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Abstract. We present a minimum description length-
based algorithm for finding the regular correspondences
between related languages and show how it can
be used to quantify the similarity between not only
pairs, but whole groups of languages directly from
cognate sets. We employ a two-part code, which
allows to use the data and model complexity of the
discovered correspondences as information-theoretic
quantifications of the degree of regularity of cognate
realizations in these languages. Unlike previous work,
our approach is not limited to pairs of languages, does
not limit the size of discovered correspondences, does
not make assumptions about the shape or distribution of
correspondences, and requires no expert knowledge or
fine-tuning of parameters. We here test our approach
on the Slavic languages. In a pairwise analysis
of 13 Slavic languages, we show that our algorithm
replicates their linguistic classification exactly. In a
four-language experiment, we demonstrate how our
algorithm efficiently quantifies similarity between all
subsets of the analyzed four languages and find that
it is excellently suited to quantifying the orthographic
regularity of closely-related languages.

Keywords. Linguistic similarity, groups of languages,
MDL.

1 Introduction

Systematic correspondences between related langua-
ges form the basis for much linguistic work. Researchers

employ them to e.g. improve teaching, analyze the
similarity or relatedness of languages qualitatively, or
to formulate hypotheses about their mutual intelligibility.
Beyond that, they are relevant to tasks such as machine
translation.

Correspondence rules could be established on
the basis of various linguistic features, such as
the languages’ alphabets, their orthographies, their
phonologies, or their inflectional and derivational
morphologies. As an example, the Polish, Czech,
Russian, and Bulgarian forms of the pan-Slavic word
for happiness could be analyzed with the following
correspondences, reflecting orthographic and (slight)
phonetic differences:

(PL) szcz ↪e ści e
(CS) št ě st ı́
(RU) ñ÷ à ñòü å

(BG) ù à ñò èå

In our project, we focus on modeling the mutual
intelligibility of related Slavic languages. In the
current stage of the project, we focus on the reading
intercomprehension setting, i.e. a scenario where
a native speaker of one Slavic language, such as
Polish, is reading e.g. a newspaper written in a related
language he or she has never learned or otherwise
been exposed to, such as Czech or Croatian. It it clear
that in such a scenario, successful intercomprehension
requires a high degree of cognacy between the involved
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languages. However, different cognates may have gone
through various changes throughout the languages’
evolutions, e.g. due to spelling reforms, or they may
have been adapted by the languages differently in the
first place, e.g. loanwords being adapted according to
the orthographic versus phonetic principle depending on
the time of borrowing. Thus, a reader will be faced
with having to decipher many different correspondences
to his or her native language(s). We hypothesize that
native readers will encounter more difficulties with some
of these correspondences than with others, and we
want to find information-theoretic baselines for predicting
the correspondences’ degrees of difficulty and thus the
languages’ expected mutual intelligibility.

For this endeavour, we first require the lists of
correspondences between the languages. While much
linguistic work has been done on the Slavic family,
we have shown in previous work that the existing
collections of correspondence rules from historical
linguistics are highly incomplete in terms of coverage
of modern cognate words [7]. Since the sheer
amount of correspondences is staggering, we require
to automatically identify the correspondence rules
present in available data. Regular correspondences
have often been addressed in previous work and the
proposal to learn them automatically from data goes
back as far as the 1960s ([10]). Newly-available
computational power has faciliated much progress
over the past two decades, and topics as diverse
as cognate identification/reconstruction or transliteration
generation (cf., e.g. [2, 18, 13]), discovery or
quantification of etymological relationships ([23, 14, 3]),
lost languages decipherment ([21]) or discovery of
pseudo-morphological sub-word alignments ([20]) have
been addressed. However, the existing approaches
do not fulfill our requirements – for our purposes,
correspondences cannot be limited to a maximum
number of characters or to a maximum number of
languages, and fully disjoint character sets must be
possible.

Since existing systems overwhelmingly focus on the
phonetic modality, they typically impose a maximum
length on correspondences of at most two by two
characters and assume that all data uses the same
alphabet. However, the orthographic modality is different
from the phonetic. Firstly, since languages may employ
digraphs or trigraphs for representing single phone(me)s,
orthographic correspondences clearly cannot be limited
in this way. Secondly, used scripts may be completely
disjoint. For example, some Slavic languages employ
the Cyrillic alphabet and some employ the Latin
alphabet, and many even modify either script with

