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Abstract. Due to its promise to alleviate information overload, text summariza-
tion has attracted the attention of many researchers. However, it has remained
a serious challenge. Here, we first prove empirical limits on the recall (and F1-
scores) of extractive summarizers on the DUC datasets under ROUGE evaluation
for both the single-document and multi-document summarization tasks. Next we
define the concept of compressibility of a document and present a new model of
summarization, which generalizes existing models in the literature and integrates
several dimensions of the summarization, viz., abstractive versus extractive, sin-
gle versus multi-document, and syntactic versus semantic. Finally, we examine
some new and existing single-document summarization algorithms in a single
framework and compare with state of the art summarizers on DUC data.

1 Introduction

Automatic text summarization is the holy grail for people battling information
overload, which becomes more and more acute over time. Hence it has attracted
many researchers from diverse fields since the 1950s. However, it has remained
a serious challenge, especially in the case of single news articles. The single
document summarization competition at Document Understanding Conferences
(DUC) was abandoned after only two years, 2001-2002, since many automatic
summarizers could not outperform a baseline summary consisting of the first
100 words of a news article. Those that did outperform the baseline could not
do so in a statistically significant way [27]. Summarization can be extractive
or abstractive [21]: in extractive summarization sentences are chosen from the
article(s) given as input, whereas in abstractive summarization sentences may
be generated or a new representation of the article(s) may be output.

Extractive summarization is popular, so we explore whether there are in-
herent limits on the performance of such systems.1 We then generalize existing
? Research supported in part by NSF grants DUE 1241772, CNS 1319212 and DGE 1433817
1 Surprisingly, despite all the attention extractive summarization has received, to our knowledge,

no one has explored this question before.
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models for summarization and define compressibility of a document. We ex-
plore this concept for documents from three genres and then unify new and
existing heuristics for summarization in a single framework. Our contributions:

1. We show the limitations of single and multi-document extractive summa-
rization when the comparison is with respect to gold-standard human-constructed
abstractive summaries on DUC data (Section 3).
(a) Specifically, we show that when the documents themselves from the

DUC 2001-2002 datasets are compared using ROUGE [19] to abstrac-
tive summaries, the average Rouge-1 (unigram) recall is around 90%.
On ROUGE evaluations, no extractive summarizer can do better than
just returning the document itself (in practice it will do much worse be-
cause of the size constraint on summaries).

(b) For multi-document summarization, we show limits in two ways: (i) we
concatenate the documents in each set and examine how this “superdoc-
ument” performs as a summary with respect to the manual abstractive
summaries, and (ii) we study how each document measures up against
the manual summaries and then average the performance of all the doc-
uments in each set.

2. Inspired by this view of documents as summaries, we introduce and ex-
plore a generalized model of summarization (Section 4) that unifies the
three different dimensions: abstractive versus extractive, single versus multi-
document and syntactic versus semantic.
(a) We prove (in Appendix) that constructing certain extractive summaries

is isomorphic to the min cover problem for sets, which shows that not
only is the optimal summary problem NP-complete but it has a greedy
heuristic that gives a multiplicative logarithmic approximation.

(b) Based on our model, we can define the compressibility of a document.
We study this notion for different genres of articles including: news ar-
ticles, scientific articles and short stories.

(c) We present new and existing heuristics for single-document summariza-
tion, which represent different time and compressibility trade-offs. We
compare them against existing summarizers proven on DUC datasets.

Although many metrics have been proposed (more in Section 2), we use ROUGE
because of its popularity, ease of use and correlation with human evaluations.

2 Related Work

Most of the summarization literature focuses on single-document and multi-
document summarization algorithms and frameworks rather than limits on the



performance of summarization systems. As pointed out by [8], competitive sum-
marization systems are typically extractive, selecting representative sentences,
concatenating them and often compressing them to squeeze in more sentences
within the constraint. The summarization literature is vast, so we refer the reader
to the recent survey [11], which is fairly comprehensive for summarization re-
search until 2015. Here, we give a sampling of the literature and focus more on
recent research and/or evaluation work.

