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Minimizing the Arrayed Waveguide
Grating Cost and the Optical

Cable Cost in Deploying WDM Passive
Optical Networks

Jingjing Zhang and Nirwan Ansari
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Abstract—We investigate the issue of minimizing
the cost of optical cables and arrayed waveguide grat-
ings (AWGs) in deploying optical distribution net-
works using WDM passive optical networks (PONs).
Generally, when deploying WDM PONs with cascaded
AWGs, increasing the number of stages of cascaded
AWGs decreases the optical fiber costs, but increases
the AWG cost. A proper cascaded AWG structure and
proper connections between AWGs and optical net-
work units are needed to minimize the total cost of
AWGs and optical cables. We decompose the network
planning problem into two subproblems. One is to de-
cide the positions of AWGs and placement of optical
cables to minimize the cost of optical cables. The
other one is to determine the cascaded AWG structure
to minimize the total cost of AWGs and optical cables.
In particular, we propose a recursive partition–
combination-based algorithm to achieve the optimal
trade-off between the AWG cost and the optical cable
cost.

Index Terms—Network planning; WDM PON; AWG.

I. INTRODUCTION

T he WDM passive optical network (PON) is a
future-proof broadband access technology that ex-

ploits the high bandwidth of optical fibers [1–3]. It
generally employs arrayed waveguide gratings
(AWGs) to demultiplex fibers into multiple wave-
lengths, each of which is assigned to one or more sub-
scribers. Owing to their cyclic property, AWGs can be
cascaded to realize the demultiplexing function [4,5].
To realize the same demultiplexing function, there are
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any options in designing cascaded AWG structures.
hese cascaded AWG structures use different sizes
nd numbers of AWGs, hence yielding different AWG
osts [6–9]. In addition, different cascaded AWG struc-
ures are associated with different optical cable place-
ents and may introduce different costs of optical fi-

er cables as well. Generally, increasing the number of
tages of cascaded AWGs used in an optical distribu-
ion network (ODN) decreases the optical cable cost
ut increases the AWG cost. Minimizing the total cost
f cascaded AWGs and optical fibers is an important
ssue for catalyzing the deployment of WDM PON, es-
ecially in deploying long-reach PONs with a broad
overage area with diversified subscriber density [10].

Let us first consider the following example as shown
n Fig. 1(a). The optical line terminal (OLT) is located
t the center of a circle. Four optical network units
ONUs) are uniformly distributed on the circumfer-
nce of the circle. We have two schemes of placing
WGs and optical cables to deliver one wavelength to
ach ONU. The first scheme, as shown in Fig. 1(b), is
o use one 1�4 AWG. This AWG is placed at the cen-
er of the circle and connected to four ONUs by four
ndividual optical fibers. The total length of fiber is 4r,
here r is the radius of the circle. An alternative

cheme is to use cascaded AWGs with three AWGs of
ize 1�2, as shown in Fig. 1(c). Among the three
WGs, one is placed at the center of the circle, and the
ther two are placed between ONUs and the OLT. The
otal length of the optical cable is ��2+�6�r, which is
ess than 4r. As compared with the first scheme, the
econd scheme requires shorter optical cables and
WGs of smaller sizes. However, the number of AWGs

s increased from one to three. The AWG cost of the
econd scheme is probably greater than that of the
rst scheme. Which scheme will yield the minimum
otal cost depends on the radius r (determined by sub-
criber density), optical cable cost, cable deployment
ost, and the cost of AWGs of different sizes. Gener-
lly, there exists a trade-off between the AWG cost and
he optical cable cost.
2009 Optical Society of America
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The problem of planning an ODN using a WDM
PON can be generally described as follows: given the
geometric positions of the OLT and ONUs as well as
the price of AWGs and optical fiber cables, minimize
the total cost of AWGs and optical fiber cables by se-
lecting AWGs of proper sizes, finding suitable loca-
tions for AWGs, and placing optical cables properly.
Formerly, many works concentrated on planning
PONs with the minimum optical cable cost [11–13].
Without considering the AWG cost, this problem is re-
ducible to the Euclidean Steiner tree problem, which
is proved NP-hard [14]. Besides the link cost consid-
ered in the Steiner tree problem, the node cost of
AWGs has to be taken into consideration as well in
solving the optimization problem. In this paper, we
concentrate on optimizing the trade-off between the
AWG cost and optical fiber cable cost instead of focus-
ing on solving the Steiner tree problem. In particular,
we consider the network planning problem in the sce-
nario in which existing constructions can be utilized.
Since most of the areas were deployed with construc-
tions for other service infrastructures, e.g., cable TV
service, utilizing these existing constructions can save
the expensive conduit deployment cost [11,15,16]. We
assume that the existing construction forms a tree
structure with the OLT as the root, and subscribers
are distributed along the tree.

In this paper, we employ a divide-and-conquer
strategy to optimize the trade-off between the AWG
cost and the optical cable cost. Generally, the problem
can be divided into two subproblems. First, given a
cascaded AWG structure, minimize the optical fiber
cable cost by properly placing AWGs and optical
cables; this is referred to as Problem 1, which can be
further divided into two subproblems: determine the
subscribers connected to each AWG, and decide geo-
metric locations of AWGs. The two subproblems are
referred to as Problems 1.1 and 1.2, respectively,
where Problem 1.1 is NP-hard. After solving Problem
1, each cascaded AWG structure will be associated
with a minimum optical cable cost. The remaining
problem is to determine the cascaded AWG structure
with the minimum total cost of AWGs and optical
cables; this is referred to as Problem 2. For the AWG

Fig. 1. (Color online) Simple example
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
ost, the most economic scheme is to use one big-size
WG for all subscribers. However, this incurs a high
ptical cable cost, since each subscriber needs at least
ne individual optical fiber cable to connect to the
WG. The alternatives are using multistage cascaded
WGs of smaller sizes. In this case, the optical cable
ost is reduced at the sacrifice of increasing the AWG
ost, as shown in the example discussed before. To de-
ermine the best trade-off, one scheme is to list all cas-
aded AWG structures and then calculate the total in-
urred costs for each of them. However, this scheme is
ime consuming, since the number of combinations in-
reases exponentially with the increase of subscribers.
n efficient algorithm is greatly needed to solve Prob-

em 2.