various diacritics. Furthermore, in intercomprehension,
we cannot assume that only correspondences to one
single language are relevant. Native readers may
be multilingual and we can reasonably assume that
many also possess some knowledge of other languages,
such as Russian or – nowadays – English, which
may influence their intercomprehension process both
positively or negatively. One way to quantify the
influence of multiple languages on intercomprehension
would be to consider the entropies of the adaptation
process between cognates in each known language and
the target language, which would posit that readers use
their knowledge of each language separately. However,
it may be that individually, two languages, call them A
and B, have a high entropy when transforming words
into a third language, call it C, whereas taking the
knowledge from A and B together, i.e. transforming
words from A and B jointly into C, has much lower
or even zero entropy. In order to capture this fully,
we require three-way correspondences between all the
languages, and more generally N -way correspondences
between any N languages, which is a feat we have
not found in any of the systems we reviewed. While
marginalization can and has been used to construct
N -way correspondence rules (e.g. in [14]), we found that
this approach can quickly magnify small errors and we
thus want to handle N -way rules natively.

We want to use these correspondences to compute
meaningful, objective baseline expectations regarding
the mutual intelligibility of languages and language
groups, taking into account a reader’s knowledge of any
number of other languages. In other words, we aim to
define similarity measures not only for pairs, but groups
of languages.

This leaves us with the following questions: How
can we find correspondences of arbitrary sizes between
an arbitrary number of languages which employ
arbitrarily different alphabets? And how can we use
these correspondences to objectively quantify linguistic
similarity between not only pairs, but groups and even
families of languages? These are the questions we
answer in this paper. For this, we employ the Minimum
Description Length (MDL) principle [9]. MDL is a
statistically well-founded approach to identifying the best
model for given data, and has e.g. been used to model
changes in etymologically related words [23].

Using MDL, we deem the set correspondences that
describes the data most succinctly to be the best. We
propose an efficient, deterministic algorithm to infer
good sets of correspondence rules directly from data.
We then show how their coding-theoretic complexity
and regularity can be used to quantify similarity in a
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fine-grained fashion. We present two experiments: In
a pairwise analysis of 13 Slavic languages, we confirm
that the notion of linguistic similarity captured by our
algorithm is a strong reflection of linguistic classification.
In a four-language experiment between Czech, Polish,
Russian, and Bulgarian, we find that our algorithm
efficiently and intuitively quantifies linguistic similarity
between subsets of all analyzed languages. The
four-language experiment shows us that our approach
is well suited to assessing the orthographic regularity of
closely-related languages, and we discuss in detail how
this works.

The rest of the paper follows the usual structure: we
give an overview of our key ideas and some terminology
in Section 2. Then, we present our model and describe
our learning algorithm in Section 3. We report learned
correspondences and provide an information-theoretic
analysis of language similarities in Section 4, and set
our model in relation to previous work in Section 5 before
concluding in Section 6.

2 Key Ideas and Terminology

Our central idea is that if two languages L1 and L2

are highly related, then they will share a great deal
of their sequential structures. Here, we focus on the
sequential similarity between cognate words. That is,
we assume that for every cognate realized in different
languages there is some underlying sequence of latent
variables that governs its exact surface realization.
These underlying sequences will manifest as correlating
sequences of the symbols of the languages, and we
want to learn them automatically from data.

To this end, we employ the Minimum Description
Length (MDL) formalism, which posits that the optimal
model is the one resulting in the most concise
description of the modeled data, i.e. induction is
performed by compressing the data. Importantly, in
MDL-based modeling, we use only the data as evidence
for our models and forego making assumptions about the
nature of models in the form of prior probabilities.

For our model, we employ a two-part code [15], posing
the optimization problem

M = arg min
M∈M

L(M) + L(D|M).

Here,D is the data at hand,M the explaining model, and
M the model class we draw our models from. L(M)
is the length, in bits1, of the description of model M .
Similarly, L(D|M) is the length, in bits, of the data given

1We use log(.) = log2(.) throughout the paper.

model M . Description lengths are simply code lengths:
Shannon’s source coding theorem [19] tells us that the
best prefix-free code for some data is derived from the
probabilities of the data, i.e.

L(M) + L(D|M) = − log p(M)− log p(D|M).

From this, we see that two-part MDL can be considered
to be a regularized maximum likelihood approach very
similar to Bayesian inference.

We aim to find correspondence rules exploratively,
i.e. without imposing a generative model that governs
their shape or distribution. Concretely, we treat
correspondences simply as associated strings of
characters with no assumed underlying distribution at all.
Doing this allows to observe the actual distributions of
correspondence rules in data and to compute objective,
unbiased string-level measures of linguistic similarity
via the joint compressibility of cognates in various
languages.