Single-document extractive summarization. For single-document sum-
marization, [22] explicitly model extraction and compression, but their results
showed a wide variation on a subset of 140 documents from the DUC 2002
dataset, and [28] focused on topic coherence with a graphical structure with
separate importance, coherence and topic coverage functions. In [28], the au-
thors present results for single-document summarization on a subset of PLOS
Medicine articles and DUC 2002 dataset without mentioning the number of
articles used. An algorithm combining syntactic and semantic features was pre-
sented by [2], and graph-based summarization methods in [33,9,26,17]. Several
systems were compared against a newly-devised supervised method on a dataset
from Yahoo in [24].

Multi-document extractive summarization. For multi-document summa-
rization, extraction and redundancy/compression of sentences have been mod-
eled by integer linear programming and approximation algorithms [23,13,3,1,18,4,35].
Supervised and semi-supervised learning based extractive summarization was
studied in [34]. Of course, single-document summarization can be considered
as a special case, but no experimental results are presented for this important
special case in the papers cited in this paragraph.

Abstractive summarization. Abstractive summarization systems include
[5,12,6,20,30,7].

Frameworks. Frameworks for single-document summarization were pre-
sented in [10,23,31], and some multi-document summarization frameworks are
in [15,36].

Metrics and Evaluation. Of course, ROUGE is not the only metric for eval-
uating summaries. Human evaluators were used at NIST for scoring summaries
on seven different metrics such as linguistic quality, etc. There is also the Pyra-
mid approach [29] and BE [32], for example. Our choice of ROUGE is based
on its popularity, ease of use, and correlation with human assessment [19]. Our
choice of ROUGE configurations includes the one that was found to be best
according to the paper [14].



3 Limits on Extractive Summarization

In all instances the ROUGE evaluations include the best schemes as shown by
[14], which are usually Rouge-2 (bigram) and Rouge-3 (trigram) with stemming
and stopword elimination. We also include the results without stopword elimi-
nation. The only modification was if the original parameters limited the size of
the generated summary; we removed that option.

3.1 Single-document Summarization

To study limits on extractive summarization, we will pretend that the document
is itself a summary that needs to be evaluated against the human (abstractive)
summaries created by NIST experts. Of course, the “precision” of such a sum-
mary will be very low, so we focus on recall (and F-score by letting the docu-
ment get all its recall from the same size as the human summary (100 words)).
Table 2 shows that, for the DUC 20022 dataset, when the document themselves
are considered as summaries and evaluated against a set of 100-word human ab-
stractive summaries, the average Rouge-1 (unigram) [19] score is approximately
91 %. Tables 1 through 4 and Figures 1 and 2 use the following abbreviations: (i)
R-n means ROUGE metric using n-gram matching, and (ii) lowercase s denotes
the use of stopword removal option.

Metric µ σ Range
R-1 0.909 0.069 0.49-1.00
R-1s 0.879 0.103 0.15-1.00
R-2 0.555 0.167 0.06-0.96
R-2s 0.505 0.179 0.02-0.95
R-3 0.376 0.192 0.01-0.93
R-3s 0.315 0.189 0.00-0.89
R-4 0.278 0.190 0.00-0.90
R-4s 0.213 0.175 0.00-0.84

Table 1: Rouge Recall on DUC
2001, Document as summary.

Metric µ σ Range
R-1 0.907 0.045 0.57-1.00
R-1s 0.889 0.059 0.64-1.00
R-2 0.555 0.111 0.22-0.85
R-2s 0.509 0.117 0.21-0.87
R-3 0.372 0.124 0.04-0.75
R-3s 0.311 0.123 0.04-0.76
R-4 0.272 0.118 0.01-0.67
R-4s 0.204 0.112 0.01-0.68

Table 2: Rouge Recall on DUC
2002, Document as summary.