The contributions of this paper include the follow-
ng: a) we propose to apply heuristic tree-partitioning
lgorithms to determine ONUs connected to each
WG in solving Problem 1.1; b) for Problem 1.2, we
lace AWGs into proper locations in the tree to mini-
ize the cost of optical fiber cables; c) we propose a re-

ursive partition–combination algorithm to avoid the
xhaustive search of every combination of AWGs in
ddressing Problem 2. We assume that each ONU
ses one wavelength for upstream and one for down-
tream data transmission. The upstream and down-
tream wavelengths of an ONU will be routed to the
ame output port of an AWG and be delivered in a
ingle bidirectional fiber. The upstream signal and
ownstream signals are separated by a circulator or a
avelength filter at the ONU side. The proposed

cheme in this paper can be easily tailored to the case
ith each subscriber using any number of wave-

engths and any number of optical fibers. It can also
e applied to the planning of TDM PONs and hybrid
DM/TDM PONs.

The rest of the paper is organized as follows. In Sec-
ion II, we discuss the AWG device as well as the cas-
aded AWG structure. Section III presents the prob-
em formulation. Section IV covers our proposed
lgorithms in detail. Section V presents the analysis
f our proposed algorithms. Concluding remarks are
iven in Section VI.

e AWG cost and the optical cable cost.
of th
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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II. CASCADED AWGS

In this section, we discuss cascaded AWG structures
as well as their costs in detail.

A. Cascaded AWGs

An AWG is used to realize the demultiplexing func-
tion in the WDM PON [4]. Figure 2(a) illustrates the
prototype of a typical N�N AWG. Let N be the num-
ber of AWG ports, W be the number of wavelengths in
one fiber, and �1 ,�2 , . . . ,�W be the working wave-
lengths of the AWG device. These wavelengths are
equally spaced. Signals in the AWG are cyclically
routed with the rule that wavelength �f from input i is
routed to output mod�i−2+ f ,N�+1.

Owing to the cyclical property of AWGs, multiple
wavelengths can be routed to a single fiber, thus facili-
tating AWG cascading. Maier et al. [6] analyzed the
cascaded AWG structure in detail. Figure 2(b) shows a
general cascaded AWG structure.

Let vectors (in, out) describe the demultiplexing ca-
pability of any cascaded AWG structure, where in is
the number of input ports of AWGs in the first stage,
and out is the number of output ports of AWGs in the
last stage. In terms of PON, let F be the number of op-
tical fibers from the OLT, N be the number of sub-
scribers, and W be the number of wavelengths in the
fiber at the OLT. Then, for the cascaded AWG em-
ployed in the PON, the number of input ports in
equals F, and the number of output ports out should
be no less than N. Since each ONU needs two wave-
lengths, one for upstream and one for downstream
transmission, the total number of wavelengths of all
optical fibers at the OLT F�W should be no less than
2N, i.e., F�W�2N. Let K be the number of stages, nk
be the number of AWGs in stage k, and ink and outk be
the number of used input ports and output ports of
AWGs in stage k, respectively. Then,

Fig. 2. (Color online) Abstracted functionality of a typical AWG.
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
• for the first stage 1,

in1�n1 = F; �1�

• for any intermediate stage k,

outk � nk = ink+1 � nk+1; �2�

• for the last stage K,

outK � nK � N, where 2N � F � W. �3�

In this paper, we assume that the AWGs support 2,
, 8, 16, 32, and 64 ports, which are the most popular
izes commercially available. We specifically use
qually spaced input ports so that channels in each
utput port of these AWGs are equally spaced, thus fa-
ilitating further cascading.

To realize the same demultiplexing functionality,
ifferent AWG combinations can be employed. Figure

shows two examples of equal-function cascaded
WGs with different costs. The structure as shown in
ig. 3(a) uses one AWG with size 2�4, whereas the
tructure as shown in Fig. 3(b) uses two AWGs, each of
hich is of size 1�2. Both of these two architectures
emultiplex wavelengths from two fibers into four fi-
ers. In Figs. 3(c) and 3(d), wavelengths in one fiber
re demultiplexed into four fibers. The structure as
hown in Fig. 3(c) uses one AWG with size 1�4,
hereas the structure as shown in Fig. 3(d) uses two-

tage cascaded AWGs, where the AWG with size 1�2
n the first stage is connected to two AWGs with size
�2 in the second stage. For the two cascaded AWG
tructures with the same demultiplexing functional-
ty, besides the differences in the number and sizes of
WGs, they may also differ in the coarseness of em-
loyed AWGs. Coarseness, defined as the number of
ontiguous wavelength channels routable on the same
utput ports, characterizes the optical resolution of
he AWG [6]. AWGs in Fig. 3(a) and 3(b) have the
ame coarseness with one wavelength channel, and
WGs in Fig. 3(c) and 3(d) can have different coarse-
ess. The coarseness of the AWG in Fig. 3(c) is with
ne wavelength, whereas, in Fig. 3(d), the coarseness

Fig. 3. (Color online) Equal-function cascaded AWGs.
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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of the AWGs in the second stage can be increased to
two contiguous wavelength channels for lower reso-
lution.

B. Cost of Cascaded AWGs

Different AWG combinations can realize the same
demultiplexing function. However, they introduce dif-
ferent costs. In this paper, we assume the price of an
AWG is a function of the number of its output ports.
Let p�x� be the price of AWG with x ports; p�x� pos-
sesses the following properties:

• The larger the number of AWG ports, the higher
the price of the AWG, i.e.,

p�x� � p�y�, ∀ x � y. �4�

• The larger the number of AWG ports, the smaller
the price per port, i.e.,

p�x�/x � p�y�/y, ∀ x � y. �5�

For the structures shown in Fig. 3, the one in Fig.
3(a) costs p�4�, the one in Fig. 3(b) costs 2�p�2�, the
one in Fig. 3(c) costs p�4�, and the one in Fig. 3(d)
costs 3�p�2�. Based on these two assumptions, AWGs
in Figs. 3(a) and 3(c) cost less than those in Figs. 3(b)
and 3(d), respectively.

