

Computación y Sistemas

ISSN: 1405-5546

computacion-y-sistemas@cic.ipn.mx

Instituto Politécnico Nacional

México

Pedroza de la Crúz, Adrian; Carrazco Díaz, Miguel Ángel; Ortega Cisneros, Susana;

Raygoza Panduro, Juan José; Rivera Domínguez, Jorge; Sandoval Ibarra, Federico

HW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision

Computación y Sistemas, vol. 19, núm. 3, 2015, pp. 513-527

Instituto Politécnico Nacional

Distrito Federal, México

Available in: http://www.redalyc.org/articulo.oa?id=61541546009

 How to cite

 Complete issue

 More information about this article

 Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Non-profit academic project, developed under the open access initiative

http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org/articulo.oa?id=61541546009
http://www.redalyc.org/comocitar.oa?id=61541546009
http://www.redalyc.org/fasciculo.oa?id=615&numero=41546
http://www.redalyc.org/articulo.oa?id=61541546009
http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

ISSN 2007-9737

HW/SW Co-Design of a Specific Accelerator
for Robotic Computer Vision

Adrian Pedroza de la Crúz1, Miguel Ángel Carrazco Díaz1, Susana Ortega Cisneros1,
Juan José Raygoza Panduro2, Jorge Rivera Domínguez3, Federico Sandoval Ibarra1

1 Instituto Politécnico Nacional, CINVESTAV Jalisco,
Mexico

2 University of Guadalajara, CUCEI, Jalisco,
Mexico

3 Instituto Politécnico Nacional,
commissioned as a CONACyT professorship to CINVESTAV, Jalisco,

Mexico

{apedroza, mcarrazco, sortega, riveraj, sandoval}@gdl.cinvestav.mx,
juan.raygoza@cucei.udg.mx

Abstract. This paper presents an image processing

application focused on robotic computer vision. The co-
design is divided into three main parts: a hardware
accelerator, a PCIe® based framework for HW/SW link,
and application software. The implemented accelerator
performs preprocessing for facial recognition in order to
reduce the workload in the main system processor. The
hardware layer is implemented in Altera FPGAs, while
the project software layer provides a device driver for
Linux to link the user application with the coprocessor.
The user application controls the data transfer between
the operating system and the device driver. The platform
allows rapid prototyping of accelerators, taking
advantage of the duality of a programmable hardware
and a general purpose processor connected through a
PCIe® link. The proposed architecture enables co-
design of various image processing algorithms. In this
case, the results of the design of an accelerator that
performs histogram equalization for contrast correction
of color images are presented.

Keywords. Accelerator for computer vision, design

automation, field-programmable gate array (FPGA),
hardware accelerator, hardware design, high
performance computing, Linux driver, PCIe
framework, Verilog.

1 Introduction

For facial and object recognition [1], it is important
to obtain a clear picture to be processed. A

technique for correcting overexposure or
underexposure is histogram equalization as
preprocessing in order to obtain a sharper image.
As this is a demanding task for the processor, it is
recommended that this be performed via
hardware [2].

For the implementation of processing
algorithms in HW/SW, when there are no optimal
development tools, much time is required for
debugging the design.

One way to develop accelerators is to have a
reusable framework [3, 4] in order to reduce design
time. Fig. 1 shows the HW/SW
framework components.

The aim of the PCIe®-FPGA framework
proposed in this paper is communication between
the software (User Application) and the hardware
accelerator configured as an end point [5, 6].

The architecture is composed of the following
elements: a PCIe® communication link, internal
memory access, a configuration slave module, a
read master module, and a write master module.
All these modules are connected to the Avalon®
MM Altera®’s interface [7].

In order to modify the accelerator functionality
to be performed, a tool that facilitates the
communication and tests hardware accelerators is
used employing the same PCIe® driver. The
design should be accomplished with a simple

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

Adrian Pedroza de la Crúz, Miguel Ángel Carrazco Díaz, Susana Ortega Cisneros, Juan José Raygoza Panduro, et al.514

ISSN 2007-9737

interface in order to interact with the slave module
and the master modules.

2 Framework

The platform contains a reconfigurable processor,
so called because the package itself contains an
Intel® Atom™ Dual-Core processor [8] and an
Altera® Arria® GX II FPGA [9]. Both are
interconnected by a PCIe® port. The FPGA can be
used as a coprocessor or an accelerator. It can run
specific high performance functions, while a
general purpose processor would need much more
time in order to accomplish the same task.

Fig. 2 shows a block representation of the
components interconnected in the reconfigurable
processor [10].

2.1 Hardware Framework

The framework is a HW/SW co-design [11]. On the
side of the hardware architecture, a PCIe®
communication control is required, where the data,
the operation, and the control signals are arbitrated
in order to avoid collisions and ensure the correct
functionality of the system. The control signals
indicate the accelerator functionality.