This means that on the average about 9% of the words in the human ab-
stractive summaries do not appear in the documents. Since extractive automatic
summarizers extract all the sentences from the documents given to them for
summarization, clearly no extractive summarizer can have Rouge-1 recall score

2 2002 was the last year in which the single document summarization competition was held by
NIST.



higher than the documents themselves on any dataset, and, in general, the recall
score will be lower since the summaries are limited to 100 words whereas the
documents themselves can be arbitrarily long. Thus, we establish a limit on the
Rouge recall scores for extractive summarizers on the DUC datasets. The DUC
2002 dataset has 533 unique documents and most include two 100-word human
abstractive summaries. We note that if extractive summaries are also exactly 100
words each, then the precision can also be no higher than recall score. In addi-
tion, since the F1-score is upper bounded by the highest possible recall score.
Therefore in the single document summarization, no extractive summarizer can
have an average F1-score better than about 91%. When considered in this light,
the best current extractive single-document summarizers achieve about 54% of
this limit on DUC datasets, e.g., see [2,17].

ROUGE insights In Table 2, comparing R-1 and R-1s, we can see an increase
in the lower range of recall values with stopword removal. This occurred with
Document #250 (App. C). Upon deeper analysis of ROUGE, we found that
it does not remove numbers under stopword removal option. Document #250
had a table with several numbers. In addition ROUGE treats numbers with the
comma character (and also decimals such as 7.3) as two different numbers (e.g.
50,000 become 50 and 000). This boosted the recall because after stopword
removal, the summaries significantly decreased in unigram count, whereas the
overlapping unigrams between document and summary did not drop as much.
Another discovery is that documents with long descriptive explanations end up
with lower recall values with stopword removal. Tabel 1 shows a steep drop on
the lower range values from R-1 to R-1s. When looking at the lower scoring
documents, the documents usually had explanations about events, whereas the
summary skipped these explanations.

3.2 Multi-document Extractive Summarization

For multi-document summarization, there are at least two different scenarios in
which to explore limits on extractive summarization. The first is where docu-
ments belonging to the same topic are concatenated together into one super-
document and then it is treated as a summary. In the second, we compare each
document as a summary with respect to the model summaries and then average
the results for documents belonging to the same topic.

For multi-document summarization, experiments were done on data from
DUC datasets for 2004 and 2005. The data was grouped into document clusters.
Each cluster held documents that were about a single topic. For the 2004 com-
petition (DUC 2004), we focused on the English document clusters. There were



a total of 50 document clusters and each document cluster had an average of 10
documents. DUC 2005 also had 50 documents clusters, however, there were a
minimum of 25 documents for each set.

Please note that since the scores for R-3 and R-4 were quite low (best being
0.23) these scores are not reported here.

Super-document Approach Now we consider the overlap between the docu-
ments of a cluster with the human summaries of those clusters. So for this limit
on recall, we create super-documents. Each super-document is the concatena-
tion of all the documents for a given document set. These super-documents are
then evaluated with ROUGE against the model human summaries. Any extrac-
tive summary is limited to only these words, so the recall of a perfect extractive
system can only reach this limit. The results can be seen in Table 3 and Table 4.

Metric µ σ Range
R-1 0.938 0.021 0.89-0.97
R-1s 0.904 0.030 0.82-0.96
R-2 0.474 0.057 0.36-0.60
R-2s 0.351 0.061 0.22-0.48

Table 3: ROUGE Recall on
DUC 2004, Super-document as
summary.

Metric µ σ Range
R-1 0.969 0.018 0.88-0.99
R-1s 0.949 0.029 0.81-0.99
R-2 0.537 0.080 0.30-0.73
R-2s 0.396 0.087 0.18-0.64

Table 4: ROUGE Recall on
DUC 2005, Super-document as
summary.