For the cascaded AWGs employed in the PON, nK
�p�outK� is the AWG cost in the last stage; inK�nK
�p�outK−1� /outK−1 is the AWG cost in the stage before
the last; and by recursion, the AWG cost in stage k is
nK�outK� ��k+1

K ini /outi��p�outk� /outk. Then, the to-
tal AWG cost is

nK � outK � �
k=1

K ��
k+1

K ini

outi
�

p�outk�

outk
�. �6�

Based on the assumption of prices as shown in Eqs.
(4) and (5), as well as the constraints of the cascaded
AWG structure as shown in Eqs. (1)–(3), minimizing
Eq. (6) requires that the number of output ports of the
AWGs, outk, should be as large as possible. From the
assumption of the AWG port number, we further de-
rive the following regarding the AWG cost in cascaded
AWGs:

• To demultiplex in fibers into out ONUs, the cost
of cascaded AWGs is minimized by using one
large AWG of size in�out.

• To demultiplex one fiber into out ONUs, the sec-
ondary choice is a two-stage cascaded AWG con-
sisting of two AWGs of size 1�out /2 plus one
AWG of size 1�2.

• To demultiplex in �in�2� fibers into out ONUs,
the secondary choice is using two AWGs with size
in /2�out /2.

These properties will be incorporated into our pro-
posed algorithm.
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
III. PROBLEM FORMULATION

In this section, we describe and mathematically for-
ulate the problem of planning the ODN to minimize

he cost of AWGs and optical cables. The general prob-
em of ODN planning can be formulated as follows:

Given the number of optical cables at the OLT, the
avelengths to be demultiplexed, the number of
NUs as well as their geometric locations, the num-
er of wavelengths required by each ONU, the price of
WGs, and the price of optical cables,

Obtain the cascaded AWG architecture, the posi-
ions of AWGs, and the placement of optical cables.

Objective: minimize the total cost of AWGs and op-
ical cables.

Without considering the AWG cost, the problem of
inimizing the total length of links connecting the
LT and ONUs in greenfield planning is reduced to

he Euclidean Steiner tree problem, which is proved to
e NP-hard [14]. In this paper, we do not focus on solv-
ng the Steiner tree problem. Since most of the areas
ave been deployed with constructions for other ser-
ice infrastructures, e.g., cable television [16], we uti-
ize these existing constructions and do not consider
he expensive deployment cost. We assume that the
xisting construction forms a tree structure with the
LT as the root. ONUs are distributed along the
dges of the tree. This tree is referred to as a “con-
truction tree” in this paper. Our focus is to place
WGs and optical cables over the construction tree to
ptimize the trade-off between the AWG cost and the
ptical cable cost. The greenfield planning will be ad-
ressed in our future work.

Given the tree topology, the problem is reduced to
eciding the cascaded AWG structure as well as the
ositions of AWGs and the placement of optical cables.
his problem can be mathematically formulated as

ollows:

Given
1) T, the construction tree formed by the existing

constructions;
2) N, the number of ONUs;
3) F, the number of optical cables at the OLT;
4) W, the number of wavelengths in optical cables

(where F�W should be no less than 2N to guar-
antee enough wavelengths be supplied to
ONUs);

5) The geometric positions of ONUs;
6) p�x�, the price of the AWG with x ports, where x

equals 2, 4, 8, 16,…;
7) q�x�, the unit price of optical cables containing x

optical fibers;

Obtain
1) K, the number of stages of cascaded AWGs;
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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2) ink, the number of input ports of AWGs at stage
k;

3) outk, the number of output ports of AWGs at
stage k;

4) The positions of each AWG;
5) The connections between AWGs and ONUs, con-

nections among AWGs, and connections between
AWGs and OLT.

Objective:
1) minimize��AWG cost+�optical cable cost�

Subject to
1) Each ONU is assigned with two wavelengths.

The solution of this problem is presented next.

IV. MINIMIZE THE TOTAL COST OF AWGS AND OPTICAL
CABLES

In this section, we discuss strategies to minimize
the total cost of AWGs and optical fiber cables. We de-
compose the original problem into two subproblems.
First, given a cascaded AWG structure, we place
AWGs into proper positions and connect them to
proper ONUs to minimize the optical cable cost. Then,
each cascaded AWG structure is associated with an
optical cable cost as well as an AWG cost. The second
problem is to derive the cascaded AWG structure that
yields the minimum total cost of AWGs and optical
cables. The former problem is referred to as Problem
1, whereas the latter problem is referred to as Prob-
lem 2. The solution of Problem 1 determines the solu-
tion of Problem 2. Figure 4(a) shows the decomposi-
tion of the original problem. We next discuss these two
problems in detail.

A. Minimize the Optical Cable Cost for a Given
Cascaded AWG (Problem 1)

Given the positions of the OLT and subscribers, as
well as the cascaded AWG structure, AWGs need to be

Fig. 4. (Color online) Decomposition of the problem.
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
onnected with proper ONUs and placed at proper po-
itions to minimize the optical cable cost.

We refer to the AWG connected directly to subscrib-
rs as the “distribution AWG,” otherwise as the “inter-
ediate AWG.” ONUs are connected to distribution
WGs by optical cables. Distribution AWGs are con-
ected to intermediate AWGs or the OLT by optical
ables. These deployed optical cables form a tree
tructure with the OLT as the root and ONUs as the
eaves. This tree is referred to as the “optical cable
ree.” Note that the optical cable tree is built on the
onstruction tree. The vertex set of the optical cable
ree is a subset of the vertex set of the construction
ree. The edge connecting �u ,v� in the optical cable
ree is actually the route connecting vertex u and ver-
ex v in the construction tree. Figures 5(a) and 5(b) il-
ustrate an example of the construction tree and the
ptical cable tree, respectively. In Fig. 5(a), 16 ONUs
re distributed along the construction tree. In Fig.
(b), a two-stage cascaded AWG structure is used to
emultiplex wavelengths to 16 ONUs. The AWG in the
rst stage as well as those four AWGs in the second
tage are all of size 1�4. The AWG in the first stage is
onnected to AWGs in the second stage by optical
ables. AWGs in the second stage are connected to
NUs by optical cables.