The implemented architecture is shown in
Fig. 3, where all framework components and the
accelerator interconnection will be described in the
subsections that follow.

a. PCIe® IP Block

The communication with the accelerator is
performed by the protocol PCIe. The Arria® GX II
FPGA includes an integrated hard IP block which
implements the PCIe physical interface, the data
link, and the transaction layer. This block is
connected to the root complex on the outside and
to the Avalon® MM bridge on the inside.

b. Avalon® MM Bridge

The function of this block is to convert PCI Express
packets to Avalon® Memory Mapped (MM)
transactions and vice versa.

c. Avalon® Bus

The Avalon® bus is the interconnected system that
communicates the Avalon® MM bridge, the on-
chip memory, the master reading interface, the
master writing interface, and the slave
configuration interface.

d. On-Chip Memory

The purpose of the on-chip memory is to store all
received data from the reading port to be
processed and to save the resulting data while the
port waits to transmit the data back. The memory
used is dual port in order to enable reading and
writing simultaneously.

e. Read Master

The read master is responsible for controlling the
memory address and the data transfer toward the

Fig. 1. Standard framework for accelerator

development

Fig. 2. Reconfigurable processor

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

HW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision 515

ISSN 2007-9737

accelerator, ensuring the proper transfer time and
the required organization.

f. Write Master

The write master is responsible for receiving data
from the accelerator. In order to provide the format
required for storing in memory, it must monitor bus
saturation to pause and resume the
accelerator activity.

g. Configuration Slave

The accelerator needs configuration instructions
such as start and stop to be operative. These
commands are transferred from the bus to the
accelerator by the configuration slave. Following
the data path, when the software application uses
hardware acceleration, it begins to request a
communication channel. When the channel is
obtained, the configuration parameters are sent,
and then the data packets are transferred from the
host to the PCIe® physical layer in the FPGA,
where the received data package is transferred to
the Avalon® MM bridge. Once data enters the
system bus, the control instructions are sent to the
slave configuration, where the processed data is
stored in memory. After the accelerator is properly
configured and started, the read master receives
the data from the memory and it is sent to be
processed by the accelerator core. In a few clock

cycles, the resulting data is obtained, the write
master is activated, and it is responsible for
returning the data results to the memory. When the
resulting data are ready, the software application
requests them to the Avalon® bus and it retrieves
all data from memory that delivers it to the system
bus. Subsequently, the data is transferred from the
bus to the Avalon® MM bridge, and finally the data
packages are transferred from the bridge to the
physical layer in order to reach the main host.

2.2 Software Framework

The PCIe® Linux driver [12] is compiled on a
Timesys 14 operating system (OS), which is based
on Fedora distribution, with a 2.635-9 Kernel. This
OS contains predefined basic configurations for
optimal platform functionality. The driver
implements methods for hardware configuration of
read and write communication via PCIe®. The user
application is coded in C and controls the
driver functions.

a. PCIe® Hard IP Block

The Arria® GX II hard IP block for PCIe® is able to
use x1, x4, or x8 lines, but the physical
interconnection with Atom™ processor is x1. The
PCIe® protocol version supported by FPGA is 1.1
with a transfer rate of 2.5 gigatransfers per second
and supports 6 BARs (Base Address Register) of

Fig. 3. Schematic representation of hardware architecture implementation

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

Adrian Pedroza de la Crúz, Miguel Ángel Carrazco Díaz, Susana Ortega Cisneros, Juan José Raygoza Panduro, et al.516

ISSN 2007-9737

32 non-prefetchable bits or 64 prefetchable bits
and it admits MSI (Message Signaled Interrupts) of
64 address bits.

b. Linux Driver

The driver contains the fundamental steps to be
installed in the platform. It begins looking for
Altera®’s vendor_id, device_id, and revision_id
(0x1172, 0xE001, and 0x01, respectively). Once a
device is found, it is enabled and the BAR is
configured. Only BAR0 is configured in this case.
Finally, connectivity and interruption tests are
performed in order to ascertain optimal
functionality of the device, preparing it for use.

This driver is char type, controlled by the user
application coded in C, and it requires a Linux node
to perform the following functions:

- Open: turns on the PCIe® device, putting the
unit into use.

- Close: turns off communication with the
PCIe®.

- Read: performs data read from memory to the
device.

- Write: performs data write from the device to
the memory.

- Ioctl: sets the peripheral device to be properly
addressed.

The write function and the read function are
able to transfer data memory blocks as a single
data package.

2.3 Test Application

A base application has been developed to control
the driver and the transfers between the device
memory and the OS application. Fig. 4 shows a
block diagram of communication flow between
software applications and driver functions.

Transfer tests were performed from 1 Kb to the
maximum memory in FPGA of 500 Kb; however,
the driver can perform transfers of approximately
100 Mb with this operating system kernel
configuration.

3 Hardware Accelerator

The accelerator was used to test the architecture
as an image processor. This processor performs
image equalization [13] of overexposed or
underexposed images.

Let us consider a source color image

 }1,1|),({ NjMijiaA ℝ (m × n),

where),(jia is an element of the image. It is

assumed that A has a dynamic range between

 21, ll ℝ where 21),(lljia and 21 ll [14].

Transforming the image A to a discrete
representation is expressed as three

superimposed matrices BGRD ,, of m by n

dimension, as shown in Equation 1.