Averaging Results of Individual Documents Here we show a different per-
spective on the upper limit of extractive systems. We treat each document as
a summary to compare against the human summaries. Since all the documents
are articles related to a specific topic, these documents can be viewed as a stan-
dalone perspective. For this experiment we obtained the ROUGE recall of each
document and then averaged them for each cluster. The distribution of the aver-
ages are presented in Figure 1 and Figure 2. Here the best distribution average is
only about 60% and 42% for DUC 2004 and DUC 2005, respectively. The best
system did approximated 38% in DUC 2004 and 46% in DUC 2005

4 A General Model for Summarization

Now we introduce our model and study its implications. Consider the process
of human summarization. The starting point is a document, which contains a



Fig. 1: Distribution of Avg for DUC
2004

Fig. 2: Distribution of Avg for DUC
2005

sequence of sentences that in turn are sequences of words. However, when a
human is given a document to summarize, the human does not choose full sen-
tences to extract from the document like extractive summarizers. Rather, the
human first tries to understand the document, i.e., builds an abstract mental rep-
resentation of it, and then writes a summary of the document based on this.

Therefore, we formulate a model for semantic summarization in the abstract
world of thought units,3 which can be specialized to syntactic summarization
by using words in place of thought units. We hypothesize that a document is
a collection of thought units, some of which are more important than others,
with a mapping of sentences to thought units. The natural mapping is that of
implication or inclusion, but this could be partial implication, not necessarily
full implication. That is, the mapping could associate a degree to represent that
the sentence only includes the thought unit partially. A summary must be con-
structed from sentences, not necessarily in the document, that cover as many of
the important thought units as possible, i.e., maximize the importance score of
the thought units selected, within a given size constraintC. We now define it for-
mally for single and multi-document summarization. Our model can naturally
represent abstractive versus extractive dimension of summarization.

Let S denote an infinite set of sentences, T an infinite set of thought units,
and I : S × T → R be a mapping that associates a non-negative real number
for each sentence s and thought unit t that measures the degree to which the
thought unit is implied by the sentence s. Given a document D, which is a finite
sequence of sentences from S, let S(D) ⊂ S be the finite set of sentences in
D and T (D) ⊂ T be the finite set of thought units of D. Once thoughts are
assembled into sentences in a document with its sequencing (a train of thought)

3 we prefer thought units because a sentence is defined as a complete thought



and title(s), this imposes a certain ordering4 of importance on these thought
units, which is denoted by a scoring function WD : T → R. The size of a
document is denoted by |D|, which could be, for example, the total number
of words or sentences in the document. A size constraint, C, for the summary,
is a function of |D|, e.g., a percentage of |D|, or a fixed number of words or
sentences in which case it is a constant function. A summary of D, denoted
by summ(D) ⊂ S, is a finite sequence of sentences that attempts to represent
the thought units of D as best as possible within the constraint C. The size of
a summary, |summ(D)| is measured using the same procedure for measuring
|D|. With these notations, for each thought unit t ∈ T (D), we define the score
assigned to summ(D) for expressing thought unit t as Ts(t, summ(D)) =
max{I(s, t) | s ∈ summ(D)}. Formally, the summarization problem is then,
select summ(D) to maximize Utility(summ(D)):

∑
t∈T (D)

WD(t) ∗ Ts(t, summ(D))

subject to the constraint |summ(D)| ≤ C.
Note that our model can represent some aspects of summary coherence as

well by imposing the constraint that the sequencing of thought units in the sum-
mary be consistent with the ordering of thought units in the document.

For the multi-document case, we are given aCorpus = {D1, D2, . . . Dn},
each Di has its own sequencing of sentences and thought units, which could
conflict with other documents. One must resolve the conflicts somehow when
constructing a single summary of the corpus. Thus, for multi-document sum-
marization, we hypothesize that WCorpus is a total ordering that is maximally
consistent with the WDi’s by which we mean that if two thought units are as-
signed the same relative importance by every document in the collection that
includes them, then the same relative order is imposed by W as well, other-
wise W chooses a relative order that is best represented by the collection and
this could be based on a majority of the documents or in other ways. With this,
our previous definition extends to multi-document summarization as well, but
we replace summ(D) by summ(Corpus), WD by WCorpus, and T (D) by
T (Corpus). In the multi-document case, the summary coherence can be de-
fined as the constraint that the sequencing of thought units in a summary be
maximally consistent with the sequencing of thought units in the documents
and in conflicting cases makes the same choices as implied by WCorpus.

