

Computación y Sistemas

ISSN: 1405-5546

computacion-y-sistemas@cic.ipn.mx

Instituto Politécnico Nacional

México

Hernández Zavala, Antonio; Camacho Nieto, Oscar; Huerta Ruelas, Jorge A.; Carvallo

Domínguez, Arodí R.

Design of a General Purpose 8 - bit RISC Processor for Computer Architecture Learning

Computación y Sistemas, vol. 19, núm. 2, 2015, pp. 371-385

Instituto Politécnico Nacional

Distrito Federal, México

Available in: http://www.redalyc.org/articulo.oa?id=61539886013

 How to cite

 Complete issue

 More information about this article

 Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Non-profit academic project, developed under the open access initiative

http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org/articulo.oa?id=61539886013
http://www.redalyc.org/comocitar.oa?id=61539886013
http://www.redalyc.org/fasciculo.oa?id=615&numero=39886
http://www.redalyc.org/articulo.oa?id=61539886013
http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org

Design of a General Purpose 8-bit RISC Processor
for Computer Architecture Learning

Antonio Hernández Zavala1, Oscar Camacho Nieto3, Jorge A. Huerta Ruelas1,
Arodí R. Carvallo Domínguez2

1 Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología
Avanzada, Mechatronics Department,

Querétaro, Mexico

2 Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria en Ingeniería y
Tecnologías Avanzadas, Engineering Department,

Mexico City, Mexico

3 Instituto Politécnico Nacional, Centro de Innovación y Desarrollo Tecnológico en Cómputo,
Mexico City, Mexico

{anhernandezz, ocamacho, jhuertar, acarvallo}@ipn.mx

Abstract. Computers are becoming indispensable for

manipulating most everyday consumer products,
ranging from communications and domestic electronics
to industrial processes monitoring and control. High
performance computer design is not only subject to the
technology used for its implementation, it is also a matter
of efficient training. The skills that must prevail in a good
computer designer come from the type of courses taken
and the tools employed during them. This work shows
the design of an 8-bit RISC soft-core processor
dedicated to a complete understanding of computer
architecture. We consider this Processor an effective
hands-on training solution for the comprehension of a
computer from its lowest level up to testing.

Keywords. Computer architecture, digital design, digital

logic, microprocessor, programmable logic devices,
training system.

1 Introduction

Nowadays, computers perform required
calculations for almost all electronic devices in the
market. Computer hardware is build based upon
binary operations to satisfy a set of mathematical,
data transfer, and control instructions. The basic
instructions realized directly by hardware are
known as the processor instruction set. It is used
for the creation of structured software programs for
data manipulation in problem solving.

Computer types differ in the amount of
information they can process. As information is
grouped into 8-bit data packages, there are 8, 16,
32, and 64-bit computers. Today’s devices such as
desktops, laptops, notebooks, or tablets are 32 and
64-bit computers. For specific tasks in
communication, automotive, and industrial
appliances, 16-bit computers are commonly used.
However, 8-bit computers are the number one
sales processors in the world as they are used as
controllers for simple computational tasks.
According to the divide and conquer principle, a
common personal computer is divided into smaller
ones (commonly 8-bit) which share information
with the main computer (32 or 64-bit). An 8-bit
processor commonly manipulates the drivers for
almost every component card inside a computer. It
is noteworthy to mention that 8-bit type processors
are widely used in home appliances and industrial
specific systems.

In order to train engineering students in the
computer architecture field, it becomes necessary
to have the correct tools. In this sense, there have
been different approaches in which students use
hardware or software tools with the purpose of
understanding the processor architecture.

Our purpose is to provide students with a
flexible but consistent tool for understanding
computer architecture from its basics. This work

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

ISSN 2007-9737

presents the design of an 8-bit data width
processor with the Harvard architecture and the
Reduced Instruction Set (RISC) for educational
purposes. It includes a basic instruction set and all
the functional blocks such as program and data
memories, general-purpose registers, and a simple
Arithmetical Logical Unit (ALU) for basic
operations. Its operating mode is multi-cycle
execution due to its easy visualization and
effectiveness. The processor implementation is in
a Xilinx Spartan-3E FPGA.

The organization of the paper is as follows:
Section 2 explains current methodologies used in
computer architecture courses. Section 3
introduces some general and basic concepts
concerning computer architecture. Section 4
presents the processor development, describing
the operation of each functional unit. Finally,
Section 5 presents the results from tests and
compilations, along with a comparative discussion.

2 Computer Architecture Education

It is noteworthy that the educational processors
theme has been widely explored since Edmund
Berkeley and Robert Jensen made the first 2-bit
desktop computer implementation using relays in
1950 [1]. Since then, there have been five different
approaches used to explain computer architecture:

1. Paper. This was the first approach to teach
computer architecture because of the limited
computer availability. It was based on the use
of pencil and paper to understand the
instruction execution flow by means of
drawings. Finally, with high limitations, students
were able to understand the general functioning
of a computer.

2. Simple Hardware. This type of computer is
constructed using available technology. There
are relay and TTL versions that can show the
physical interaction among the computer
modules. Its main disadvantage is the time
invested in the wiring process.

3. Simulator. This is a software-based simulator
that allows the execution of a code to see how
each functional unit works in a computer. The
disadvantage is that it does not allow interaction
with physical devices.

4. Hardware Description Languages HDL. Each
functional unit is programmed using an HDL
(Verilog or VHDL) which is compiled to create a
logical array for the processor description. Next
step is to download it into a device. This
approach is fast to carry out and implement.

5. Logic blocks. This approach is also intended
for programmable logic devices based in the
use of basic logical gates. The construction of
each functional unit is by means of the union of
pre-constructed blocks. This approach allows
students to fully understand a processor from
its basics along with its integration and the
synchronization of the functional blocks.