Each pixel is composed of elements in a

concatenation },,{ ijijijij bgrd ℤ+, where

each element of a pixel is represented by a binary
width word x , where the maximum number of

Fig. 4. Test application communication flow diagram

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

HW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision 517

ISSN 2007-9737

combinations is
xW 2 within the range

 udl ij ℤ+, where 12,0 xul ℤ+.

11 12 1

21 22 2

1 2

.

m

m

n n nm

d d d

d d d
D

d d d

 (1)

Obtaining the resulting image requires applying
a correction algorithm to the source image by
replacing each one of the elements in the matrices

BGR ,, with the values obtained from the

transformation vector T , where

},,{)),((bijgijrij tttjiaf . The vector T is

obtained by calculating the steps described in what
follows.

3.1 Function of Probability

The probability of the pixel value is determined by

the relationship vvhP h /)(, where v is the

number of possible combinations and
hv is the

number of times the element value corresponds to

h. The possible values are within the range

 UvL h
ℤ+ with a lower limit of 0L and

an upper limit of 1 vU .

3.2 Distribution Function

The Histogram H [15] is the representation of the
probability distribution of data values, considering
the amount of each different value of the elements
in the matrix characterized by the following vector

1210 ,,,

 xhhhH evaluated by summation

in (2):

2 1

0

.
xh

i

i

m n h

 (2)

The following example shows the C code for
obtaining the histogram using the software.

// Distribution

 for (i=0; i<height; i++) {

 for (j=0; j<width; j++) {

 for (k=0; k<(bppx/8); k++) {

 den[k][buffer[(bppx/8)*(i*width+j)+k]]++;

 }

 }

 }

Table 1. Base address registers

Address Framework Component Description

0x00000000 - 0x0001FFFF On-chip memory FPGA Memory

0x00020000 Slave Accelerator Source Image Address

0x00020001 Slave Accelerator Target Image Address

0x00020002 Slave Accelerator Image Length

0x00020003 Slave Accelerator Pixel Height

x00020004 Slave Accelerator Pixel Width

0x00020005 Slave Accelerator Command

0x00020006 Slave Accelerator Start bit

0x00020007 Slave Accelerator Process Time (Read Only)

0x00020008 Slave Accelerator Status (Read Only)

0x00020009 - 0x0002000F Slave Accelerator Unused

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

Adrian Pedroza de la Crúz, Miguel Ángel Carrazco Díaz, Susana Ortega Cisneros, Juan José Raygoza Panduro, et al.518

ISSN 2007-9737

The code above is converted to Verilog code to
be synthetized and use the generated hardware to
obtain the histogram.

HIST:

begin

 if(read_valid == 1'b1)

 begin

 cnt_en_r <= {{W-1{1'b0}},{1'b1}} << wire_r;

 cnt_en_g <= {{W-1{1'b0}},{1'b1}} << wire_g;

 cnt_en_b <= {{W-1{1'b0}},{1'b1}} << wire_b;

 state <= HIST;

 end

 else

 begin

 if(read_done == 1'b1)

 begin

 reg_full <= 1'b1;

 cnt_en_r <= {W{1'b0}};

 cnt_en_g <= {W{1'b0}};

 cnt_en_b <= {W{1'b0}};

 state <= CUMU;

 end

 else

 begin

 state <= HIST;

 end

 end

end

3.3 Accumulation Function

The cumulative distribution function C is

represented by the vector
1210 ,,,

 xcccC in

which the element values are given by Equation 3

and where
00 hc .

2 1

1

1

.
xc

i i i

i

c c h

 (3)

Adding an element to the end of the vector xc
2

and assuming 00 c result in summation (4):

2

1 1

1

.
xc

i i i

i

c c h

 (4)

The following lines show the C code which
obtains the cumulative distribution function for the
software:

// Cumulative

 for (i=1; i<=256; i++) {

 for (k=0; k<(bppx/8); k++) {
 cum[k][i] = den[k][i-1] + cum[k][i-1];

 }
 }

Then, we give the C code by which the obtained
cumulative distribution function is converted to
Verilog in order to be synthesized in hardware:

CUMU:

begin

 if(cnt_cumu < W+4)
 begin

 if(cnt_cumu < W)
 begin

 reg_cumu_1 <=

 cnt_hist_r[wire_cumu_0[X-1:0]];
 end

 if(cnt_cumu > 0 && cnt_cumu < W+1)
 begin

 reg_cumu_2 <= reg_cumu_1 +

 cnt_hist_g[wire_cumu_1[X-1:0]];
 end

 if(cnt_cumu > 1 && cnt_cumu < W+2)
 begin

 reg_cumu_3 <= reg_cumu_2 +
 cnt_hist_b[wire_cumu_2[X-1:0]];

 end

 if(cnt_cumu > 2 && cnt_cumu < W+3)
 begin

 reg_cumu_c <= reg_cumu_3 + reg_cumu_c;
 end

 if(cnt_cumu > 3 && cnt_cumu < W+4)

 begin
 reg_cumu[wire_cumu_4[X-1:0]] <=

 reg_cumu_c;
 end

 cnt_en_c <= 1'b1;
 state <= CUMU;

 end

 else begin
 cnt_en_c <= 1'b0;