The functionW is a crucial ingredient that allows us to capture the sequenc-
ing chosen by the author(s) of the document(s), without W we would get the

4 Since some thought units in the same sentence



bag of words models popular in previous work. We note that W does need to
respect the sequencing in the sense that it is not required to be a decreasing (or
even non-increasing) function with sequence position. This flexibility is needed
since W must fit the document structure.

As defined our model covers abstractive summarization directly since it is
based on sentences that are not restricted to those within D. For extractive sum-
marization, we need to impose the additional constraint summ(D) ⊆ S(D)
for single-document, and summ(D) ⊆ S(Corpus), where S(Corpus) =
∪iS(Di), for multi-document summarization. Some other important special cases
of our model as as follows:

1. Restricting I(S, T ) to a boolean-valued function. This gives rise to the “mem-
bership” model and avoids partial membership.

2. Restricting WD(t) to a constant function. This would give rise to a “bag of
thought units” model and it would treat all thought units the same.

3. Further, if “thought units” are limited to be all words, or all words minus
stopwords, or key phrases of the document, and under extractive constraint,
we get previous models of [10,23,31]. This also means that the optimization
problem of our model is NP-hard at least and NP-complete when WD(t) is
a constant function and I(S, T ) is boolean-valued.

Theorem 1. The optimization problem of the model is at least NP-hard. It is
NP-complete when I(S, T ) is boolean-valued, WD(t) is a constant function
and thought units are: words, or all words minus stopwords or key phrases of
the document, with sentence size and summary size constraint being measured in
these same syntactic units. We call these NP-complete cases extractive coverage
summarization collectively.

Proof: Reduction from the set cover problem - proof in Appendix.

Based on this generalized model, we can define:

Definition 1. The extractive compressibility of a document is the smallest size
collection of sentences from the document that cover its thought units. If the
thought units are words, we call it the word extractive compressibility.

Definition 2. The abstractive compressibility of a document is the smallest size
collection of arbitrary sentences that cover its thought units. If the thought units
are words, we call it the word abstractive compressibility.

Definition 3. The compression rate or incompressibility of a document is de-
fined as κ/N , where κ is the size of the compressibility of the document, and N
is the original size of the document.



Similarly, we can define corresponding compressibility notions for key phrases,
words minus stopwords, and thought units.

We investigate compressibility of three different genres: news articles, sci-
entific papers and short studies. For this purpose, 25 news articles, 25 scientific
papers, and 25 short stories were collected. The 25 news articles were randomly
selected from several sources and covered disasters, disaster recovery, preven-
tion, and critical infrastructures. Five scientific papers, on each of the following
five topics: cancer research, nanotechnology, physics, NLP and security, were
chosen at random. Five short stories each by Cather, Crane, Chekhov, Kate
Chopin, and O’Henry were randomly selected. Experiments showed that large
sentence counts lead to decrease imcompressibility. Figure 3 shows a direct re-
lationship between document size and incompressibility.

Fig. 3: Imcompressibility vs. Sentence Count

4.1 Algorithms for Single-document Summarization

We have implemented several new and existing heuristcs in a tool called Doc-
Summ written in Python. Many of our heuristics revolve around the TF/IDF
ranking, which has been shown to do well in tasks involving summarization.

TF/IDF ranks the importance of words across a corpus. This ranking sys-
tem was compared to other popular keyword identification algorithms and was
found to be quite competitive in results [25]. In this paper, the authors compared



TextRank, SingleRank, ExpandRank, KeyCluster, Latent Semantics Analysis,
Latent Dirichlet Analysis and TF/IDF. N keywords, where N varied from 5
to 100 in steps of 5, from the DUC documents were extracted using each al-
gorithm and the F1-score was calculated using human summaries as models.
The experiments showed that TF/IDF consistently performs as well if not better
than other algorithms. To apply to the domain of single-document summariza-
tion, we define a corpus as the document itself. The documents referred to in
inverse document frequency are the individual sentences and the terms remain
the same, words. The value of a sentence is then the sum of the TF/IDF scores
of the words in the sentence.