In the paper category, Stuart Madnick designed
the “Little Man Computer LMC” in 1965 [2] to teach
students. Nowadays, there is a modern version of
his 3-digit Von Neumann computer which has all
the basic computer features and it can be
programmed either in machine code or in
assembly code. These new versions include a
graphical user interface and a compiler. Another
paper approach is the “CARDIAC” computer
developed by David Hagelbarger and Saul
Fingerman from Bell Laboratories in 1968 [3], it is
a processor made of cardboard which nowadays is
implemented in a simulator software. Finally, the
“Paper Processor” developed by Saito Yutaka in
2010 [4] is another tool to understand processor
behavior.

In the hardware approach there are many
proposals starting with [1] which is a 2-bit relay
based computer. In this approach it is common to
use MSI digital components such as TTL’s to
construct a computer as in the 16-bit Glen G.
Langdon “SC-16” processor in 1982 [5], the 32-bit
Hennessy-Patterson “DLX” processor in 1990 [6]
which was based on the MIPS and is still used with
TTL’s by ElAarag in [7]. The 16-bit Bradford
Rodriguez “PISC” Processor in 1994 [8] and the
32-bit MIT “Beta” processor in 1997 [9] are based
on the DEC computer. The hardware approach for
computer architecture courses is a very good
exercise to synchronize data transfer between
functional blocks, although using wires to build
those complex connections is extremely time-
consuming.

There are several simulation tools for the
computer architecture teaching approach [10-16].

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Antonio Hernández Zavala, Oscar Camacho Nieto, Jorge A. Huerta Ruelas, Arodí R. Carvallo Domínguez372

ISSN 2007-9737

Most of these are graphical environments in which
the student can see all the functional modules of a
processor and data transfer among them. It also
allows the interaction to make variations in the
testing code, registers, or memories. These
characteristics are advantageous given that there
is no need to have physical processors. At the
same time it is its weakness, since there is no
interaction with physical devices.

For the case of the HDL language approach
implementations, there are also many types of
didactical processors in 8, 16, and 32-bit versions
[17, 23]. This option allows the physical
construction of a simple computer by using FPGA
devices programmed by HDL language. The
advantage is that the time required to develop a
processor is short, but the main disadvantage is
the lack of understanding of the physical data flow
induced by programming.

In the logic blocks approach, the option is to
build a simple computer by using schematic mode.
A graphical user interface allows gate level design
by placing components in a spreadsheet. It is easy
to use, and data flow between the components is
straightforward. It is even more comprehensive if
we can create all of the functional blocks out of
logical gates. Numerous authors prefer this
approach for their courses, presenting their
different processor versions [24, 30]. This is the
best option since it allows the creation of each
functional block and testing it for further integration.

3 Computer Architecture Primer

In order to introduce some basic concepts used in
the computer architecture field, this section
explains the computer classification and the
instruction execution.

3.1 Computer Classification

The different types of computers are classified
according to the amount of information they
process, the type of operations they execute, or
their architecture.

The information is grouped into 8-bit data
packages called bytes. A pair of bytes is called a
word (16-bit); a pair of words is called a double
word (32-bit); and four words are called a quad

word (64-bit). This is how computers are classified
according to the amount of information they can
process (i.e. 8, 16, 32, 64-bit).

All computers perform data transfer instructions
in order to interchange data among the different
memories and peripherals. There are integer
arithmetic processors, floating point processors,
digital signal processors, and application specific
processors. Integer arithmetic processors are best
suited for general-purpose applications. Thus, it is
possible to find byte, word, dword, and qword sized
general-purpose processors.

According to the architecture of the functional
elements, there are two architectures: the Von
Neumann architecture and the Harvard
architecture. The main difference is in the memory
elements, given that the Von Neumann
architecture shares the program and data memory
in a single bus connection. The Harvard
architecture has two separate memories for
program and data, each with an independent bus
connection. There are also architectural
techniques applied to any case in order to increase
the performance such as pipelining and
parallelism.

According to the technology used for the
construction of a processor, it can be fully
personalized at the factory as an Application
Specific Integrated Circuit (ASIC). It can also be
implemented as a general purpose Programmable
Logic Device (PLD), or it can be built as a soft core
library for use among Field Programmable Gate
Arrays (FPGA).

FPGA technology uses sophisticated
simulation and design verification tools which
enable engineers to reach new levels of complexity
and robustness, while greatly reducing the time
between development and utilization. It also allows
integration of multiple elements into a single chip,
with the capacity to add or remove modules
according to future requirements.

Beside the previous classifications, there are
others based on the type of instructions computers
execute and the number of instructions they are
able to execute. Based on the instruction types,
computers are classified into three kinds: the
Reduced Instruction Set Computer (RISC), the
Complex Instruction Set Computer (CISC), and the
Specific instruction Set Computer (SISC). General-
purpose processors are in the RISC or CISC

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Design of a General Purpose 8-bit RISC Processor for Computer Architecture Learning 373

ISSN 2007-9737

category, while the special purpose processors are
in the SISC category.

Depending on the number of instructions
computers can execute, they are Single
Instruction-Single Data (SISD), Single Instruction-
Multiple Data (SIMD), Multiple Instruction-Single
Data (MISD), and Multiple Instruction-Multiple Data
(MIMD). SISD and SIMD are the classifications for
the most common processors as they perform one
instruction at a time. For the case of big processors
like those in servers or scientific computing, the
use of MISD or MIMD is preferred.

3.2 Instruction Execution

The processor, following a predefined sequence
which corresponds to the task to solve, must
execute a source code program. Each instruction
delivers the result needed by the next instructions.
The execution order of the instructions in the
program memory must be sequential, and each
instruction must finalize prior to loading the next
instruction.

To complete an instruction it is necessary to
divide the processing time into basic tasks
applicable to every instruction. The first task to do
with an instruction is to retrieve it from the program
memory and to load it into the instruction registers.
This task is called FETCH. The second task is to
decompose the instruction into sub-instructions
useful for each of the following functional units.
This stage is called DECODE.

Once the instruction is decoded, the processor
functional units know what to do with the resultant
data. This is the EXECUTE stage, in which the
processor obtains a result from the instruction. The
final task for an instruction is to save the data
generated in the previous stage. This task is called
WRITEBACK. Note that not all the instructions
require writing back their result, as they do not give
any result. In this case, the instructions that do not
require storing a result end at the previous stage.