2.1 Evaluating and Inferring Rules

In order to evaluate how good a given set of
correspondence rules is, we should evaluate how well
these rules describe the data. However, this is not
entirely unproblematic. For example, if we are given the
Polish-Czech correspondences (s,š), (sz, š), (c,t), (cz,t),
and (szcz,št), then we can segment the sub-strings szcz
and št e.g. as shown below.

a) s z c z
š t b) s z c z

š t c) szcz
št

We call any such segmentation an alignment. Lacking
an evaluation function, we cannot tell which of the three
example alignments above is the best. However, if we
are given the best alignment of our data, then we can
straightforwardly compute probabilities for each of the
correspondence rules, from which we can then compute
the optimal rule costs. Similarly, knowing the costs of the
rules allows to compute the optimal alignment.

Thus, our problem lends itself well to an Expectation-
Maximization (EM) [5] approach. The expectation step
is straightforward; we simply align the data with the
current model. The maximization step can be explained
intuitively as follows: If the optimal alignment is c), using
rule (szcz, št), then any of the rules in alignments a) and
b) could be used at least as often in the data as (szcz,št).
Thus, if the rules in alignment c) are the optimal ones,
i.e. better than those in b), the rules in b) will also be
better than the ones in a). Assuming that the complexity
of larger rules is higher than that of any of the smaller
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rules they contain, we can combine smaller rules into
larger ones to see if merged rules’ utility in describing
the data outweighs their increased complexity. Using this
approach, we will deterministically obtain good results
as long as the best alignments with the current rule set
do not exclude too much evidence needed to discover
competing rules.

With this in mind, initialization of this model is
straightforward: if we start by assuming no structure
at all, then we will find the dominant structures in the
data. Thus, we start training from an alignment in
which every symbol in the data is placed solely in one
correspondence rule. We call such an alignment a
null alignment and call rules which contain exactly one
symbol from exactly one language singleton rules.

3 MDL Code for Regular
Correspondences

Mathematically, our model class is the set of sets of
tuples associating strings from the individual languages’
alphabets. We use a two-part code and must define
both L(M) and L(D|M). Our code must ensure that a)
shorter rules are rated less complex than longer ones, b)
rules using very common letters are rated less complex
than those using rare letters, and c) there is no bias
against sparsely-populated rules.

In the following, we use count(x) to indicate the
number of occurrences of x, and use code(x) to indicate
the shortest possible code word for x. We are interested
only in measuring complexity, so we ignore the exact
code words for any element and instead focus only on
their optimal lengths. We begin by discussing our model
code L(M).

3.1 Model Code

Let N be the number of languages. Our models consist
of N alphabets Σi and a correspondence rule table,
which we call Π. Our total model description length is

L(M) =

N∑
i=1

[L(Σi)] + L(Π).

In order to describe the rules from Π, we require
the code lengths for all letters σ from all alphabets Σi.
However, for ease of exposition, we first discuss L(Π). In
essence, our Π is a list of independent correspondence
rules. We group rules by which languages they are
defined on in order to identify many rules even when N
is large. To explain why we do this, let us first explain in
detail how we encode rules.

Encoding a Correspondence Rule Rules π ∈ Π are
of the form π = (π1, ...,πN ) with πi ∈ Σ∗i . To encode one
such rule, we must include the information a) how long
the string from each of the languages is and b) which
letters it contains.

It is important to note that rules can be partially
empty, i.e. undefined on some languages. If we were
to specify explicitly that a rule has a length of 0 on
some channel, we would impose a bias particularly
against very sparsely-populated rules – specifying a rule
containing one symbol on two languages each would
incur N − 2 times the overhead of specifying a length
of 0 for all the empty languages. However, if for every
rule we already know which language sub-group it is
defined on, then we can avoid this bias by only sending
lengths where they are non-zero. This helps to find rules
with few carrier languages – a fact that is especially
important since our rules grow from small (and having
few carrier languages) to large (and having many carrier
languages).

Let π ∈ Π, π = (π1, ...,πN ) with πi ∈ Σ∗i be a rule. To
transmit π, we send all N entries independently of each
other, specifying lengths and character sequences only
where they are non-empty:

L(π) =

N∑
n=1
πn 6=ε

[
LN(|πn|) +

∑
σ∈πn

L(code(σ))
]
.

We encode each element’s length with LN, the
universal code for the integers [16], which is the
MDL-optimal code for natural numbers of unknown size.
For transmitting the strings themselves, we use code(σ),
i.e. the Shannon code for symbol usages in all rules.

Encoding the Rule Table As mentioned above, we
specify for every rule which subset of languages it is
defined on in order to avoid bias against sparse rules.
We can straightforwardly classify each rule according to
which subset it is defined on. Then, we must encode
how many rules defined on each of the different subsets
there are.