Each AWG is connected to some ONUs or AWGs by
ptical cables. Figure 5(c) shows five subtrees corre-
ponding to five AWGs and their respective children
s shown in Fig. 5(b). The total optical cable cost is the
um of the optical cable cost in all subtrees. Given an
WG, the cost of optical cables connecting to this par-
icular AWG with its children can be derived as fol-

ig. 5. (Color online) Example of construction tree, optical cable
ree, and subtrees associated with AWGs.
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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lows. Let the AWG be designated as the root of the
subtree formed by the AWG and its children. The fol-
lowing can be derived for the optical cable cost.

Assume u and v are two vertices of the subtree. Let
��u ,v�� be the length of edge �u ,v�, and w�u,v� be the
weight of edge �u ,v�. Without loss of generality, as-
sume u is the parent node of v. w�u,v� is defined as the
number of child nodes of node v. It implies that w�u,v�
optical fibers have to be placed on edge �u ,v� for w�u,v�
children. Each of the fibers is a bidirectional fiber de-
livering both upstream and downstream signals.
Then, the cost of optical cables in the subtree t for this
particular AWG is

�
�u,v��E�t�

q�w�u,v����u,v��. �7�

Here, E�t� denotes the set of edges of tree t. Figure
6(a) shows one example of weights of edges in a sub-
tree. Assume all edges are of equal length of 1; the to-
tal optical cable cost is 5q�1�+q�2�+q�3�.

Equation (7) describes the cost of optical cables in
the subtree constituted by one AWG and its children.
Each AWG is associated with a subtree constituted by
the AWG itself as well as its children. Let m be the
number of AWGs. The total optical cable cost is

�
i=1

m

�
�u,v��E�sti�

q�w�u,v����u,v��. �8�

Then, the problem of minimizing the optical cable
cost is equivalent to minimizing Eq. (8). If q�x�
=1 ∀x, the problem is reduced to the tree-
partitioning problem [17], which is NP-complete. So,
the problem with any q�x� is NP-complete.

Fig. 6. (Color online) Example of weights of edges and an example
of tree partitioning.
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
To solve this problem, we decompose it into two sub-
roblems: determine children connected to each AWG,
nd decide the geometric position for each AWG. The
wo problems are referred to as Problems 1.1 and 1.2,
espectively. Figure 4(b) shows the decomposition of
roblem 1:

In the following, we discuss Problems 1.1 and 1.2 in
etail.

1) Tree Partition (Problem 1.1). Specifically, Problem
.1 is to partition the construction tree into subtrees
ith the objective of minimizing the total link length
f the optical cable tree:

�
i=1

m

�
�u,v��E�sti�

��u,v��. �9�

As compared with Problem 1 of minimizing Eq. (7),
roblem 1.1 disregards the weight of each edge.

Since the number of ONUs is usually much greater
han the number of AWGs, the cost of optical cables
or connections between ONUs and distribution AWGs
ar exceeds that for connections between AWGs. In
olving Problem 1.1, we focus on minimizing the total
ptical cable cost of the subtrees associated with dis-
ribution AWGs, but disregard that of subtrees associ-
ted with intermediate AWGs. The problem of parti-
ioning construction tree T into subtrees associated
ith distribution AWGs is formulated as follows:

Given an ONU set V and the construction tree T,

Obtain a partition V1 ,V2 , . . . ,Vm, where m is the
umber of distribution AWGs, Vi�Vj=�, ∀i� j.

Objective: minimize��i��u,v��E�sti�
��u ,v���, where sti is

he subtree formed by Vi ∀i.

This tree-partitioning problem is proved NP-
omplete [17]. Many proposed heuristic algorithms,
uch as the bottom-up algorithm [18], can be em-
loyed to solve this problem. Figure 6(b) shows one ex-
mple of tree partitioning.

2) AWG placement (Problem 1.2). The above dis-
ussed solution of Problem 1.1 determines leaves of
ach subtree. Problem 1.2 is to decide geometric posi-
ions for the root of each subtree. Actually, Problem
.2 is equivalent to the minimization problem with the
ollowing objective:

�
�u,v��E�sti�

q�w�u,v����u,v�� ∀ i. �10�

As compared with Problem 1 of minimizing Eq. (7),
roblem 1.2 focuses on minimizing the optical cable
ost of one subtree only. We begin from minimizing the
ost of optical cables connecting ONUs and distribu-
ion AWGs.

The optical cable cost of a particular subtree, as de-
cribed in Eq. (10), depends on the lengths and
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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weights of its edges. Since the lengths of edges in the
subtree are determined by solving Problem 1.1, we
want to adjust the weights of edges so as to minimize
the optical cable cost of the subtree. The weights of
edges will be different when different vertices are des-
ignated as the root of the subtree, where the AWG is
placed. The problem is equivalent to assigning a
proper vertex as the root of a subtree to minimize the
optical cable cost. Our method is to designate the cen-
troid of a subtree as its root, which is defined as fol-
lows.

Definition 1. Given a tree T= �V ,E� with n vertices,
let st1 ,st2 , . . . ,stm be the generated subtrees after re-
moving vertex v. Vertex v is referred to as the centroid
of the tree if �sti��n /2 , ∀ i.

In Fig. 7(a), both vertex c and vertex d are centroids
of the tree. In Figs. 7(b) and 7(c), vertex d is the cen-
troid of the tree.

The centroid of the tree possesses the following
property.

Property 1. Given the tree consisting of ONUs to be
connected to one AWG, the centroid of the tree is the op-
timal position for the AWG to yield the minimum opti-
cal cable cost.