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

HW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision 519

ISSN 2007-9737

 state <= TRAN;
 end

end

3.4 Transformation Function

The proposed transformation function is calculated

with the vector
1210 ,,,

 xtttT using

Equation 5:

2 1

1

0

(2 1)
.

xt x

i
i

i

c
t

m n

 (5)

The following C code is executed by the
software in order to acquire the transformation
function:

// Transformation

 for (i=0; i<256; i++) {
 for (k=0; k<(bppx/8); k++) {

 tra[k][i] = (255*(cum[0][i+1]+cum[1][i+1]+
 cum[2][i+1]))/(height*width*3);
 }

 }

The transformation function is obtained through

the hardware synthesis of the following Verilog
code:

TRAN:

begin

 if(cnt_tran < W+PIPE_STEPS+3)
 begin
 if(cnt_tran < W)

 begin
 reg_shift <=
 reg_cumu[wire_tran_0[X-1:0]] << X;

 end
 if(cnt_tran > 0 && cnt_tran < W+1)
 begin

 reg_dividend <=
 reg_shift –
 reg_cumu[wire_tran_1[X-1:0]];

 end
 if(cnt_tran > 1 && cnt_tran < W+2)
 begin

 dividend <= reg_dividend;
 divisor <=
 reg_divisor[COLOR_NUM*X-1:0];
 end
 if(cnt_tran > PIPE_STEPS+2 &&
 cnt_tran < W+PIPE_STEPS+3) begin
 reg_tran[wire_tran_p[X-1:0]] <=
 quotient[X-1:0];
 end
 state <= TRAN;
 cnt_en_t <= 1'b1;
 end
 else
 begin
 reg_full <= 1'b0;
 cnt_en_t <= 1'b0;
 state <= SCAN;
 end
end

Let }1,1|),({ njmijioO ℤ+ be

the resulting image where it is assumed that O

has a dynamic range within],[ul ℤ+ and with the

possible values of],[),(uljio ,

12,0 xul .

The transformation of the source image D is

given to a transformation function)(DFO T

where },,{),(bijgijrij tttjio .

The resulting image is obtained via the software
using the following C code:

// New Image
 for (i=0; i<height; i++) {
 for (j=0; j<width; j++) {
 for (k=0; k<(bppx/8); k++) {
 buffer[(bppx/8)*(i*width+j)+k] =
 tra[k][buffer[(bppx/8)*(i*width+j)+k]];
 }
 }
 }

The C code above is converted to Verilog in

order to be synthesized in the hardware performing
the transformation function.

SCAN:

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

Adrian Pedroza de la Crúz, Miguel Ángel Carrazco Díaz, Susana Ortega Cisneros, Juan José Raygoza Panduro, et al.520

ISSN 2007-9737

begin

 if(read_valid == 1'b1)

 begin

 if(write_full == 1'b0)

 begin

 reg_r <= reg_tran[wire_r[BIT_DEPTH-1:0]];

 reg_g <= reg_tran[wire_g[BIT_DEPTH-1:0]];

 reg_b <= reg_tran[wire_b[BIT_DEPTH-1:0]];

 end

 reg_valid <= 1'b1;

 state <= SCAN;

 else begin

 if(read_done == 1'b1)

 state <= IDLE;

 else

 state <= SCAN;

 reg_valid <= 1'b0;

 end

end

4 Software Accelerator

An application code in C allows the FPGA
configuration via the PCIe® driver [16].

This application opens a file that contains the
image to be equalized, and then the driver opens
communication with the on-chip memory in order
to send the image. After that, the settings are sent
to the slave module of the accelerator. These
parameters contain the address location in the
memory where the original image is stored and
where the processed image will be saved, as well
as the size of the pixel array. The next step is to
initiate the accelerator computations when image
extraction is completed, and finally, the image is
extracted from the memory and stored in a file in
the OS side.

The user application performs image
equalization using the accelerator, as shown in
Fig. 5.

Some registers must be configured in order to
ensure the correct functionality and system
parameters. Table 1 shows the correct PCIe®
BAR0 configuration.

4.1 PCIe® Channel Acquisition

These lines of code open the PCIe device driver
node in the read and write mode; if the node cannot
be opened, an error is printed in the terminal.

int main (int arg_count,char *arg_file_name[]) {

 int node;

 node = open("node_dir/altpciedev", O_RDWR);

 if (node == -1) {

 printf("Error When Open Node File\n");

 exit(1);

 }

4.2 Source Image Load to Memory

The following code opens the original image in the
read mode and extracts the pointers to the image
parameters and the pixel array, where the BITMAP
element is a structure containing the image
parameters from the BPM file:

// Open bmp file in read mode

 BITMAP b;

 FILE *fp; // Original image

 FILE *fo; // Preprocessed image

Fig. 5. Image processing flow diagram

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

HW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision 521

ISSN 2007-9737

 fp = fopen(file, "rb");