Modern processors use much more than these
basic stages as they decompose them into more
sub-stages.

4 Definition of the Didactic RISC Soft
Processor

As the purpose of this processor design is to
serve as a tool for computer architecture
understanding, it is desirable to develop a fully
functional processor that can be used in any type
of general-purpose problem. It must also achieve a
fast enough performance to be used in real tasks.
Considering the previous requirements, the
resulting processor must have the
following characteristics:

1. Based on the Harvard architecture,

2. RISC instruction set with 29 instructions,

3. Single Instruction – Single Data (SISD)
execution order,

4. Eight 8-bit general-purpose registers,

5. 256 allocations of 16-bit wide ROM
program memory,

6. 256 allocations of 8-bit wide RAM data memory,

7. ALU with two basic arithmetic and six
logical operations.

To accomplish the goal of obtaining a functional
processor, the first activity is to define the memory
structure and the instruction set for the processor.
The second activity is to define the different
instruction formats, along with the addressing
modes. Once the processor structure is defined,
the third task is to design and construct all the
functional blocks that comprise the processor.

4.1 Memory Organization

The processor is based on the Harvard
architecture; it uses separate memories for
program and data. In addition, it is necessary to
have other useful memories for processing such as
general-purpose registers and a stack. This
section discusses the memories in the processor.

a. Program Memory

The program memory is a ROM type memory
segment used to store the sequences of
instructions in machine language. In other words,
it is used to store the program.

It is organized as a linear sequence of 256 deep
x 16-bit wide memory locations. It uses an 8-bit
address bus to address all the locations. The 8-bit

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Antonio Hernández Zavala, Oscar Camacho Nieto, Jorge A. Huerta Ruelas, Arodí R. Carvallo Domínguez374

ISSN 2007-9737

Program Counter (PC) indicates the address of the
next instruction to execute. Each address of the
program memory is a sequence from location 0x00
to 0xFF.

This is a non-volatile memory, which holds the
program even if the processor powers down. It has
two operation modes: reading and writing. The
writing mode is a first step for loading the memory
content (the program). In the reading mode, the
address is set at address pins and the content of
that location is available immediately at the
data output bus.

b. Data Memory

The data memory is a RAM type memory segment
used to store the data generated by the main
program. The data stored could be a variable value
or a constant used by the program to perform
calculations. It is organized as a set of 256
allocations, each 8-bit wide. The data memory
address bus is 8-bit wide allowing the possibility to
access all locations, from 0x00 to 0xFF. As this
memory is volatile, when the processor powers
down, the data is lost. This memory has two
operation modes: write and read. The write
operation must follow these steps:

1. Set the desired address at the address bus,

2. Set the desired data in the input data bus,

3. Introduce a clock pulse as the control signal,

4. The data is stored at the desired location and is
available at the output bus.

The read operation is much simpler. It only
needs to set the desired address at the address
bus, and the content of the location transfers
immediately to the corresponding data output bus.

c. General Purpose Registers

The general-purpose registers are RAM type
memories which are made of conventional Flip-
Flops. The main advantage of these registers is the
closeness to the arithmetic and logic unit with the
purpose of achieving faster calculations than with
the content of Data Memory. Almost every
instruction uses registers as parameters.

There are two possible operations: read and
write. In the read mode, two registers are selected
simultaneously. In the write mode, only the
destination register can be written. The write
operation must follow these steps:

1. Set the desired register address at the
destination address bus,

2. Set the desired data in the input data bus,

3. Introduce a pulse as the control signal,

4. The new data is stored at the desired register
and is available at the output.

The reading operation is much simpler. The
only condition is to set the desired address for
source and/or destination registers, and the
content is transferred to the corresponding outputs.
In the GPR, each register is made of 8 D-type flip-
flops.

4.2 Instruction Set

A processor must have its own specific instruction
set which comprises the assembly code and the
machine language binary format. The instruction
set must satisfy two very important concerns: it
must be simple and robust. These are
accomplished by selecting the simplest
instructions to make the processor capable of
executing any operation or routine in fewest steps.

The instructions are classified according to their
purpose in three groups:

- Operations: instructions that affect the
register values,

- Program Control: instructions that affect the
execution order,

- Data Transferring: instructions that affect the
memory contents.

For the operations case, two arithmetical ones
were selected. Addition and subtraction between
two registers and between one register and an
immediate data were chosen. More complex
arithmetical operations are build based upon these
two operations. In the case of logical operations,
the selected operations were AND, OR between
two registers, and NOT, shift right, shift left, and
SWAP with one register.

As for the program control instructions, such
branch instructions as an immediate jump, an
indirect jump to a location in a register, conditional
branches for each status flag (Z, C, and H), a jump
to subroutine, and a return from subroutine were
chosen.

For the case of data transferring instructions,
the load and storage instructions require

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Design of a General Purpose 8-bit RISC Processor for Computer Architecture Learning 375

ISSN 2007-9737

addressing data at different memory sources. In
order to show the complete instruction set, it is
necessary to first define the addressing modes for
the different memories and their instruction format.

4.3 Addressing Modes

In processors, there must be a form to connect the
core processor to the different memories with the
purpose of information interchange called
addressing modes. While more addressing modes
are incorporated in a processor, the number of
instructions in a program can be reduced. In our
proposed processor, since it is didactic, it includes
six addressing modes for data transfer between
the GPR, the data, and program memories. It
supports the following addressing modes:

- Program Memory Direct. This mode occurs
when an 8-bit constant data is the new value
for the PC causing it to change its address
value. The branch instructions 1-5 from the
instruction set belong to this type.

- Immediate. Instructions of this type use a
constant value to affect the content of a
register in the GPR. Instructions 6-10 from the
instruction set are of this type.

- Data Memory Direct. In this mode, the
instructions use a constant value as address to
the data memory for read or write operations.
Instructions 11-12 from the instruction set are
of this type.