Proof: For any two vertices, u, v, �u ,v��E, let the
size of subtrees generated by removing u be
st1 ,st2 , . . . ,stm. Without loss of generality, assume that
v is in subtree st1. If the AWG is placed at u, the num-
ber of fibers in �u ,v� equals �st1�; if the AWG is placed
at v, the number of fibers in �u ,v� equals �i=2

m �sti�; for
the above two placement schemes, the fiber place-
ments are the same in all the other edges except edge
�u ,v�. So, v is preferred over u for a lower optical cable
cost if and only if �i=2

m �sti�� �st1�. In other words, when
there is no subtree i satisfying �sti���j�i�stj�, the cor-
responding vertex is the optimal position of AWG,
which is the centroid of the tree.

In Fig. 7(b), the AWG is placed into vertex c. The op-
tical cable in edge �c ,d� has to contain three optical fi-
bers. In Fig. 7(c), the AWG is placed into vertex d. The
optical cable in edge �c ,d� contains two optical fibers.

Fig. 7. (Color online) Centroid of trees.
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
ence, vertex c is preferred over vertex d for the AWG
osition. Actually, vertex d is the centroid of the tree,
hich is the optimal position for the AWG.

Hence, for the network as shown in Fig. 7(a), the
WG can be placed at any point between vertex c and
ertex d. For the network as shown in Fig. 7(b) and
(c), the AWG can be placed at vertex d.

By using the same method, the positions of interme-
iate AWGs can be decided as well.

By solving Problems 1.1 and 1.2, we have therefore
olved Problem 1 of minimizing the optical cable cost
or a given cascaded AWG structure. We continue to
olve Problem 2 of deciding the cascaded AWG struc-
ure with the minimum total cost.

. Decide the Cascaded AWG Structure With the
inimum Total Cost (Problem 2)

Each cascaded AWG structure is associated with
wo kinds of costs. One is the AWG cost. The other one
s the minimum optical cable cost connecting the OLT,
WGs, and ONUs, which is the objective of Problem 1.
o derive the cascaded AWG structure with the mini-
um total cost of AWGs and optical cables, one way is

o calculate the total cost of every possible AWG com-
ination and then select the right one. However, the
umber of AWG combinations possesses the following
roperty.

Property 2. Let N�x� be the number of AWG combi-
ations that demultiplex one fiber into x ONUs; i.e.,
he demultiplexing capability has to be �1,x�. Then,
�2k�= 	N�2�k−1��
21

+ 	N�2�k−2��
22
+ . . .+	N�1�
2k

.

Proof: If the AWG in the first stage is of size 1�2i,
he demultiplexing capability of the remaining stages
onnecting to each of the 2i output ports has to be
1,2k−i�. The number of combinations for this particu-
ar i is 	N�2�k−i��
2i

; i ranges from 1 to k. Hence, the
roperty is proved.

As we can see, the number of combinations in-
reases exponentially with the increase of subscribers.
e have to minimize the total cost of AWGs and opti-

al cables over all cascaded AWG structures to solve
roblem 2. However, the minimum optical cable cost
ssociated with one cascaded AWG structure is deter-
ined by the solution of Problem 1. Problem 1 further

nvolves Problem 1.1, which is an NP-hard problem.
ence, the total cost cannot be expressed as an ex-
licit function of given AWGs and network param-
ters. It is difficult to apply existing integer program-
ing methods such as Lagrangian relaxation to

btain the optimal solution. To solve Problem 2, one
ay is to exhaustively search every combination of
WGs, which requires high computational effort. In-
tead, we propose a heuristic algorithm referred to as
ecursive partitioning–combination to acquire a near-
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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optimal solution. Recursive partitioning–combination
first determines the sizes of distribution AWGs by re-
cursively decreasing the sizes of distribution AWGs
and recursively partitioning the tree accordingly.
Then, recursive partitioning–combination decides the
sizes and stages of intermediate AWGs by recursively
increasing the sizes of intermediate AWGs and com-
bining the trees accordingly.

1) Decide sizes of distribution AWGs. Regarding the
optical cable cost, Eq. (7) states that a small cost re-
quires small weights of edges; this implies a small size
of the subtree. Hence, decreasing the sizes of the sub-
trees reduces the optical cable cost. In terms of the op-
tical cable cost, distribution AWGs of small sizes are
preferred over those of large sizes. However, the quan-
tity of AWGs will be large if AWGs of small sizes are
used, thus implying a high cost of AWGs. Which sizes
of AWGs will yield the minimum total cost depends on
the price of AWGs, optical cables, and subscriber den-
sity, as illustrated by the example shown in Fig. 1. We
recursively partition the construction tree T and de-
crease sizes of AWGs to reach the optimal solution.

For any given tree, we consider the cascaded AWG
structure (A) with the minimum cost and the cascaded
AWG structure (B) with the secondary minimum cost.
We can calculate the minimum required optical cable
costs for (A) and (B), respectively. If (B) yields a
smaller total cost than (A), check the subtrees corre-
sponding to distribution AWGs in (B); this procedure
is repeated until the cost of (B) exceeds that of (A). We
define two kinds of partition: horizontal and vertical.
In the horizontal partition, one large AWG with x�y
is replaced by two parallel AWGs with smaller sizes of
x /2�y /2, e.g., from Fig. 3(a) to Fig. 3(b). In the verti-
cal partition, one AWG with size 1�y is replaced by a

Fig. 8. (Color online) Recursive partitioning and recursive
combination.
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
wo-stage cascaded AWG with smaller sizes of 1�2
nd 1�y /2, e.g., from Fig. 3(c) to Fig. 3(d). Algorithm
describes the procedure in detail. Figure 8(a) shows

ne example of the recursive partitioning process. In
he horizontal partition, an AWG with the size of 2
32 is decomposed into two AWGs with the size of 1
16. In the vertical partition, one AWG with the size

f 1�16 is decomposed into three AWGs with the sizes
f 1�2, 1�8, and 1�8.

lgorithm 1. Recursive Partition

L= t, t is initialized as the tree connecting all ONUs
while L�� do

for and t�L do
A ª the cascaded AWGs structure with the minimum

cost;
B ª the cascaded AWGs structure with the secondary
minimum cost;
calculate the cable cost for A, and denote the total cost
as C1;
Partition tree t into two subtrees t1 and t2, calculate
the cable cost for B, and denote the total cost as C2;
if C2�C1 then

accept the partition;
L=L� �t1 , t2�

else
reject the partition;

end if
L=L\ t

end for
end while

2) Decide sizes and stages of intermediate AWGs. Af-
er the above recursive partitioning process, distribu-
ion AWGs are connected to OLT via intermediate
WGs with the size 1�2. We then optimize the sizes
nd stages of intermediate AWGs by recursive combi-
ation. Specifically, these 1�2 AWGs are combined

nto AWGs with bigger sizes from the last stage to the
rst stage. Similar to the partitioning process, two
ypes of combinations are defined: horizontal combi-
ation and vertical combination. The horizontal and
ertical combinations are the reverse processes of the
orizontal and vertical partition, respectively. Algo-
ithm 2 describes the recursive combination process.

