURF MOP-HOL MOP-SDF HA- NCC HA-SURF HA-HOL HA-SDF
ATE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Match 0.0000 0.0000 0.0000 0.0120 0.0000 0.0000 0.0000 4.0820 0.0000 0.0000 0.0000

Table 8. Results of the NxN pairwise statistical tests of the ATE, showing the p-values of the Friedman test after Holm
corrections for Experiment B; bold indicates that the null hypothesis is rejected at the α = 0.05 confidence level

Experiment B ST- NCC ST-SURF ST-HOL ST-SDF MOP- NCC MOP-SURF MOP-HOL MOP-SDF HA- NCC HA-SURF HA-HOL HA-SDF
ST- NCC - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ST-SURF - - 4.9382 4.9382 0.0000 0.0019 0.0005 0.0732 1.8737 0.0078 0.0005 1.8737
ST-HOL - - - 4.2900 5.1972 0.0001 0.0000 3.5750 0.0000 0.0000 0.0000 0.0000
ST-SDF - - - - 0.0007 0.0030 0.0019 0.0284 1.1541 0.0284 0.0274 1.1541

MOP- NCC - - - - - 0.2998 0.0264 0.0254 2.8600 1.0862 0.2998 2.1450
MOP-SURF - - - - - - 1.8280 0.0244 0.0001 5.1972 1.4300 0.0004
MOP-HOL - - - - - - - 0.0078 0.0000 0.0001 0.0007 0.0000
MOP-SDF - - - - - - - - 3.0065 0.2117 0.0351 3.0065
HA- NCC - - - - - - - - - 0.0000 0.0000 0.0007
HA-SURF - - - - - - - - - - 0.0000 0.0000
HA-HOL - - - - - - - - - - - 0.0000
HA-SDF - - - - - - - - - - - -

100 interest points or build their corresponding
descriptors; the results are given in Table 11.
First, it is clear that all detectors require about the
same computational time, with Harris the slightly
slower method and MOP the fastest. On the other
hand, the differences between the descriptors
are larger. While SURF and SDF are relatively
similar, though SDF is faster by 3 ms, the Hölder
descriptor is one order of magnitude faster than
all other methods, requiring about half the time of
the popular SURF descriptor. Given the strong

performance achieved by Hölder on the tests
reported above, this descriptor is recommended for
use in future applications.

6 Concluding Remarks

The detection and description of local features is by
now one of the most widely used computer vision
approaches. This paper evaluates three different
paradigms for local feature construction on the
difficult real-world problem of vision-based SLAM.
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(a) 3D view (b) View of the X-Y plane of a)

(c) View of the Y-Z plane of a) (d) View of the X-Z plane of a)

Fig. 11. Illustrations of the estimated trajectories of the best detector/descriptor combinations for Experiment B: (a) 3D
view, (b) X-Y plane view, (c) Y-Z plane view, (d) X-Z plane view

Table 9. Results of the 1xN statistical tests, showing the p-values of the Friedman test after Bonferroni-Dunn corrections
for Experiment C, with ST-NCC as the control method; bold indicates that the null hypothesis is rejected at the α = 0.05
confidence level

Experiment C ST-SURF ST-HOL ST-SDF MOP-NCC MOP-SURF MOP-HOL MOP-SDF HA-NCC HA-SURF HA-HOL HA-SDF
Match 0.0026 0.0005 4.4592 0.0014 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000

In particular, we test the following paradigms:
(1) standard computer vision techniques; (2)
automatically generated methods with genetic
programming; and (3) an alternative paradigm
based on synthetic correlation filters, an original
proposal of the current paper.

The experimental work is based on Davison’s
Mono-SLAM system, using several different ex-
perimental scenarios and considering the following
performance criteria: the average trajectory error
between the estimated camera trajectory and a
ground truth trajectory; the quality of the matching
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Fig. 12. Plots of the total Matches over all the iterations of the Mono-SLAM system using Experiment C. The plots show
the median value over all runs at each iteration, plus/minus the first and third quartiles

process given by the total number of correct
matches; and the CPU time required by each
method.

The reported results are revealing, suggesting
that non-traditional techniques, based on auto-
matic feature construction with GP and SDF
filtering, outperform the standard vision techniques
considered in this work, such as the SURF
descriptor and the Shi-Tomasi detector. This
is particularly true when the vision system
experiments scale changes and when considering
the quality of the matching process. Moreover,
GP generated detectors and descriptors are more
efficient than standard techniques for feature
detection and description.

Future work will focus on exploring other
application domains for the MOP detector, and

the Hölder and SDF descriptors, given their
good performance and computational efficiency
compared to standard techniques.

Moreover, the automatic generation of feature
extraction methods with GP could be carried out
online, to find specialized features for specific
environments in real-time.
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Table 10. Numerical comparisons of matching
performance in Experiment C, where bold indicates best
results

Experiment C Match
Max Median

ST-NCC 10 7
ST-SURF 10 8
ST-Hölder 10 8
ST-SDF 10 7

MOP-NCC 10 8
MOP-SURF 10 10
MOP-Hölder 10 10
MOP-SDF 10 9

Harris-NCC 10 8
Harris-SURF 10 9
Harris-Hölder 10 9
Harris-SDF 10 9

Table 11. Comparison of CPU time for each detector
and descriptor method

Method CPU time [ms]
ST 6.7

Harris 7.1
MOP 6.3
SURF 18.7
Hölder 9.4
SDF 15.7
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