- Register Direct, Two Registers. This mode
uses two registers from GPR and affects the
content of the destination register by means of
an arithmetic or logical operation using the
source register value. Instructions 13-16 from
the instruction set are of this type.

- Data Memory Indirect Through Register. In
this mode, the data memory is addressed by
the content of a register in the GPR to execute
read or write operations with a second register.
Instructions 17-18 from the instruction set are
of this type.

- Register Direct, Single Register. This mode
uses one register from GPR to affect its
content according to an arithmetic or logical
operation. Instructions 19-24 from the
instruction set are of this type.

4.4 Instruction Format

The instruction format refers to the physical order
in which the bits of an instruction are placed
according to the parameters it uses. Its
development is restricted to the CPU architecture,
the number of instructions it involves, and the
operands handled.

Each instruction must have a unique identifier
called the operation code, commonly abbreviated
as the OPCODE. The bit length for the OPCODE
depends on the total number of instructions. As our
processor complete instruction set contains 25
instructions, we only need 5 bits to represent all of
them.

As the operands in an instruction are the most
important factor, it is necessary to classify the
instructions according to their format type as
follows [31]:

- Type J – instructions used for jumps,

- Type I – instructions that use a register and an
immediate data,

- Type R – instructions that perform operations
using registers,

- Type D – instructions that carry out operations
without parameters.

The format for an instruction requires 3 bits
used to specify any of the eight registers in the
GPR (source Rs or destination Rd); 8 bits used to
specify a constant or address value k; finally, 5 bits
are required for the OPCODE. By noting that not
all the instructions require all the fields and that it
is desirable to have a standard length for all the
instructions, their format length was fixed to 16 bits
according to the following.

The instructions grouped into Type J use the 5-
bit OPCODE, and an 8-bit constant value (k),
resulting in 13 useful bits leaving 3 bits unused
according to Fig. 1.

The instructions grouped into Type I use the 5-
bit OPCODE, a destination register (Rd) or source
register (Rs), and an 8-bit constant value (k),
resulting in 16 useful bits ordered as in Fig. 2.

The instructions grouped into Type R are
divided into R2 and R1 instructions indicating
which instructions use two registers and which use
one register. R2 instructions require a destination
register (Rd), a source register (Rs), and the

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Antonio Hernández Zavala, Oscar Camacho Nieto, Jorge A. Huerta Ruelas, Arodí R. Carvallo Domínguez376

ISSN 2007-9737

OPCODE for 11 useful bits as in Fig. 3. R1 type
instructions use a single register (Rd or Rs) and the
OPCODE for 8 useful bits as in Fig. 4.

The instructions grouped into Type D require no
more than the OPCODE for 5 useful bits as in
Fig. 5.

Table 1 describes the instruction set for the
processor, showing for each instruction its
mnemonic, its description, the suggested syntax,
the micro-operation it performs, its 16-bit
instruction format, and the required clock cycles to
complete the instruction.

4.5 Functional Units

Physically, a processor is made of a set of
hardware blocks called functional units which are
the basis for binary data processing. Each
functional unit must satisfy certain logical design
criteria in order to effectively accomplish its task
[32]-[35]. Some of these units must be designed

entirely; some others are common construction
blocks which can be used from libraries.

The functional units are described below with
the exception of the program and data memories
which were considered previously. It is noteworthy
that the control unit uses the control signals of all
the functional units to manipulate the
processor functioning.

It is suggested to analyze theoretically each
functional unit in one day and in the next class
realize its design in the lab.

a. Program Counter (PC)

The program counter PC is a binary counter
which produces the address to read an instruction
from the program memory. It must be capable of
loading a pre-defined address if the program
requires it, as in the cases of loops or branches. To
construct the program counter, a common 8-bit
binary counter with parallel-load is used. Note that

Fig 1. Type J instruction format

Fig. 2. Type I instruction format

Fig. 3. Type R2 instruction format

Fig. 4. Type R1 instruction format

Fig. 5. Type D instruction format

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Design of a General Purpose 8-bit RISC Processor for Computer Architecture Learning 377

ISSN 2007-9737

there are control signals used to manipulate
its behavior.

Nomenclature

Rd Destination register

Rs Source register

K Constant

A Address

P Port Address

- Not Used

b. Instruction Register

The instruction register is divided into two 8-bit
registers named the Instruction Register (IR) and
the Instruction Data Register (IDR). The IR stores
the upper 8 bits of the instruction read from
program memory. It usually contains the OPCODE
and a register parameter. The IDR commonly
contains the 8-bit constant or immediate data used
by the instruction. Both registers maintain their
data while an instruction is in execute and write
back stages, then updates the data when a new
instruction fetches. Two 8-bit registers made of a
parallel array of D-type flip-flops are used as IR and
IDR.

There is also an 8-bit address register AR that
is dedicated to store the program counter value
while the instruction is executed. This register is
synchronized with both the IR and the IDR, and it
has the same construction scheme.

c. Instruction Decoder

The instruction decoder is in charge of decoding
the data stored in the instruction registers, i.e., it
splits the data into its fundamental parts as follows:
5 bits for the OPCODE, 3 bits for destination
register (Rd), 3 bits for source register (Rs), and 8
bits for the constant data (A/K).

The purpose of splitting the data is to send it to
the fundamental unit that requires it (like GPR,
ALU, or Memory). The design strategy for the
decoder is achieved simply by using a set of
buffers inside a block to sort the signals to separate
buses.

d. General Purpose Registers (GPR)

General Purpose Registers (GPRs) are sets of
registers used to store and save operands or
results during the program execution. Their main
advantage is that they can share data directly with

the ALU and the data memory, resulting in high-
speed calculations.

The control unit allows the ALU and the data
memory to be able to read or write in those
registers. A GPR consists of a set of eight 8-bit
registers, a pair of eight 8-bit input multiplexers,
and an 8-bit output decoder to control which
register is read or written. Its operation mode
defines that it reads two registers at a time (Rd, Rs)
but only writes one register at a time (Rd) as in
Fig. 6.

e. Arithmetic-Logic Unit (ALU)

The Arithmetic-Logic Unit is the functional unit
dedicated to execution of arithmetical and logical
calculations. As this is a didactic processor, it uses
the simplest operations. Anyway, it is possible to
construct more complex operations represented in
terms of these simplest ones.