Figure 8(b) shows one example of the recursive com-
ination process. In the vertical combination, two-
tage cascaded AWGs of size 1�2 are combined into
ne-stage AWGs of size 1�4. In the horizontal combi-
ation, two AWGs of size 1�4 are combined into one
WG of size 2�8.

We have solved Problems 1 and 2 in the above. We
ill next analyze the factors affecting the recursive
artitioning and combination process.
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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Algorithm 2. Recursive Combination

t is initialized as the tree composed of 1�2 AWGs after
partition
% vertical combination
while t has leaves do

a ª the deepest leaf of t; b ª the sibling of a; c ª the
parent of a;
C1 ª the cost of the tree comprised of a, b, c;
C2 ª the cost of the tree if a, b, c are combined;
if C2�C1 then

accept the combination;
end if
t ª t\ �a ,b�

end while
%Horizontal combination
for roots of each tree do

for AWGs of the same size do
compare the total cost of combining and not combining
decide whether to combine or not

end for
end for

V. ANALYSIS AND SIMULATION

In the above, we employ the divide and conquer
strategy to decompose the problem of minimizing the
trade-off between the optical fiber cost and the AWG
cost into Problems 1 and 2. Problem 1 is further de-
composed into Problems 1.1 and 1.2. Problem 1.1 is an
NP-hard problem. Problem 1.2 is an easy problem,
which we have solved successfully in Subsection IV.A.
Problem 2 depends on the solution of Problem 1. To
avoid using the exhaustive search, we have employed
recursive partitioning and combination to solve Prob-
lem 2. The solution to Problem 2 depends on many fac-
tors, such as the shape of the construction tree, the
distribution of ONUs along the tree, the price of AWGs
with different numbers of ports, and the price of opti-
cal cables with different numbers of fibers.

In the following, we consider two kinds of construc-
tion tree shapes to investigate the performance of re-
cursive partitioning and combination.

A. Case 1: Construction Tree T Restricted to a Line

In the first case, we consider the scenario in which
the construction tree is restricted to a line and ONUs
are uniformly distributed along the tree, as shown in
Fig. 9(a).

1) Analysis. Define l as the length of the construc-
tion tree t, m as the number of ONUs distributed
along the line, and a, the density, as the number of
ONUs per unit length. Then, m= l�a. One scheme is
to use one AWG of size 1�m with cost p�m�. This
AWG is put in the center of the construction tree to
minimize the optical cable cost, as shown in Fig. 9(b).
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
onsider the continuous scenario, at point �, which is
away from the centroid of t; the number of optical

bers should be able to satisfy the requests from
l /2−x�a subscribers, which are further from the cen-
roid of t than � is [see Fig. 9(a)]. The number of opti-
al fibers at point � is �l /2−x�a. The cost of optical
ables is therefore 2
0

l/2q��l /2−x�a�dx. The total cost is
hen p�m�+2
0

l/2q��l /2−x�a�dx.

Another scheme is to use a two-stage cascaded
WG. The AWG in the first stage is of size 1�2, and
he two AWGs in the second stage are of size 1�m /2,
s shown in Fig. 9(c). The AWG cost is p�2�+2p�m /2�.
he cost of optical cables connecting one AWG of size
�m /2 and ONUs is 2
0

l/4q�a�l /4−x��dx. The cost of
ptical cables connecting the AWG in the first stage
nd AWGs in the second stage is q�1�� l /2. The total
ptical cable cost is 4
0

l/4q�a�l /4−x��dx+q�1�� l /2. The
um of the cost of AWGs and that of optical cables is
�2�+2p�m /2�+4
0

l/4q�a�l /4−x��dx+q�1�� l /2.

With � denoting the extra cost introduced by the
econd scheme as compared with the first scheme,
hen

� = p�2� + 2p�m/2� − p�m� + 4�
0

l/4

q�a�l/4 − x��dx

− 2�
0

l/2

q�a�l/2 − x��dx + q�1�l/2. �11�

If ��0, the first scheme is preferred; otherwise, the
econd scheme is preferred. ��� depends on the AWG
rice and optical cable price.

Assume that the AWG price with x ports is c1�xr1,
here 0�r1�1. It can be easily verified that the price

onforms with constraints (4) and (5). Regarding the
rice of optical cables, we assume the unit price of op-
ical cable with x fibers is c2�xr2, where 0�r2�1. If
2=0, the optical cable cost is the same regardless of
he number of contained optical fibers; if r2=1, the op-
ical cable cost is proportional to the number of con-
ained optical fibers. We prove that recursive parti-
ioning can achieve the optimal distribution AWG size
n this specific case.

ig. 9. (Color online) Case 1: the construction tree is restricted to a
ine.
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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Theorem 1. The proposed recursive partitioning
can obtain the optimal distribution AWG size under
the condition that 1) the construction tree forms a line,
2) ONUs are uniformly distributed along the line, 3)
the price of an AWG with x ports is c1xr1 �0�r1�1�,
and 4) the price of optical cable with x fibers is c2xr2

�0�r2�1�.