There are 2N − 1 different language subsets on which
a rule may be defined. We encode the number of rules
of each kind via LN. These numbers must be offset since
LN(n) is defined for n ≥ 1 and there may be zero rules
of a certain kind.

Additionally, to describe our data items using rules, we
must include the counts for the Shannon code for using
each of these rules in our description. We specify these
counts by a data-to-model code [22]. Data-to-model
codes are used to code uniformly from an enumeration
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of models, i.e. without preference towards any particular
model. Since we know that none of the rules described
in the model will have a count of zero, the appropriate
data-to-model code is given by the number composition
of the distribution’s total counts over the number of rules.
Thus:

L(Π) =

2N−1∑
i=1

LN(|ΠCi |+ 1) +
∑

π∈ΠCi

L(π)

+ LN(TΠ) + log

(
TΠ − 1

|Π| − 1

)
,

where TΠ =
∑
π∈Π count(π) and where ΠCi is the set

of rules defined on the i-th subset of languages as
enumerated in some canonical way.

Encoding the Alphabets For describing the strings of
each rule, we again use the Shannon-optimal code for
the individual alphabets’ symbols. Thus, we must first
transmit the unigram code(σ)∀σ ∈ Σi for every alphabet
Σi. We again do this by a data-to-model code, i.e. by
coding uniformly from all possible distributions.

Setting TΣi =
∑
σ∈Σi

c(σ), the total transmission cost
relating to some Σi becomes

L(Σi) = LN(|Σi|) + LN(TΣi) + log

(
TΣi − 1

|Σi| − 1

)
.

The alphabet sizes are constant for any given data set
and do not have to be included in the code to be able
to do meaningful inference, but nonetheless quantify the
complexity of the individual languages and should thus
be included.

3.2 Data Code L(D|M)

To encode data with our model, we simply transmit the
correspondences the current model uses to describe
each data entry. We model our data as a list of
independent sequences correspondence rules, i.e.

L(D|M) = LN(|D|) +
∑
d∈D

L(d|M),

where L(d|M) = LN(|d|) +
∑
π∈d

L(code(π)).

For individual data entries, we transmit their lengths
via LN and specify the used correspondence rules via
the best usage code for the rules, code(π). We next
discuss how to find the best such segmentations for data
entries, and how to infer rules.

3.3 Alignment Procedure

Computationally, finding the best description for a data
item d requires finding the best alignment for it. We here
formulate this as a shortest-path problem in a weighted,
directed graph and used Dijkstra’s algorithm [6] to find
optimal alignments. Nodes in the graph represent
index tuples, while edges describe the applicable
rules. By partial order reduction, we make these
graphs as small as possible. Nonetheless, due to the
combinatorial nature of the problem, bottlenecks exist
in memory consumption and runtime. With the current
implementation, we can obtain exact results for up to five
languages within a few hours on a 4GB RAM, 2.5GHz
single core desktop machine.

3.4 Training Procedure

Inferring correspondences of arbitrary length is a
combinatorial, non-convex optimization problem defined
over a large, unstructured search space. However, as we
argued in Section 2, we can compute optimal alignments
for all data if we are given a rule table with costs,
Likewise, if we are given an alignment of all data, we
can improve our model from it. Therefore, we can find
good solutions by Expectation-Maximization [5].

At the beginning of training, we initialize our model
with a null alignment. A null alignment is one in
which only singleton rules are used, i.e. only rules
which consist of exactly one character from exactly one
language.

3.4.1 Expectation Step

In the Expectation step, we align all data items with the
rules from the current rule table Π and the current usage
costs for the rules. This results in new counts for all
rules from which we compute costs in the next step.
We employ Laplace correction in order to ensure that
the algorithm is always able to explain all data and may
choose to not use locally suboptimal patterns.

The time complexity of our E step is O(|D| · |R|2),
whereR is the maximum number of rules simultaneously
applicable in a single data entry.
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3.4.2 Maximization Step

In the Maximization step, we optimize our code table.
We do this by merging together the two patterns with
the highest decrease in overall description length. The
intuition behind this is the observation that if a longer
pattern is useful, then any sub-pattern of it will be at
least as or more useful. It is important to note that in
this way, the learned correspondences grow according
to their statistical significance. Thus, in this fashion, we
deterministically learn the most important structures in
the data.

The time complexity of our M step is O(|D| · A2/2),
where A is the maximum number of rules used to align
a single data entry.

4 Experiments & Results

Firstly, we present a standard pairwise analysis for a
group of languages for which we have collected data we
deem representative. We compute pairwise distances,
construct a phylogenetic tree, and compare it to
linguistic classifications, which we find the algorithm fully
reproduces. Secondly, we present a detailed analysis
of four languages simultaneously, showing how we can
quantify and characterize linguistic similarity in much
more detail than previously possible. For both cases, we
also report some of the learned correspondences.