// BMP Header

 fread(&b->typeb 1, 1, fp); // 0h

 fread(&b->typem, 1, 1, fp); // 1h

 fread(&b->size 4, 1, fp); // 2h

 fread(&b->reserved, 4, 1, fp); // 6h

 fread(&b->offset, 4, 1, fp); // Ah

 fread(&b->headersize, 4, 1, fp); // Eh

 fread(&b->width, 4, 1, fp); // 12h

 fread(&b->height, 4, 1, fp); // 16h

 fread(&b->planes, 2, 1, fp); // 1Ah

 fread(&b->bppx, 2, 1, fp); // 1Ch

 fread(&b->compress, 4, 1, fp); // 1Eh

 fread(&b->sizeim, 4, 1, fp); // 22h

 fread(&b->xpxpm, 4, 1, fp); // 26h

 fread(&b->ypxpm, 4, 1, fp); // 2Ah

 fread(&b->colors, 4, 1, fp); // 2Eh

 fread(&b->colors_imp, 4, 1, fp);//32h-35h

// Allocate color field memory

 b->stuff = (byte*) malloc ((dword)(b->offset-54));

// Color field

 fread(b->stuff, 1, b->offset-54, fp);

// Allocate data field memory

 b->data = (byte *) malloc ((dword)(b->sizeim));

// Load Pixel Array into Memory

 fread (b->data, 1, b->sizeim, fp) != b->sizeim);

4.3 Accelerator Configuration and Image
Processing

The following code shows the configuration of the
accelerator through PCIe. First, the address of the
on-chip memory is set, and the pixel array of data
is sent. Second, the program sets the base
address and the required parameters are set to
start the accelerator. Third, the image is
preprocessed from the on-chip memory, which is
extracted and stored in a new image file.

 // Global pointers

 char *fout = "out_hw.bmp";

 dword *acc_buff;

 // Set mem_lo address

 ioctl(NODE, IOCTL_ADDR, 0x00000000);

 // System memory to on-chip memory
 write(NODE, b->data, b->sizeim, 0);

 // Memory allocation

 acc_buff = (dword *) malloc ((dword)(16*4))

 // Accelerator Configuration

 acc_buff[0] = 0x00000000; // Address Initial

 acc_buff[1] = 0x00000000; // Address Final

 acc_buff[2] = b->sizeim / 4; // Length
 acc_buff[3] = b->height; // Pixel Height

 acc_buff[4] = b->width; // Pixel Width

 acc_buff[5] = 0x00000001; // Operation

 acc_buff[6] = 0x00000001; // Start
 acc_buff[7] = 0x00000000; // Process Time

 acc_buff[8] = 0x00000000; // Status

 // Set acc address
 ioctl(NODE, IOCTL_ADDR, 0x00020000);

 // Start mem_transfer

 write(NODE, acc_buff, (dword)(16*4), 0);

4.4 Storing Target Image

The following code extracts the array of processed
pixels from the on-chip memory and the equalized
image is obtained.

 // Memory Read

 // Set mem_hi address

 ioctl(NODE, IOCTL_ADDR, 0x00000000);
read(NODE, b->data, b->sizeim, 0);

// Building the new image

// Write output file

 fwrite("BM 2, 1, fo);
 fwrite(&b->size 4, 1, fo);

 fwrite(&b->reserved, 4, 1, fo);

 fwrite(&b->offset, 4, 1, fo);

 fwrite(&b->headersize, 4, 1, fo);
 fwrite(&b->width, 4, 1, fo);

 fwrite(&b->height, 4, 1, fo);

 fwrite(&b->planes, 2, 1, fo);

 fwrite(&b->bppx, 2, 1, fo);
 fwrite(&b->compress, 4, 1, fo);

 fwrite(&b->sizeim, 4, 1, fo);

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

Adrian Pedroza de la Crúz, Miguel Ángel Carrazco Díaz, Susana Ortega Cisneros, Juan José Raygoza Panduro, et al.522

ISSN 2007-9737

 fwrite(&b->xpxpm, 4, 1, fo);
 fwrite(&b->ypxpm, 4, 1, fo);
 fwrite(&b->colors, 4, 1, fo);
 fwrite(&b->colors_imp, 4, 1, fo);
 fwrite(b->stuff, 1, b->offset-54, fo);
 fwrite(b->data, 1, b->sizeim, fo);

// Close files and release memory
 free(b->stuff);
 free(b->data);
 fclose(fp);
 fclose(fo);

5 Results

The transfer rate was evaluated and the driver sent
the data blocks to read and write transactions
achieving up to 5 MB/s read. Processing tests for
the equalization algorithm were performed on the
dual-core Atom™, and the accelerator design was
tested in the FPGA reaching a frequency of 125
MHz.

The image tests consisted of using different
frequencies and Atom™ configurations for
processing two image sizes: with 400 x 300 pixels
and 320 x 240 pixels. The accelerator has been
tested with the same images resulting in less
execution time than with the Atom™. Fig. 6 shows
the resulting bar graph of times of the tests
performed with two different image sizes and 8
Atom™ processor configurations.

In Table 2, the average latency of each
configuration is reported for different image sizes.

It is important to mention that the acceleration time
is always accurate and depends directly on the size
of the image plus an initial fixed time for
configuration of the accelerator.