Proof: Denote tree t as the tree associated with a
distribution AWG. We prove that if replacing this dis-
tribution AWG by two distribution AWGs and parti-
tioning tree t into two subtrees does not decrease the
total cost, then any other partition will not yield a
smaller cost. In this case, recursive partitioning will
not miss any partition that can yield a smaller cost.
For tree t with length l and a� l ONUs, employing one
AWG with size 1�al yields the total cost of c1�al�r1

+c22−r2ar2lr2+1 / �r2+1�. Partitioning the tree into two
subtrees yields the total cost of c12r1+c1�al�r121−r

+c2l /2+c24−r2ar2lr2+1 / �r2+1�. � equals c12r1

+c1ar1�21− r−1�lr1 + c2l /2 − c2�2−r2 − 4−r2�ar2lr2+1 / �r2 +1�.
Considering � a function of the length l, we prove that
��l /2� must be greater than zero if ��l��0:

��l/2� = c12r1 + c1ar1�21−r − 1�lr1/2r1 + c2l/4

− �2−r2 − 4−r2�c2ar2lr2+1/	�r2 + 1�2r2+1


=
1

2r2+1 	c12r1+r2+1 + c1ar1�21−r − 1�lr12r2+1−r1

+ c2l2r2−1 − c2�2−r2 − 4−r2�ar2lr2+1/�r2 + 1�


�
1

2r2+1 	c12r1 + c1ar1�21−r − 1�lr1 + c2l2−1 − �2−r2

− 4−r2�c2ar2lr2+1/�r2 + 1�
 = 1/2r2+1��l� = 0. �12�

��l /2� is the additional cost introduced by further par-
titioning a subtree of tree t. ��l /2��0 implies that fur-
ther partitioning will not yield a smaller cost. We
thereby prove that recursive partitioning can obtain
the optimal distribution AWG.

2) Simulations. In the simulations, we show the im-
pact of the number of ONUs, the AWG price, and the
optical cable price on the total cost. We assume the
length of the construction line equals 40 km, and the
OLT is located at the center of the construction line.

Figure 10 shows the total cost of AWGs and optical
cables with different numbers of ONUs. The unit price
of an AWG with x ports equals 800x0.4 dollars. The
price of the optical cable with x fibers equals 1000x0.7

dollars per kilometer.

Figure 10 illustrates three kinds of costs: the cost
before partitioning, the cost after partitioning, and
the cost after combination. Before recursive partition-
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
ng, we use one single AWG to demultiplex wave-
engths to all ONUs. For each ONU, one individual bi-
irectional fiber is required to connect it with the OLT.
he high fiber cost results in a large total cost. After
artitioning, the single large AWG is replaced by mul-
istage cascaded AWGs. Rather than using an indi-
idual optical fiber to connect each ONU with the
LT, multiple ONUs can share one fiber. The sharing
ill reduce the optical cable cost, thereby resulting in

he reduction of the total cost. It is shown that the to-
al cost drops dramatically after partitioning when
he number of ONUs is greater than eight. The total
ost reduction with a large number of ONUs is more
ignificant than that with a small number of ONUs.
his implies that partitioning more likely occurs with
large number of ONUs. This is attributed to the fact

hat the number of ONUs sharing one fiber will be
arge if the total number of ONUs is large; this saves a
arge quantity of individual fibers connected to the
LT and yields a large cost reduction. Recursive com-
ination is to optimize the intermediate AWGs as well
s their associated optical cable connections. It is
hown that recursive combination can decrease the
ost a little when the number of ONUs equals 256 and
12. When the number of ONUs is less than 256, re-
ursive combination does not further decrease the
ost, implying that the 1�2 intermediate AWGs are
ot further combined under these cases. As compared
ith recursive partitioning, recursive combination
as a much smaller effect in the process of minimizing
he total cost. There are two major reasons for this
henomenon. First, the intermediate AWGs are of size
�2. AWGs with smaller sizes have smaller costs.
ombining them further will not yield much cost re-
uction. Second, intermediate AWGs are located at
he centroid of their corresponding subtrees, which
re usually disjoint. The distance between two inter-
ediate AWGs is relatively large as compared with

he distance between distribution AWGs and their as-
ociated ONUs. A large distance results in a large cost
ncrease if combination is performed. Hence, the inter-

ediate AWGs are less likely to be combined.

ig. 10. (Color online) Total cost versus the number of ONUs;
imulation conditions: p�x�=800x0.4, q�x�=1000x0.7.
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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Figure 11 shows the impact of the AWG price on the
total cost. The number of ONUs is set as 512. The
price of the optical cable with x fibers equals 1000x0.7

dollars per kilometer. We observe the variation of the
total cost by varying r1 from 0.1 to 0.9 with an incre-
ment of 0.1, and c1 from 700 to 1500 with an incre-
ment of 200. The AWG cost is high with large r1.
Hence, the total cost increases with the increase of r1
as shown in Fig. 11. It is also shown that the total cost
increases faster than the linear increase of r1. This is
because the AWG price c1xr1 increases exponentially
with respect to r1. On the other hand, since the AWG
price increases linearly with c1, the total cost in-
creases approximately linearly with c1 as shown in
Fig. 11.

Figure 12 shows the impact of the optical cable price
on the total cost. The number of ONUs is set as 512.
The unit price of an AWG with x fibers equals 8000.4

dollars. Again, we vary r2 from 0.1 to 0.9 with an in-
crement of 0.1, and c2 from 700 to 1500 with an incre-
ment of 200 to observe the variation of the total cost.
Figure 12 shows that the total cost increases with the
increase of r2 and c2. This is bcause the optical cable
cost increases with the increase of r2 and c2. However,
unlike the case of the AWG price, the faster than lin-
ear increase of the optical cable price with respect to
r2 does not result in a faster than linear increase of
the total cost. If the tree is partitioned in the same
way for scenarios with different r2, the AWG costs are
the same, and the optical cable cost is a linear combi-
nation of several exponential functions of r2. The in-
crease in the total cost must be at a faster than linear
pace of r2. Hence, the slower pace of increase of the to-
tal cost must be due to the encouragement of parti-
tioning with large r2. This can be explained as follows.
Large r2 results in a large optical cable price, which
also results in the large cost decrease when partition-
ing is performed. The large cost reduction associated
with large r2 encourages partitioning, which further
reduces the total cost.