Each operation is designed separately and
becomes a symbol. A multiplexor is used in order
to have a 3-bit operation selector as illustrated in
Table 2.

Additionally, any ALU operation activates status
flags according to its result. For this purpose, the
basic flags included are the carry flag (C), the half
carry flag (H), and the zero flag (Z). The resulting
schematic diagram for the ALU is presented in
Fig. 7.

f. Control Unit

The control unit synchronizes the operation of all
the previous functional units. It is a state machine
which sets the functioning order for each
instruction according to the OPCODE in order to
satisfy the instruction execution stages presented
in Section 2. The control unit design is realized by
following a state diagram, in which the following
considerations must be made:

- There must be a reset state present at start up,
which must consider the initial conditions for all
the functional units.

- The second state should represent the FETCH
stage, where the instruction is retrieved from
the program memory and loaded into the IR
and IDR registers; the program address is also
loaded into the AR register.

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Antonio Hernández Zavala, Oscar Camacho Nieto, Jorge A. Huerta Ruelas, Arodí R. Carvallo Domínguez378

ISSN 2007-9737

Table 1. Instruction set for the IPN-8 didactic soft processor

 16-bit Instruction Format

 OPCODE PARAMETERS

No. Mnemonic Description Syntax
Micro-

operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CLK

 J - Type Instructions

1 JMP Direct Jump JMP k PC ← k 0 0 0 0 0 - - - k k k k k k k k 2

2 BRC
Branch if
carry

BRC k

if (C = 1) then
 PC ← k
Else if (C=0)
then
 PC←PC+1

0 0 0 0 1 - - - k k k k k k k k 2

3 BRZ
Branch if
zero

BRZ k

if (Z = 1) then
 PC ← k
Else if (Z=0)
then
 PC←PC+1

0 0 0 1 0 - - - k k k k k k k k 2

4 BRV
Branch if
overflow

BRV k

if (V = 1) then
 PC ← k
Else if (V=0)
then
 PC←PC+1

0 0 0 1 1 - - - k k k k k k k k 2

5 JSR
Jump to
Subroutine

JSR k
[SP] ←PC,
SP←SP-1,
PC←k

0 0 1 0 0 - - - k k k k k k k k 2

 I - Type Instructions

6 ADDI
Immediate
addition

ADDI
Rd, k

Rd ← Rd + k

0 1 0 0 0 Rd Rd Rd k k k k k k k k 3

7 SUBI
Immediate
subtraction

SUBI
Rd, k

Rd ← Rd – k

0 1 0 0 1 Rd Rd Rd k k k k k k k k 3

8 ANDI
Immediate
AND

ANDI
Rd, k

Rd ←Rd AND k

0 1 0 1 0 Rd Rd Rd k k k k k k k k 3

9 ORI
Immediate
OR

ORI
Rd, k

Rd ←Rd OR k

0 1 0 1 1 Rd Rd Rd k k k k k k k k 3

10 LDI
Load
immediate

LDI
Rd, k

Rd ← k

0 1 1 0 0 Rd Rd Rd k k k k k k k k 2

11 LDD
Load direct
from data
memory

LDD
Rd,[A]

Rd ← [A]

0 1 1 0 1 Rd Rd Rd A A A A A A A A 2

12 STD
Store direct
to data
memory

STD
[A],Rs

[A] ← Rs

0 1 1 1 0 Rs Rs Rs A A A A A A A A 2

 R2 – Type Instructions

13 ADD Addition
ADD
Rd, Rs

Rd ← Rd + Rs

1 0 0 0 0 Rd Rd Rd Rs Rs Rs - - - - - 2

14 SUB Subtraction
SUB
Rd, Rs

Rd ← Rd - Rs

1 0 0 0 1 Rd Rd Rd Rs Rs Rs - - - - - 2

15 AND Logic AND
AND
Rd, Rs

Rd ← Rd AND
Rs

1 0 0 1 0 Rd Rd Rd Rs Rs Rs - - - - - 2

16 OR Logic OR
OR Rd,
Rs

Rd ← Rd OR Rs

1 0 0 1 1 Rd Rd Rd Rs Rs Rs - - - - - 2

17 LDX
Indirect load
from
memory

LDX
Rd,[Rs]

Rd ← [Rs]

1 0 1 0 0 Rd Rd Rd Rs Rs Rs - - - - - 2

18 STX
Indirect
storage to
memory

STX
[Rd],Rs

[Rd] ←Rs

1 0 1 0 1 Rd Rd Rd Rs Rs Rs - - - - - 2

 R1 – Type Instructions

19 NOT Logic NOT
NOT
Rd

Rd←NOT Rd

1 1 1 0 0 Rd Rd Rd - - - - - - - - 2

20 SHL
Shift
register left

SHL
Rd

Rd(n+1)←Rd(n),
Rd(0) ← 0

1 1 1 0 1 Rd Rd Rd - - - - - - - - 2

21 SHR
Shift
register
right

SHR
Rd

Rd(n)←Rd(n+1),
Rd(7) ← 0

1 1 1 1 0 Rd Rd Rd - - - - - - - - 2

22 SWAP
Swap
nibbles

SWAP
Rd

Rd7←Rd3,
Rd6←Rd2,
Rd5←Rd1,
Rd4←Rd0

1 1 1 1 1 Rd Rd Rd - - - - - - - - 2

23 PUSH
Push data
to stack

PUSH
Rs

[SP] ←Rs,
SP←SP-1

1 1 0 0 0 Rs Rs Rs - - - - - - - - 2

24 POP
Pop data
from stack

POP
Rd

Rd←[SP],
SP←SP+1

1 1 0 0 1 Rd Rd Rd - - - - - - - - 3

 D – Type Instructions

25 RET
Return from
Routine

RET
PC←[SP]+1,
SP←SP+1

0 0 1 0 1 - - - - - - - - - - - 2

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Design of a General Purpose 8-bit RISC Processor for Computer Architecture Learning 379

ISSN 2007-9737

- The decoding of the instruction goes
straightforward once the instruction is fetched

considering that the instruction registers are a
kind of gate that let the data go through.