We considered comparing to phylogenetic trees
computed by other models. However, our approach is
completely novel in that it allows to assess language
sub-set similarity, which is the aspect we wish to
focus on. Therefore, we opted to only compare the
phylogenetic tree to the linguistic classification as a
sanity check.

4.1 Data Sets

We compiled two data sets for our experiments.
Firstly, we use Swadesh lists for 13 modern Slavic
languages taken from the wiktionary.2 The languages are
Czech, Polish, Slovak, Lower Sorbian, Upper Sorbian
(west Slavic), Russian, Belarussian, Ukrainian, Rusyn
(east Slavic), Bulgarian, Macedonian, Slovenian, and
Serbo-Croatian (south Slavic). For Serbo-Croatian, we
have both a version in Latin script and one in Cyrillic
script.

2Taken from https://en.wiktionary.org/wiki/
Appendix:Slavic_Swadesh_lists.

Secondly, we add a set of Slavic cognates containing
internationalisms and pan-Slavic words for Czech,
Polish, Russian, and Bulgarian.3

All our data is in raw orthographic form without
transcriptions of any kind. It consists mostly of verbs,
adjectives, and nouns. For all of our experiments, we use
only those entries that contain words for all languages in
question. While our algorithm is agnostic to gaps in data,
this makes for easier comparison.

Table 1. Data set sizes for experiments

data all lang. CS-PL RU-BG CS-PL-RU-BG
size 207 778 778 778

4.2 Experiment 1: Classic Pairwise Analysis

For a pairwise analysis, we require some measure of
distance between pairs of languages. In MDL-based
modeling, it is common to use Normalized Compression
Distance (NCD) [4] for this. Intuitively, NCD measures
how hard it is to describe X and Y together compared to
how hard it is to describe them separately. It is defined
as

NCD(X,Y ) =
L(X,Y )−min(L(X,X),L(Y ,Y ))

max(L(X,X),L(Y ,Y ))
,

where L(X,Y ) is the description length when encoding
languages X and Y jointly. NCD is a mathematical
distance; lower values mean that two data sets are more
similar.

We show the NCD values for all pairwise comparisons
for the 13 languages in Table 2. We use ISO 639-1
and ISO 639-3 codes to identify the languages, except
for Serbo-Croatian, which we denote by SCl in its Latin
version and and SCc in its Cyrillic version. We indicate
lowest and highest NCDs per row in bold and italic text,
respectively.

Our table reveals that languages from the same
linguistic group tend to have lower NCD than languages
from differing groups. The south Slavic group is
linguistically further divided into a southwestern group
(Slovene and Serbo-Croatian) and a southeastern
sub-group (Macedonian and Bulgarian). Indeed
Slovenian and Serbo-Croatian are more similar to
languages from the west Slavic group than to the
east Slavic group. Serbo-Croatian in Latin script was
assessed to be slightly closer to the other languages that

3Compiled from [12] and [1].
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Table 2. NCDs for 13 Slavic languages

usb lsb CS SK PL SL SCl SCc MK BG RU UK rue BE

usb .00 .52 .53 .52 .60 .57 .61 .62 .76 .75 .68 .70 .67 .64
lsb .52 .00 .65 .66 .72 .67 .68 .71 .87 .85 .80 .82 .78 .74
CS .53 .65 .00 .41 .56 .50 .53 .55 .71 .69 .61 .64 .58 .59
SK .52 .66 .41 .00 .58 .48 .51 .56 .68 .66 .60 .65 .59 .60
PL .60 .72 .56 .58 .00 .64 .64 .67 .82 .79 .71 .74 .69 .63

SL .57 .67 .50 .48 .64 .00 .36 .39 .59 .58 .61 .65 .60 .61
SCl .61 .68 .53 .51 .64 .36 .00 .04 .54 .57 .63 .66 .62 .63
SCc .62 .71 .55 .56 .67 .39 .04 .00 .51 .53 .60 .63 .59 .59
MK .76 .87 .71 .68 .82 .59 .54 .51 .00 .54 .74 .78 .75 .75
BG .75 .85 .69 .66 .79 .58 .57 .53 .54 .00 .70 .77 .70 .71

RU .68 .80 .61 .60 .71 .61 .63 .60 .74 .70 .00 .52 .53 .51
UK .70 .82 .64 .65 .74 .65 .66 .63 .78 .77 .52 .00 .45 .45
rue .67 .78 .58 .59 .69 .60 .62 .59 .75 .70 .53 .45 .00 .54
BE .64 .74 .59 .60 .63 .61 .63 .59 .75 .71 .51 .45 .54 .00

use Latin script, while the Cyrillic version is more similar
to other Cyrillic languages.