The image used for processing color
equalization is presented in Fig. 7(a). This presents
color saturation tones, so the image shows an
overexposure. The driver sends the image to the
accelerator, obtaining the histogram and the
cumulative distribution function, which were used
to obtain the transformation function in Fig. 7(b).
Applying the transformation to each color tone in

Table 2. Average latency of image processing

Configuration 400 x 300 Pixels 320 x 240 Pixels 160 x 240 Pixels 80 x 60 Pixels

2 Cores 1.3 GHz 28.8330 ms 18.0239 ms 4.5659 ms 1.2589 ms

2 Cores 1 GHz 33.3200 ms 19.6569 ms 4.6270 ms 1.2780 ms

2 Cores 800 GHz 51.3199 ms 31.5179 ms 6.8320 ms 1.7770 ms

2 Cores 600 GHz 81.0969 ms 55.4729 ms 11.6070 ms 2.6820 ms

1 Core 1.3 GHz 59.7820 ms 38.1420 ms 4.5770 ms 1.2260 ms

1 Core 1 GHz 62.3409 ms 41.6739 ms 4.5799 ms 1.2509 ms

1 Core 800 MHz 96.0389 ms 66.6549 ms 14.2889 ms 1.7890 ms

1 Core 600 MHz 135.9160 ms 94.3860 ms 34.1359 ms 2.6920 ms

Accelerator 1.9256 ms 1.2344 ms 0.3127 ms 0.0824 ms

Fig. 6. Performance bar graph of algorithm executed

with hardware acceleration and software with two
different configurations and speeds

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

HW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision 523

ISSN 2007-9737

the pixels of the image, the equalized image with
even more distribution of colors is obtained as
shown in Fig. 7(c).

Fig. 8 presents the histograms and the
cumulative distribution functions for the tones of
the original image. The histograms in Fig. 8(a),
Fig. 8(b), and Fig 8(c) for red, green, and blue
tones, respectively, show that color values of the
pixels are distributed mainly in the area of

highlights, and the image is considered as
overexposed when it was captured.

The accumulation functions for each color—
red, green, and blue—are shown in Fig. 8(d),
Fig. 8(e), and Fig. 8(f), respectively.

The cumulative distribution functions are
needed to compute the transformation function. In
order to obtain image equalization, it is necessary
to replace each pixel value with the new value from

Fig. 7. Process for the equalization of a color image: (a) original image, (b) transformation function, (c) equalized

image

Fig. 8. Histograms and cumulative distribution functions of the original image: (a) histogram of red tone, (b) histogram

of green tone, (c) histogram of blue tone, (d) cumulative distribution function of red tone, (e) cumulative distribution
function of green tone, (f) cumulative distribution function of blue tone

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

Adrian Pedroza de la Crúz, Miguel Ángel Carrazco Díaz, Susana Ortega Cisneros, Juan José Raygoza Panduro, et al.524

ISSN 2007-9737

the transformation function, obtaining a new
image. In order to demonstrate that the new image
has better equalization, the histogram and the
cumulative distribution function obtained are
shown in Fig. 9. The histograms for new red, green
and blue tones are shown in Fig. 9(a), Fig. 9(b),
and Fig. 9(c), respectively. It is easy to see that
histograms are more uniform than those in
Fig. 8(a), Fig. 8(b), and Fig. 8(c) for each color. The
cumulative distribution functions shown in
Fig. 9(d), Fig. 9(e), and Fig. 9(f) are more linear
than the original functions from Fig. 8(d), Fig. 8(e),
and Fig. 8(f), respectively.

The accelerator processing time for a color

image of NM pixels of 24 bit depth is

5522 NM clock cycles at 125 MHz after

the accelerator has been initialized.

After implementation in an Arria® II GX FPGA
with device part number EP2AGXE6XXFPGA, the
logic utilization was 90% [17], where 30775 ALUTs
and 4 DSP blocks were used for processing steps.
30,390 registers were used to allocate temporary
data, and 3,716,208 memory bits were necessary
in order to store all image data, as shown in
Table 3.

It is mandatory that all routes between each
data path be less than 8ns because the accelerator
clock runs at 125 MHz in order to achieve the
required data path time [18]. The processing
elements were distributed in a pipeline with the
following configuration: 256 steps to obtain the

cumulative distribution function, 256 steps to
obtain the transformation function, and 40 pipeline
steps for integer division.