DocSumm, includes both greedy and dynamic programming based algo-
rithms. The greedy algorithms use the chosen scoring metric to evaluate every
sentence of a document. It then simply selects the highest scoring sentence, un-
til either a given threshold of words are met or every word is covered in the
document. Besides the choices for the scoring metrics, there are several other
options (normalization of weights, stemming, etc.) that can be toggled for eval-
uation. Appendix B gives a brief description of those options.

DocSumm includes two dynamic programming algorithms. One provides
an optimal solution, i.e., the minimum number sentences necessary to cover all
words of the document. This can be viewed as the bound on maximum com-
pression of a document for extractive summary. This algorithm is a bottom-up
approach that builds set covers of all subsets of the original document’s thought
units (i.e. words for our experiments), beginning with the smallest unit, a sin-
gle word. We did implement a top-down version based on recursion, but this
algorithm quickly runs out of time/space because of repeated computations.

In addition to this optimal algorithm, DocSumm also implements a version
of the algorithm presented in [23]. McDonald frames the problem of document
summarization as the maximization of a scoring function that is based on rele-
vance and redundancy. In essence, selected sentences are scored higher for rele-
vance and scored lower for redundancy. If the sentences of a document are con-
sidered on a inclusion/exclusion basis, then the problem of document summa-
rization reduces to the 0-1 Knapsack problem. However, McDonald’s algorithm
is approximate, because the inclusion/exclusion of the algorithm influences the
score of other sentences. A couple of greedy algorithms and a dynamic pro-
gramming algorithm of DocSumm appeared in [31], the rest are new.

4.2 Results

Our results include experiments on running time comparisons of DocSumm’s
algorithms. In addition we compare the performance measures of DocSumm on
DUC 2001 and DUC 2002 datasets.



Run times The dataset for running times is created by sampling sentences from
the book of Genesis. We created documents of increasing lengths, where length
is measured in verses. The verse count ranged from 4 to 320. However, for doc-
uments greater than 20 sentences, the top-down dynamic algorithm runs out of
memory. So there are no results on the top-down exhaustive algorithm. Table 5
shows slight increases in time as the document size increase. For both tfidf and
bottom-up there is a significant increase in running time.

verse
count

greedy
size

greedy
size+d

greedy
tfidf

bottom-
up

4 33 32 32 34
8 32 32 33 36
12 33 33 35 36
16 35 35 36 39
20 35 35 37 38
40 43 43 48 70
80 59 57 101 101

160 92 90 331 408
320 170 167 1520 1708

Table 5: Running Times of algorithms in milliseconds.

Summarization We now compare the heuristics for single-document summa-
rization on DUC 2001 and DUC 2002 dataset. For the 305 unique documents
of the DUC 2001 dataset we compared the summaries of DocSumm algorithms.
The results were in line with the analysis of the three domains.

For each algorithm, we truncated the solution set as soon as a threshold of
100 words was covered. The ROUGE scores of the algorithms were in line with
the compressibility performances. The size algorithms performed similarly and
the best was the bottom-up algorithm with ROUGE F1 scores of 0.444, 0.273
and 0.408 for ROUGE-1, ROUGE-2 and ROUGE-LCS, respectively. The tfidf
algorithm performance was not significantly different.

Comparison On the 533 unique articles in the DUC 2002 dataset, we now
compare our greedy and dynamic solutions against the following classes of sys-
tems: (i) two top of the line single-document summarizers, SynSem [2], and the
best extractive summarizer from [17], which we call KKV, (ii) top five (out of
13) systems, S28, S19, S29, S21, S23, from DUC 2002 competition, (iii) Tex-
tRank, (iv) MEAD, (v) McDonald Algorithm and (vi) the DUC 2002 Baseline
summaries consisting of the first 100 words of news articles. The Baseline did