For easier viewing, we construct a phylogenetic tree
from the NCDs by the neighbor joining method [17] and
place the root manually. It is shown in Figure 1.4 The
greater the horizontal distance between languages, the
less similar they are.

Fig. 1. NCD-based Slavic phylogenetic tree

The algorithm groups the languages according to their
linguistic classification [11]. It identifies Bulgarian and

4Picture generated with http://etetoolkit.org/
treeview/, tree generated with scikit-bio: http:
//scikit-bio.org/.

Macedonian as slight outliers in the south Slavic group,
and Polish, Upper and Lower Sorbian as such in the
west Slavic group. This is an expected result. Bulgarian
and Macedonian are outliers in that they have largely
lost case. Words from these languages oftentimes
employ zero endings or comparatively shorter endings
than the other languages. This leads to overall very
low BG-BG and MK-MK description lengths, but still high
NCDs to the other languages. Polish is more complex
than Slovak and Czech are, which is likely due to its
frequent use of digraphs. This leads to an increased
complexity of Polish patterns. Finally, Lower Sorbian
in particular uses a number of etymologically different
words in the Swadesh list, which seems to be the cause
for its outlier status. Its word forms nonetheless share
enough structure with Upper Sorbian, Polish, and the
other West Slavic languages to be grouped accordingly.

(PL)
(CS)

z ie m i a
z e m ě

r ó g
r o h

r o z d z i e l i ć
r o z d ě l i t

(RU)
(BG)

ì î ë î ä î ñ ò ü

ì ë à ä î ñ ò

ï î ë í ûé

ï ú ë å í

Fig. 2. Sample correspondences for CS-PL, RU-BG

In Figure 2, we present example alignments from
the models for the CS-PL and RU-BG language pairs.
The discovered correspondences are of slightly different
granularities. More complex rules are learned only if
the data warrants their use for compression.5 We next
show how this can be exploited for fine-grained analysis
of similarity.

4.3 Experiment 2: Quantifying Similarities of
Subsets of Four Languages

Restricting ourselves to pairwise analyses and grouping
the most similar languages together in a phylogeny
may cause us to miss many subtle similarities. Our
algorithm is agnostic to the number of input languages
and can be used to efficiently analyze more than two
languages at a time. This allows for highly detailed
information-theoretic quantification of the similarities
among groups of languages. To illustrate how this

5The algorithm learns larger rules if given more data
containing the same correspondence rules. This can be
exploited to learn larger rules by forcing the algorithm to
continue training after reaching the minimum description length.
Doing so corresponds to treating the given data as more
statistically representative of the language than it objectively
is. Interestingly, rules learned in such a fashion overwhelmingly
have linguistically meaningful character (cf. [8]), corresponding
to either orthographic or morphological units.
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works, we first present some four-way CS-PL-RU-BG
alignments in Figure 3.

Some of the discovered rules link only two or
three languages, leaving the other language(s) to be
described by separate rules. We have selected some
examples to highlight the differences in i vowels. In our
Polish-Czech-Russian-Bulgarian data, there is enough
evidence to discover various rules, such as (,,è,è) or
(,i,è,è), but not enough evidence to include a four-way
rule (j,i,è,è). In consequence, the internationalism
specjalny (special) is analyzed with the three-way
i correspondence plus a Polish singleton rule (j,,,)
– despite the individual phonetic realizations of the
internationalism being nearly identical.6 In other cases,
using two rules – such as (i,ı́,,) plus (,,è,è) in pić (to
drink ) – is a good choice, showing that both of these
rules are regular enough to be discovered. A four-way
rule combining them is not selected as its complexity
surpasses its utility.

(PL)

(CS)

(RU)

(BG)

m i ł y
m i l ý
ì è ë ûé

ì è ë

p i ć
p ı́ t
ï è òü

ï è ÿ

(PL)

(CS)

(RU)

(BG)

s p e c j a l n y
s p e c i á l n ı́
ñ ï å ö è à ëü í û é

ñ ï å ö è à ë åí

Fig. 3. CS-PL-RU-BG correspondences. Top left:
nice/smooth, top right: to drink, bottom: special

This reflects the fact that while there is an
underlying latent variable, namely the i vowel, the
realizations employed by each of the languages
differ in entropy. In some cases, the joint entropy,
relative to the amount of available data, between
all four languages is low enough for a four-way
rule to be discovered. In other cases, the joint
entropy between some groups of the languages,
e.g. the two groups Polish and Czech as well as
Russian and Bulgarian, is low enough to warrant a
rule linking these language groups, but the overall
four-way joint entropy prevents a larger rule from
being learned. Thus, the information-theoretic
complexity and regularity of the discovered rules
directly reflect the degree of statistical regularity
in the parallel realizations. At the same time, the

6In this case, Polish cannot employ i to encode the i vowel
since i would orthographically combine with the preceding c –
ci encoding a different consonant.

discovered rules themselves provide an elegant
and intuitive avenue for human interpretation.