Fig. 6. General Purpose Registers schematic diagram

Fig. 7. Arithmetic and Logical Unit schematic diagram

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Antonio Hernández Zavala, Oscar Camacho Nieto, Jorge A. Huerta Ruelas, Arodí R. Carvallo Domínguez380

ISSN 2007-9737

- The next state corresponds to the EXECUTE
stage, when the instruction executes its
fundamental operation.

- It is noteworthy that some instructions do not
require a write back stage, such as
branch instructions.

- In the final state, the result of the operations is
stored onto its respective functional unit, and
the program counter is incremented to address
the next instruction.

The design of the control unit is the most
important challenge in the processor design, as it
must make everything work correctly. The control
unit is designed with the use of exhaustive
behavioral analysis in which the control signals of
each functional unit involved for each instruction
must be considered. It is necessary to utilize a truth
table in which the inputs are the OPCODE, the
actual state, and the status flags; the
corresponding outputs are the control signals for
each functional unit and the next state.

The design of the control unit is a good practice
for students to approve the course by making the
processor work.

5 Results

In order to validate the functionality of our
processor, it was implemented in a Xilinx Spartan3
XC3S500-4FG320 FPGA. The design was tested

using the XilinxISE tools version 14.2 in schematic
mode to allow direct gate level designs. The
simulations were performed using the included
XilinxISE Simulator. The main results are
presented as two separate parts: the testing
program and the resource consumption. Finally,
we present a discussion.

5.1 Testing Program

For evaluating the performance of the CPU, it was
necessary to choose a program that uses different
types of instructions. The program must execute
simple calculations, manipulate the stack, perform
conditional and unconditional branches, execute
subroutines, and access RAM memory. A program
which calculates the first 10 elements of the
Fibonacci series and stores them into consecutive
data memory locations was used.

The simulation for the Fibonacci program is
given in Fig. 8. The instruction address is shown at
the pm_dir signal where the jumps can be viewed
as discontinuous addresses. The dm_data signal
corresponds to the data memory content given by
the address of the md_dir signal. As shown, the
Fibonacci sequence changes at instruction 5.

5.2 Resource Consumption

After file synthesis with the Xilinx XST tool, some
numerical results were obtained reflecting the
hardware resource utilization of the processor. As
the processor was implemented in a Xilinx

Fig. 8. Execution of the Fibonacci series program

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Design of a General Purpose 8-bit RISC Processor for Computer Architecture Learning 381

ISSN 2007-9737

Spartan3 XC3S500-4FG320 FPGA, the device
utilization is shown in Table 3. IO’s have the
highest utilization percentage as they are required
to interconnect the processor with the external
pins, but an important consideration is that most of
the signals were used only for monitoring purpose
so they can be eliminated. The number of logical
elements such as slices, flip-flops, and LUT’s is
minimal due to the combinational nature of the
processor being capable of executing an
instruction in a few clock cycles.

5.3 Discussion

It has been more than 60 years of computer
architecture teaching evolution. The technological
advances have directly affected the way computer
architecture is taught.

According to Section 2, the different
approaches to teach computer architecture were
classified into five groups: paper, simple hardware,
simulator, HDL, and logic blocks. These groups
could be regrouped in two main branches:
simulators and hardware constructs.

In the simulator branch, the paper and the
software simulators can be included. They serve
only to simulate the processor functioning either
manually (paper) or automatically (software). This
branch is not useful for evaluating our proposal.

In the hardware constructs branch, it includes
the simple hardware, HDL, and logic blocks
approaches. Any of these can be compared with
our proposal since, as mentioned, the
technological advances affects computer
implementation.

Simple hardware is disappearing since it
requires a great amount of time in constructions
and a larger amount of money to get the

components. In the case of the HDL and logic
blocks, both approaches take advantage of the
versatility of programmable logic devices. The
main difference is the use of code versus
diagramming.

In this sense, the use of code leads to a shorter
development time but adds uncertainty to the data
path. It also depends on how efficiently the code is
translated by a compiler.

On the other hand, the use of logical blocks
serves to enhance the designer interconnection
ability. It also leads to non-redundant circuits as
they are designed only with the required gates.

Given the previous comments, the logic blocks
approach is the best option since it exploits the
versatility of programmable devices. Besides, it
can be seen as an improved solution for the simple
hardware approach.

When comparing to other educational
processors, there are some advantages in our
proposal. In the case of [25], it employs a Von
Neumann architecture that has the disadvantage
of using the same memory for program and data.
The Harvard architecture in our proposal reduces
memory access leading to better performance. It
uses three programmable registers compared to
the eight fully accessible registers in our proposal.

In the case of [26], it uses 16-bit data, and our
proposal uses 8-bit data. Instructions in the former
use at most three operands including an
accumulator while our proposal uses at most two
operands, and any general-purpose register can
serve as accumulator. The same is true for [28].

Comparing our proposal with the processor in
[27], the main disadvantage of the latter is that it
uses 16-bit data only. When processing, it is
necessary to use different data widths, as it is
possible in our proposal.

Concerning [29], it does not include a register
file, making direct access to the data memory. Its

Table 3. Hardware Resources Consumed

Logic Utilization Used Available Utilization

Slices 202 4656 4%

Slice Flip Flops 109 9312 1%

4 input LUTs 404 9312 4%

Bonded IOBs 116 232 50%

GCLKs 2 24 8%

Table 2. Arithmetic and logical operations in ALU

Selection Bits ALU Operation

0 0 0 Addition

0 0 1 Subtraction

0 1 0 And

0 1 1 Or

1 0 0 Not

1 0 1 Shift Left

1 1 0 Shift Right

1 1 1 Swap nibbles

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Antonio Hernández Zavala, Oscar Camacho Nieto, Jorge A. Huerta Ruelas, Arodí R. Carvallo Domínguez382

ISSN 2007-9737

construction is based on a monocycle architecture
which is not most suitable for a functional
processor, while our proposal is multi-cycle,
resulting in a more efficient processing.