6 Conclusion

Preprocessed images offer a better distribution of
colors, permitting the execution of facial
recognition algorithms. This work includes the
design, implementation, and verification of the
hardware accelerator framework for image
processing using the HW/SW platform, taking
advantage of having a general purpose processor
and a reprogrammable unit on the same integrated
circuit, and facilitating the development of
hardware accelerators. The PCIe® Protocol
provides an optimum and scalable communication
channel for transferring data between the
processor and FPGA. The driver enables the
control functions and management of sending and
receiving data between the accelerator and the
operating system, reaching a maximum transfer
rate of 5MB per second. The hardware accelerator
performs image processing in an interval less than
a processor would require to obtain the same result
via software. The reusable framework can develop
different families of accelerators without the need
to create a different communication protocol
between the hardware and the software structure
every time, thus allowing the user application and
the processing algorithm to be modified. Using this

Table 3. FPGA logic utilization

FPGA Components Percentage Utilization Component Utilization

Logic utilization 90 % Routing

Combinational ALUTs 61 % 30,775/50,600

Dedicated logic registers 60 % 30,390/50,600

Pins 5 % 20/404

Block memory bits 81 % 3,716,208/4,561,920

DSP block 18 bits elements 1 % 4/312

GXB Receiver Channel PCS, PMA 50 % 4/8, 4/8

GXB Transmitter Channel PCS, PMA 50 % 4/8, 4/8

Total PLLs 25 % 1/4

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

HW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision 525

ISSN 2007-9737

framework saves time in the development of
hardware accelerators.

Acknowledgment

The authors are grateful for the financial support
provided in part by CONACYT (National Council of
Science and Technology) as a doctoral fellowship
grant.

References

1. López-Juárez, I., Rios-Cabrera, R., Peña-
Cabrera, M., Méndez, G.M., & Osorio, R. (2012).

Fast Object Recognition for Grasping Tasks using
Industrial Robots. Computación y Sistemas, Vol. 16,
No. 4, pp. 421–432.

2. Ghassabeh, Y.A. & Moghaddam, H.A. (2007). A

Face Recognition System using Neural Networks
with Incremental Learning Ability. International
Symposium on Computational Intelligence in
Robotics and Automation (CIRA), pp. 291–296, doi:
10.1109/CIRA.2007.382904.

3. Marcus, G., Gao, W., Kugel, A., & Manner, R.
(2011). The MPRACE framework: An open source

stack for communication with custom FPGA-based
accelerators. Southern Conference on
Programmable Logic, pp. 155–160, doi:
10.1109/SPL.2011.5782641.

4. Cabrera, O., Oriol, M., Franch, X., Marco, J.,
López, L., Díaz, O. G. F., & Santaolaya, R. (2014).

Open framework for web service selection using
multimodal and configurable techniques.
Computación y Sistemas, Vol. 18, No. 4, pp. 665–
682, doi: 10.13053/CyS-18-4-2057.

5. PCI SIG. (2005). PCIe® Specification. URL:
http://www.pcisig.com/specifications/pciexpress.

6. Wang, W., Bolic, M., & Parri, J. (2013). pvFPGA:

Accessing an FPGA based hardware accelerator in
a paravirtualized environment. International
Conference on, Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pp. 1–9, doi:
10.1109/CODES-ISSS.2013.6658997.

7. Altera Corp. (2010). Avalon® Interface
Specification. URL:
http://www.altera.com/literature/manual/mnl_avalo
n_spec_1_3.pdf.

8. Intel (2010). Intel® Atom™ Processor E6x5C
Series-Based Platform for Embedded Computing.

Fig. 9. Histograms and cumulative distribution functions of the equalized image: (a) histogram of red tone, (b) histogram

of green tone, (c) histogram of blue tone, (d) cumulative distribution function of red tone, (e) cumulative distribution
function of green tone, (f) cumulative distribution function of blue tone

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

Adrian Pedroza de la Crúz, Miguel Ángel Carrazco Díaz, Susana Ortega Cisneros, Juan José Raygoza Panduro, et al.526

ISSN 2007-9737

9. Altera Corp. (2012). Arria(R) II Device Handbook.

URL: http://www.altera.com/literature/lit-arria-ii-
gx.jsp.

10. Mencer, O., (2006). ASC: a stream compiler for
computing with FPGAs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, Vol. 25, No. 9, pp. 1603–1617, doi:
10.1109/TCAD.2005.857377.

11. Moreno, F., López, I., & Sanz, R., (2010). A Design

Process for Hardware/Software System Co-design
and its Application to Designing a Reconfigurable
FPGA. 13th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools
(DSD), pp. 556–562, doi: 10.1109/DSD.2010.43.

12. Corbet, J., Rubini, A., & Kroah-Hartman, G.
(2005). Linux Device Drivers. O’Reilly Media.

13. Celik, T. & Tjahjadi, T. (2012). Automatic Image

Equalization and Contrast Enhancement Using
Gaussian Mixture Modeling. IEEE Transactions on
Image Processing, Vol. 21, No. 1, pp.145–156, doi:
10.1109/TIP.2011.2162419.

14. Lucchese, L. & Mitra, S.K., (2001). A new method
for color image equalization. International
Conference on Image Proc., Vol. 1, pp. 133–136,
doi: 10.1109/ICIP.2001.958971.

15. Chauhan, R. & Bhadoria, S.S., (2011). An

Improved Image Contrast Enhancement Based on
Histogram Equalization and Brightness Preserving
Weight Clustering Histogram Equalization.
International Conference on Communication
Systems and Network Technologies (CSNT), pp.
597–600, doi: 10.1109/CSNT.2011.128.

16. Young-Su, K. & Chong-Min, K. (2005).

Performance-driven event-based synchronization
for multi-FPGA simulation accelerator with event
time-multiplexing bus. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, Vol. 24, No. 9, pp. 1444–1456, doi:
10.1109/TCAD.2005.852035.