To quantify the amount of structure that indivi-
dual languages share, we define the shared Des-
cription Length (sDL) of languages Li1 , ...,Lik
as

sDL(Li1 , ...,Lik) :=
∑

π∈Q(Li1
,...,Lik

)

L(π)+L(code(π))

where Q(Li1 , ...,Lik) contains all rules which are
non-empty (i.e. contain symbol sequences) exactly
for languages Li1 , ...,Lik . sDL values quantify the
relative complexity and importance of the rules for
a specific sub-group of languages.

Figure 4 shows sDLs for the CS-PL and RU-BG
models. It reveals that RU diverges more than
BG does from the RU-BG joint description, and
that CS does so for CS-PL. Because we chose
only cognate tuples defined for all four languages
for this experiment, we can also compare the
two language pairs meaningfully. There, we see
that CS-PL requires a larger description, and that
Czech alone takes up a somewhat larger fraction
of total description length.

cs-pl

ru-bg

PL

BG

CS

RU

CS-PL

RU-BG

shared Description Length

Fig. 4. sDLs for Czech-Polish and Russian-Bulgarian.
Total sDLs: CS-PL 1852.43 bits vs. RU-BG 1496.62 bits

The four-way Shared Description Lengths shown
in Figure 5 are a quantification of the simila-
rities between all language sub-sets from our
Czech-Polish-Russian-Bulgarian set. Four-way
sDL is the biggest contributor overall. It quantifies
the prevalence and complexity of the structure
shared by all four languages. Each of the
individual languages have significant overheads to
the four-way shared description length.

Czech is the language with the highest individual
description length. This appears to be caused in
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all CS PL RU BG
RU-BG

CS-PL
PL-RU

PL-RU-BG

CS-PL-RU

CS-PL-BG
PL-BG

CS-RU
CS-BG

CS-RU-BG
0

500

1,000

sh
ar

ed
D

L

Fig. 5. sDLs for Czech-Polish-Russian-Bulgarian

part by the larger alphabet of Czech, stemming
from the large number of diacritically-modified
symbols. For example, every Czech vowel can be
marked as long with the čárka, giving us e.g. é
as long version of e. Investigating the alignments,
we also see that there are a few words where the
Czech cognate has an additional morpheme over
the Polish one, causing series of Czech singletons.

The algorithm furthermore identifies a significant
proportion of correspondences between Czech
and Polish and between Russian and Bulgarian.
The sDLs of these two language pairs are almost
equal, with Russian-Bulgarian slightly outweighting
Czech-Polish at 623.43 bits for CS-PL, 638.87
bits for RU-BG. If we interpret this as evidence
for a significant (disjoint) grouping between the
two languages, there is as much evidence for
grouping Czech and Polish as there is for
grouping Russian and Bulgarian.7 Beyond this, we
identify further, more subtle similarities, many of
them between Russian and other, not-yet-covered
language subsets. This indicates that Russian
very often shares a regular structure with some of
the other languages, possible evidence of either
Russian being a dominant language exerting heavy
influence on the others, or of Russian having
diverged the least from a common ancestor.

Causes of Sub-Group sDLs: If we go back
to our example correspondences in Figure 3,
we can see two different effects that lead to
three-way correspondences: Firstly we see the
already-discussed fragmentation of larger rules
due to differences in entropies of orthographic

7Keep in mind that this is purely on the basis of superficial
word form similarity.

realizations8 (as in specjalny (special)), and
secondly we can observe the influence of
morphological differences. Bulgarian regularly
employs zero endings where the other languages
use non-zero endings, as is the case in miły (nice,
smooth). In the example, this leads to a three-way
correspondence rule (y,ý,ûé, ) between Polish,
Czech, and Russian, which is empty for Bulgarian.