Finally, when compared to the processor
presented in [30], our processor includes five new
instructions, three new addressing modes, and an
address register.

6 Conclusions

Applying our methodology in computer
architecture courses allows students to understand
how each part of a modern computer works, how
the parts interact, and how to synchronize the
different functional units. It also allows visualizing
the relation of theoretical concepts with physical
devices.

Our processor is fully functional and can
operate executable programs going beyond
theory, unlike most of the revised works. In
addition, our processor could be used as
embedded soft-core processor for FPGA designs
that may benefit from the incorporation of a Central
Processing Unit (CPU) for peripherals or other
devices.

The processor presented in this paper was
used to teach computer architecture for about 4
years having good acceptance among students
and contributing effectively to learning process. It
is left to the instructor to choose how to divide the
theoretical and practical classes. It is suggested to
review theory in one day and to make a practical
session in the next class.

Acknowledgements

Authors would like to thank Instituto Politécnico
Nacional and CONACYT who funded this work.

References

1. Berkeley, E.C. & Jensen, R.A. (1950). World’s
Smallest Electric Brain. Radio-Electronics, Oct.
1950.

2. Illinois State University (2000). Little Man
Computer.
http://www.acs.ilstu.edu/faculty/javila/lmc/

3. Bell Laboratories Record (1969). Cardboard
“Computer” Helps Students, 216.

4. Yutaka, S. Paper Processor. Available:
https://sites.google.com/site/kotukotuzimiti/

5. Langdon, G.G. (1982). Computer Design.

Computeach press, California.

6. Hennessy, J.L. & Patterson, D.A. (1990).
Computer Architecture: A quantitative Approach.
Morgan Kaufmann San Mateo CA.

7. El Aarag, H. (2009). A complete design of a RISC
processor for pedagogical purposes. Journal of
Computing Sciences in Colleges, Vol. 25, No.2, pp.
205–213.

8. Rodriguez, B.J. (1994). A minimal TTL processor
for architecture exploration. Proceedings of the
1994 ACM symposium on applied computing, pp.
338–340.

9. Massachussetts Institute of Technology. MIT
6.004 Beta Architecture Information. Available:
http://6004.csail.mit.edu/Spring98/Beta.

10. Verplaetse, P. & Campenhout, J. (1999).

ESCAPE: Environment for the Simulation of
Computer Architecture for the Purpose of
Education. IEEE Technical Committee on Computer
Architecture Newsletter, pp. 57–59.

11. Djordjevic, J., Milenkovic, A., & Grbanovic, N.
(2000). An Integrated Environment for Teaching

Computer Architecture. IEEE Micro, Vol. 20, No. 3,
pp. 66–74.

12. Wainer, G., Daicz, S., De Simoni, L., &
Wassermann, D. (2001). Using the Alfa-1

simulated processor for educational purposes.
Journal on Educational Resources in Computing,
Vol. 1, No.4, pp. 111–151.

13. Martins, C.A., Correa, J.B., Goes, L.F., Ramos,
L.E., & Medeiros, T.H. (2002). A new learning
method of microprocessor architecture. Frontiers in
Education, 3, S1F16-S1F21.

14. Pizzutilo, S. & Tangorra, F. (2003). A learning

environment to teach computer architecture.
Proceedings of the WSEAS International
Conference on Information Science and
Application, pp. 770–776.

15. Jaumain, M., Osee, M., Richard, A., Vander Biest,
A., & Mathys, P. (2007). Educational simulation of

the RISC processor. International Conference on
Engineering Education.

16. Garcia, M.I., Rodriguez, S., Perez A., & Garcia, A.
(2009). p88110: A Graphical Simulator for

Computer Architecture and Organization Courses.
IEEE Transactions on Education, Vol. 52, No. 2, pp.
248–256. DOI: 10.1109/TE.2008.927690

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Design of a General Purpose 8-bit RISC Processor for Computer Architecture Learning 383

ISSN 2007-9737

17. Hsiao-Ping, Holmes, N.D., Bakshi, S., & Gajski,
D.D. (1993). Top-down modeling of RISC

processors in VHDL. Design Automation
Conference 1993 with EURO-VHDL, pp. 454–459.

18. Li, Y. & Chu, W. (1996). Using FPGA for computer
architecture/organization education. Proceedings of
the 1996 workshop on Computer architecture
education, pp. 31–35.

19. Gray, J. (2000). Hands-on computer architecture:

teaching processor and integrated systems design
with FPGAs. Proceedings of the workshop on
Computer architecture education, article 17. DOI:
10.1145/1275240.1275262

20. Becvar, M., Pluhacek, A., & Danecek, J. (2003).

DOP: a CPU core for teaching basics of computer
architecture. Workshop on Computer architecture
education, article 4.

21. Muñoz, A.S., & Rodríguez-Morcillo, J.D. (2008).

Microprocesador RISC sintetizable en FPGA para
fines docentes. VIII Congreso de Tecnologías
Aplicadas a la Enseñanza de la Electrónica,
España.

22. Mandalidis, D., Kenterlis, P., & Ellinas, J. (2008).

A computer architecture educational system based
on a 32-bit RISC processor. International Review on
computers and Software, pp. 114–119.

23. Wadhankar, V.R. & Tehre, V. (2012). A FPGA

Implementation of a RISC Processor for Computer
Architecture. Proceedings on National Conference
on Innovative Paradigms in Engineering and
Technology, Vol. 1, pp. 24–28.