17. Ling, A.C., Singh, D.P., & Brown, S.D. (2007).

FPGA PLB Architecture Evaluation and Area
Optimization Techniques Using Boolean
Satisfiability. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
Vol. 26, No. 7, pp. 1196–1210, doi:
10.1109/TCAD.2007.891362.

18. Gort, M. & Anderson, J.H. (2012). Accelerating

FPGA Routing through Parallelization and
Engineering Enhancements. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems (Special Section on PAR-CAD 2010), Vol.
31, No. 1, pp. 61–74, doi:
10.1109/TCAD.2011.2165715.

Adrian Pedroza de la Crúz received the B.Sc.
degree in Communications and Electronics
Engineering from the University of Guadalajara,
Jalisco, Mexico, in 2008, and the M.Sc. degree in
Electronics and Computer Science Engineering
from the University of Guadalajara in 2010. From
2010 to 2012 he worked at Intel® as a Component
Design Engineer. Currently he is a Ph.D. student
in Electrical Engineering at the Centre for
Research and Advanced Studies of IPN, Zapopan,
Jalisco, Mexico. Nowadays his research focuses
in the area of parallel memory architectures for
accelerators on hardware.

Miguel Ángel Carrazco Díaz currently is a Ph.D.
Student in Electric Engineering at the Centre for
Research and Advanced Studies of IPN, Zapopan,
Mexico. He graduated from the University of
Guadalajara, Mexico, in 2010 receiving the M.Sc.
in Electronics and Computer Science Engineering.
In 2008 he received the B.Sc. in Communications
and Electronics Engineering. From 2010 to 2012
he worked as a Component Design Engineer at
Intel® Labs Group in the Guadalajara Design
Center. His current research work is focused on
design of computer architectures for parallel
processing and hardware acceleration.

Susana Ortega Cisneros received the B.Sc.
degree in Communications and Electronics from
the University of Guadalajara, Mexico, in 1990, the
Master degree from the Center of Research and
Advanced Studies of the IPN, Zacatenco, Mexico.
Susana Ortega received her Ph.D. degree in
Computer Science and Telecommunications from
Autonomous University of Madrid, Spain. She
specializes in design of digital architecture based
on FPGAs, DSPs, and Microprocessors. The main
lines of investigation in which she works are digital
control, self–timed synchronization, electronic
systems applied to biomedicine, embedded
microprocessor design, digital electronics, and
custom DSPs in FPGAs.

Juan José Raygoza Panduro received the B.Sc.
degree in Communications and Electronics from
the University of Guadalajara, Mexico, in 1989, the
Master degree from the Center of Research and

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 513–527
doi: 10.13053/CyS-19-3-2253

HW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision 527

ISSN 2007-9737

Advanced Studies of the IPN, Zacatenco, Mexico.
Juan José Raygoza received his Ph.D. degree in
Computer Science and Telecommunications from
the Autonomous University of Madrid, Spain. From
1996 to 2000, he worked in IBM, participating in
the technological transfer of manufacturing hard
disk heads at the IBM manufacturing plant San
Jose C.A., Guadalajara, Mexico. He specializes in
the design of digital architecture based on FPGAs,
microprocessors, embedded system, and
bioelectronics. The main lines of investigation
which he works in are electronic systems applied
to biomedicine, microprocessor design, digital
control, embedded system.

Jorge Rivera Domínguez received the B.Sc.
degree from the Technological Institute of the Sea,
Mazatlán, Mexico, in 1999, and the M.Sc. and
Ph.D. degrees in Electrical Engineering from the
Centre for Research and Advanced Studies,
National Polytechnic Institute, Guadalajara,
Mexico, in 2001 and 2005, respectively. Since
2006, he has been with the University of
Guadalajara, Guadalajara, Mexico, as a full-time
Professor at the University Center for Exact
Sciences and Engineering, Electronics
Department. His research interests focus on
regulator theory, sliding mode control, discrete

time nonlinear control systems, and their
applications to electrical machines. He has
published more than 40 papers in international
journals and conferences and has served as
reviewer for different international journals and
conferences.

Federico Sandoval Ibarra received the B.Sc.
degree in Physics and Electronics from the
UASLP in 1988, Mexico, and the Ph.D. in
Electronics from INAOE, Mexico, in 1997. During
1991-1996 he was at the Microelectronics
Laboratory of INAOE as a researcher developing
wet-etching techniques and designing CMOS
circuitry for silicon-based microsensors. In 1997
he was at CNM, Bellaterra (Spain), as a visiting
researcher being involved in the development of
surface micromachining techniques to design a
fully integrated microphone. In 1999 he joined
CINVESTAV, Guadalajara campus, Mexico.
During 2002-2006 he was the coordinator of the
Electronic Design Group. His research areas
include A/D converters for multi-standard
communications, design of VCOs for HF
applications, and test of analog circuits.

Article received on 08/12/2014; accepted on 29/04/2015.
Corresponding author is Adrian Pedroza de la Crúz.