It is easy to see that divergences in phonology,
orthography, morphology, and lexis may all
influence the results of our analyses. If we
were to compare languages with highly similar
derivational morphologies but completely different
lexicons, we would be able to identify only
the corresponding affixes or endings and be
left with single-language rules for the stems.
Likewise, if we were to compare languages that
share their stem lexicon but employ radically
different derivational morphologies, we would be
able to identify correspondences only within the
stems. This indicates that our algorithm in
its current form is perfectly suited for capturing
and assessing the orthographic regularity of
closely-related languages: If we exclude, to
the extent possible, the other factors that may
cause rule fragmentation and use our algorithm to
analyze only words that are morphologically and
phonetically highly regular, then we will be able to
quantify the regularity of the parallel orthographic
realizations of the words.

5 Relation to Previous Work

The previous work most related to ours is
the correspondence-based models presented by
Wettig et al. ([23]) and by Nouri and Yangarber
([14]). Similar to them, we leverage the statistical
regularity present in cognate data to assess
linguistic similarity. Similar to theirs, our algorithm
discovers statistically meaningful correspondence
rules directly from data. Unlike theirs, our model
does not limit the size of correspondences and
allows for direct discovery of correspondences
between any number of languages.

8Rule fragmentation can of course also be due to irregular
phonetic shifts, which may lead to additional entropy in the
orthographic representation.
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Many of the existing approaches that dis-
cover correspondences make strong generative
assumptions in modeling, e.g. via use of Poisson
distributions or Dirichlet processes ([21, 20, 3]).
This imposes unwarranted biases on the distri-
bution and shape of discovered correspondences
and thus precludes objective quantification of
shared structures. In contrast, we forego
imposing assumptions, which allows for objective
quantification of linguistic similarity.

In this work, we focus on correspondences as
a means to the end of quantifying cross-linguistic
similarity. Nonetheless, the algorithm may produce
useful correspondences: a similar model was
recently shown ([8]) to allow for efficient disco-
very of linguistically meaningful correspondences
between pairs of languages, even allowing for
selection of rules at different levels of linguistic
granularity. We have not found this feature in
any of the algorithms we reviewed, which focus
on fixed linguistic granularities motivated either
morphologically ([20]) or phonologically ([21, 3]).

6 Conclusion

We studied the problem of automatically quanti-
fying the amount of structure shared by sets of
languages. We started from the assumption that if
languages are highly related, then they will share a
great deal of their sequential structure. To capture
these sequential structures, we inferred objective
string-level correspondences of arbitrary size from
cognate tuples for arbitrarily many languages and
leveraged their information-theoretic complexity
and regularity for highly detailed analysis of
linguistic similarity. We introduced an MDL-based
approach and an efficient inference algorithm.

Our experiments show that the approach works
well in practice. In our pairwise experiment, we
constructed a sensible phylogeny for the analyzed
Slavic languages. In our four-way experiment,
we showed that our algorithm quantifies similarity
between groups of languages in a highly detailed
fashion and argued that it is ideally suited
to capture the information-theoretic regularity of
parallel orthographic realizations of cognate words.

We are currently undertaking a large-scale
analysis of the orthographic regularity of the Slavic

languages using our approach. In future work, we
will extend our model to account for morphological
differences information-theoretically and to acco-
modate phenomena such as metatheses, in which
sequences of elements may change order.

Acknowledgments

We thank our anonymous reviewers for their
feedback, and Rose Hoberman and Jan-Oliver
Kaiser for proofreading earlier versions of this
paper. This work was supported by the CRC 1102
”Information Density and Linguistic Encoding”,
funded by the German Research Foundation,
and by the Cluster of Excellence ”Multimodal
Computing and Interaction” within the Excellence
Initiative of the German Federal Government.

References

1. Angelov, A. (2004). EuroComSlav Basiskurs - der
panslavische Wortschatz.
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18. Schulz, S., Markó, K., Sbrissia, E., Nohama, P.,
& Hahn, U. (2004). Cognate mapping: A heuristic
strategy for the semi-supervised acquisition of a
spanish lexicon from a portuguese seed lexicon.
Proceedings of the 20th International Conference on
Computational Linguistics, COLING ’04, Association
for Computational Linguistics, Stroudsburg, PA,
USA.

19. Shannon, C. E. (1948). A Mathematical Theory of
Communication. The Bell System Technical Journal,
Vol. 27, No. 3, pp. 379–423.

20. Snyder, B. & Barzilay, R. (2008). Unsupervised
multilingual learning for morphological segmenta-
tion. Proceedings of ACL-08: HLT, Association
for Computational Linguistics, Columbus, Ohio,
pp. 737–745.

21. Snyder, B., Barzilay, R., & Knight, K. (2010). A
statistical model for lost language decipherment.
ACL ’10: Proceedings of the 48th Annual Meeting
of the Association for Computational Linguis-
tics, Association for Computational Linguistics,
pp. 1048–1057.

22. Vereshchagin, N. K. & Vitányi, P. M. B. (2002).
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