24. Calazans, N.L.V., & Moraes, F.G. (2001).

Integrating the teaching of computer organization
and architecture with digital hardware design early
in undergraduate courses. IEEE Transactions on
Education, Vol. 44, No. 2, pp. 109–119. DOI:
10.1109/13.925805

25. Becvar, M., Pluhacek A., & Danecek, J. (2003).

DOP: a CPU core for teaching basics of computer
architecture. Proceedings of the workshop on
Computer architecture education, article 4. DOI:
10.1145/1275521.1275527

26. Angelov, V. & Lindenstruth, V. (2009). The
educational processor Sweet-16. International
Conference on Field Programmable Logic and
Applications, pp. 555–559. DOI:
10.1109/FPL.2009.5272412

27. Presa, J.L. & Calle, E.P. (2011). MMP16 a 16-bit

Didactic Micro-Programmed Micro-Processor.
International Conference on Computer Research
and Development, Vol. 1, pp. 61–65. DOI:
10.1109/ICCRD.2011.5763974

28. Oztekin, H., Temurtas, F., & Gulbag, A. (2011).

BZK.SAU.FPGA10.0: Microprocessor architecture
design on reconfigurable hardware as an
educational tool. IEEE Symposium on Computers &
Informatics, pp. 385–389. DOI:
10.1109/ISCI.2011.5958946

29. Pereira, M.C., Viera, P.V., Raabe, A.L., &
Zeferino, C.A. (2012). A basic processor for

teaching digital circuits and systems design with
FPGA. Southern Conference on Programmable
Logic, pp. 1–6. DOI: 10.1109/SPL.2012.6211804

30. Hernández Zavala, A., Avante Reyes, J., Duarte
Reynoso, Q., & Valencia Pesqueira, J.D. (2011).

RISC-Based Architecture for Computer Hardware
Introduction. International Conference on Computer
Research and Development, pp. 17–21.

31. Pattersson, D.A. & Hennessy, J.L. (1998).
Computer Organization and Design, the
hardware/software interface (2nd ed.). Morgan
Kaufmann San Francisco CA.

32. Tocci, R.J., Widmer, N.S., & Moss, G.L. (2007).
Sistemas Digitales, Principios y aplicaciones (10th
ed.), Pearson, México.

33. Stallings, W. (1994). Organización y Arquitectura
de Computadoras (7th ed.). Pearson, Mexico.

34. Mano, M. (1994). Arquitectura de computadoras
(3th ed.). Pearson, Mexico.

35. Jaramillo Gómez, J.A., Guzman Dominguez, I., &
Molina Lozano, H. (2011). VHDL. Guia de Estilo y
Prácticas de Laboratorio de Circuitos Lógicos.
Instituto Politécnico Nacional, México.

Antonio Hernández Zavala received the B.Sc. in
Computer Systems from the Ecatepec Higher
Technological Studies, Mexico, in 2001. He
received his M. Sc. in Computer Engineering with
specialty in Digital Systems in 2004 and the Ph. D.
in Computer Architecture in 2009, both from the
Computing Research Centre of Instituto
Politécnico Nacional, Mexico. From 2008 to 2011
he was a full time professor at the Interdisciplinary
Engineering and Advanced Technologies
Professional Unit (UPIITA) of Instituto Politécnico
Nacional, where he taught computer architecture
to about 200 students using a reduced version of
the IPN-8 processor. He is a member of the
National System of Researchers (SNI) and a full
time professor at the Mechatronics Department of
Applied Science and Advanced Technology
Research Centre (CICATA) of Instituto Politécnico
Nacional, Querétaro (since the end of 2011).

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Antonio Hernández Zavala, Oscar Camacho Nieto, Jorge A. Huerta Ruelas, Arodí R. Carvallo Domínguez384

ISSN 2007-9737

Oscar Camacho Nieto received the B. Sc. in
Communications and Electronics Engineering from
the Mechanical and Electrical Engineering Faculty
(ESIME) of Instituto Politécnico Nacional. He
received the M. Sc. degree in Computer
Engineering with specialty in Digital Systems from
CIDETEC, and the Ph. D. in Computer Science
from the Computing Research Centre (CIC), both
of Instituto Politécnico Nacional. Besides, he
realized doctoral studies in Computer Architecture
at Cataluña Polythecnical University in Spain,
where he obtained the Researcher Sufficiency
degree. Between 2003 and 2010 he was at the
Computing Research Centre (CIC), where he
realized diverse administrative activities. Currently
he is a member of the National System of
Researchers (SNI) of CONACYT and the director
of CIDETEC, where since 2012 he has been a full
time research professor, PhD and master
programs’ coordinator, chief of the computer
center, among other charges.

Jorge Adalberto Huerta Ruelas is a physicist and
received his Ph. D. from Universidad Autónoma de
San Luis Potosí, specializing in Optoelectronic
Devices and Optical Characterization Techniques.
Afterwards, he pursued a postdoctoral internship at
the Department of Food Science and Technology

of Oregon State University. He is a member of the
National System of Researchers, Mexico. Since
2010 he has been the director of the Research
Center on Applied Science and Advanced
Technology of Instituto Politécnico Nacional
(National Polytechnic Institute).

Arodí Rafael Carvallo-Domínguez received the
B. Eng. degree in Control and Automation
Engineering from Escuela Superior de Ingeniería
Mecánica y Eléctrica (ESIME), Mexico, in 1994. He
received his M.Sc. degree and did Doctoral studies
in Automatic Control at Automatic Control
Department (DCA) of Centro de Investigación y de
Estudios Avanzados (CINVESTAV), Mexico, in
1999 and 2001, respectively. Currently he is a
Titular Professor at the Department of Advanced
Technologies and the director of Unidad
Profesional Interdisciplinaria en Ingeniería y
Tecnologías Avanzadas (UPIITA). He has
published more than 20 journal and conference
papers. His research interests include vision-
based control of robotic systems, intelligent
control, industrial automation, and mechatronics
systems. He is a member of the IEEE Robotics and
Automation Society.

Article received on 27/11/2014; accepted on 15/01/2015.
Corresponding author is Antonio Hernandez Zavala.

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 371–385
doi: 10.13053/CyS-19-2-1941

Design of a General Purpose 8-bit RISC Processor for Computer Architecture Learning 385

ISSN 2007-9737