Algorithm ROUGE-1 ROUGE-2 ROUGE-LCS
size 0.430 0.262 0.295

size+d 0.433 0.265 0.398
tfidf 0.440 0.272 0.406

bottom-up 0.444 0.273 0.408
mcdonald 0.428 0.254 0.387

MEAD 0.447 0.210 0.298
TextRank 0.446 0.208 0.288
SynSem 0.465 N/A N/A

KKV 0.490* 0.228* N/A
S23 0.450 0.218 0.299
S29 0.453 0.212 0.300
S21 0.460 0.219 0.305

Baseline 0.462 0.222 0.301
S19 0.463 0.226 0.312
S28 0.467 0.227 0.309

Table 6: F1 scores on 100 word summaries for DUC 2002 documents

very well in the DUC 2002 competition - only two out of 13 systems, S28 and
S19, managed to get a higher F1 score than the Baseline. For this comparison,
all manual abstracts and system summaries are truncated to exactly 100 words
whenever they exceed this limit.

Note that the results for SynSem are from [2], who also used only the 533
unique articles in the DUC 2002 dataset. Unfortunately, the authors did not re-
port the Rouge bigram (ROUGE-2) and Rouge LCS (ROUGE-L) F1 scores in
[2]. KKV’s results are from [17], who did not remove the 33 duplicate articles
in the DUC 2002 dataset, which is why we flagged those entries in Table 6
with *. Hence their results are not comparable to ours. In addition KKV did not
report ROUGE-LCS scores. We observe that for Rouge unigram (ROUGE-1)
F1-scores the dynamic optimal algorithm performs the best amongst the algo-
rithms of DocSumm. However, it still falls behind the Baseline. When we con-
sider Rouge bigram (ROUGE-2) F1-scores Dynamic and Greedy outperform
the rest of the field (surprisingly even [17]). The margin of out-performance is
even more pronounced in ROUGE-LCS F1-scores.

5 Conclusions and Future Work

We have shown limits on the recall of automatic extractive summarization on
DUC datasets under ROUGE evaluations. Our limits show that the current state-
of-the-art systems evaluated on DUC data [2,17] are achieving about 54% of
this limit (Rouge-1 recall) for single-document summarization and the best sys-
tems for multi-document summarization are achieving only about a third of their



limit. This is encouraging news, but at the same time there is much work remain-
ing to be done on summarization. We also explored compressibility, a general-
ized model, and new and existing heuristics for single-document summarization.

To our knowledge, compressibility the way we have defined and studied it
is a new concept and we plan to investigate it further in future work. We believe
that compressibility could prove to be a useful measure to study the performance
of automatic summarization systems and also perhaps for authorship detection
if, for instance, authors are shown to be consistently compressible.
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A Appendix - Proof of Theorem 1

Reduction from the set cover problem for NP-hardness. Given a universe U,
and a family of S of subsets of U, a cover is a subfamily C of S whose union
is U. In the set cover problem the input is a pair (U,S) and a number k, the
question is whether there is a cover of size at most k. We reduce set cover to
summarization as follows. For each member u of U , we select a thought unit t
from T and a clause c that expresses t. For each set S in the family, we construct
a sentence s that consists of the clauses corresponding to the members of S (I is
boolean-valued). We assemble all the sentences into a document. The capacity
constraint C = k and represents the number of sentences that we can select
for the summary. It is easy to see that a cover corresponds to a summary that
maximizes the Utility and satisfies the capacity constraint and vice versa. ut

Of course, the document constructed above could be somewhat repetitive,
but even “real” single documents do have some redundancy. Connectivity of
clauses appearing in the same sentence can be ensured by choosing them to
be facts about a person’s life for example. We call the NP-complete cases of the
theorem, extractive coverage summarization collectively. For this case, it is easy
to design a greedy strategy that gives a logarithmic approximation ratio [16] and
an optimal dynamic programming one that is exponential in the worst case.

B Appendix - DocSumm Tool

Option Description
-c size scoring based on lenght of sentence
-c tfidf tf based on whole document, idf based on whole document
-w, --stopword removes stopwords
-s, --stem applies stemming to words
-d, --distinct removes duplicate words per sentence
-n, --normalize normalizes scores by sentence word count
-u, --update updates scores after each greedy selection
-e, --echo enables summary mode
-t, --threshold sets the number of words in summary

Table 7: Options for DocSumm tool.
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