Fig. 11. (Color online) Total cost versus r1 and c1; simulation con-
ditions: the construction tree forms a line, the number of ONUs is
512, and q�x�=1000x0.7.
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
. Case 2: Construction Tree Forms a Binary Tree

In the second case, we consider the scenario in
hich existing constructions form a binary tree as

hown in Fig. 13(a). ONUs are located at leaves of the
onstruction tree.

1) Analysis. For the first scheme of using one AWG
f size 1�m, this AWG is put at node a, which is the
entroid of the construction tree, as shown in Fig.
3(a). For the second scheme of using a two-stage cas-
aded AWG, among which one AWG is of size 1�2 and
he other two AWGs are of size 1�m /2, the AWG in
he first stage is put at node a, and two AWGs in the
econd stage are put at node b and node c, respec-
ively. Figure 13(b) illustrates the second scheme. The
ifference of cable placements in the two schemes lies
n edges �a ,b� and �a ,c�. For the first scheme, only one
ber is needed in edge �a ,b� and edge �a ,c�, respec-
ively. For the second scheme, m /2 fibers are needed
n edge �a ,b� and edge �a ,c�, respectively. Then

� = p�2� + 2p�m/2� − p�m� + �q�1� − q�m/2�����a,b��

+ ��a,c���. �13�

hether a partition is accepted depends on the AWG
rice, optical cable cost, and the lengths of edges.

ig. 12. (Color online) Total cost versus r2 and c2; simulation con-
ition: the construction tree forms a line, the number of ONUs is
12, and p�x�=800x0.4.

ig. 13. (Color online) Case 2: the construction tree T forms a bi-
ary tree.
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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Consider the following binary construction tree as
shown in Fig. 13(c). ONUs are located at the leaves of
the binary tree. Vertices at each level of the tree are
uniformly distributed on a circle. For any vertex, the
angle formed by its two edges connecting with its chil-
dren equals �. We prove that recursive partitioning
can achieve the optimal distribution AWG size for this
construction tree when the AWG price p�x�=c1xr1 �0
�r1�1�, the optical cable cost q�x�=c2xr2 �0�r2�1�,
and r2�r1.

Theorem 2. The proposed recursive partitioning
can obtain the optimal distribution size under the con-
dition that 1) the construction tree forms a binary tree
as shown in Fig. 13(c), 2) ONUs are located at the
leaves of the tree, 3) the price of an AWG with x ports is
c1xr1, 4) the price of optical cable with x fibers is c2xr2,
and 5) r2�r1.

Proof: Similar to the proof of Lemma 1, we prove
that recursive partitioning can get the optimal distri-
bution AWG by showing that, if partitioning tree t into
two subtrees does not decrease the total cost, then any
further partitioning of tree t will not yield a smaller
cost. Assume that the total number of ONUs in the
PON is M. Then, ONUs are located at a log2

M depth of
tree t. Each vertex at level k of the tree is connected
with M /2k ONUs. Let Rk be the radius of vertex at
depth k of the tree. Then, �Rk+1 /sin�� /2�
= ��a ,b�� /sin�	 /2k+1�=Rk /sin�� /2−	 /2k+1��. Let tree t
be the subtree with vertex a as its root, where vertex a
is of depth k. Then

� = p�2� + 2p�m/2� − p�m� + 2�q�1� − q�m/2����a,b��

= p�2� + 2p�M/2k+1� − p�M/2k� + 2�q�1�

− q�M/2k+1��Rk

sin�	/2k+1�

sin��/2 − 	/2k+1�

= c12r1 + c1�21−r1 − 1��M/2k�r1 − c2��M/2k+1�r2 − 1�

�Rk

sin�	/2k+1�

sin��/2 − 	/2k+1�
. �14�

Consider � as a function of k, which is the depth of the
root of tree t. We prove that ��k+1� must be greater
than zero if ��k��0. ��k+1��0 implies that further
partitioning of the subtree of tree t will not yield a
smaller cost:

��k� � 0 ⇒
c1

c2

�
��M/2k+1�r2 − 1�Rk sin�	/2k+1�

	2r1 + �21−r1 − 1��M/2k�r1
sin��/2 − 	/2k+1�
.

�15�

We next prove that
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 27
Rk sin�	/2k+1�

sin��/2 − 	/2k+1�
�

Rk+1 sin�	/2k+2�

sin��/2 − 	/2k+2�
,

�M/2k+1�r2 − 1

2r1 + �21−r1 − 1��M/2k�r1
�

�M/2k+2�r2 − 1

2r1 + �21−r1 − 1��M/2k+1�r1
:

Rk sin�	/2k+1�

sin��/2 − 	/2k+1�
=

Rk+1 sin�	/2k+1�

sin��/2�

=
Rk+1 sin�	/2k+2�2 cos�	/2k+2�

sin��/2�

=
Rk+1 sin�	/2k+2�

sin��/2 − 	/2k+2�

�
2 cos�	/2k+1�sin��/2 − 	/2k+1�

sin��/2�

=
Rk+1 sin�	/2k+2�

sin��/2 − 	/2k+2�

�
sin��/2� + sin��/2 − 	/2k�

sin��/2�

�
Rk+1 sin�	/2k+2�

sin��/2 − 	/2k+2�
. �16�

ince r2�r1, �21−r1−1��M /2k�r1+r22−r2�2−r1−2−r2��0.
hen, we have

�M/2k�r22r1−r2 + �21−r1 − 1��M/2k+1�r1+r2 − �21−r1 − 1�

��M/2k�r1 � �M/2k�r22r1−2r2 + �21−r1 − 1�

��M/2k�r1+r22−2r2 − �21−r1 − 1�

��M/2k+1�r1 ⇒
�M/2k+1�r2 − 1

2r1 + �21−r1 − 1��M/2k�r1

�
�M/2k+2�r2 − 1

2r1 + �21−r1 − 1��M/2k+1�r1
�17�

herefore,

Rk+1 sin�	/2k+2�

sin��/2 − 	/2k+2�

�M/2k+2�r2 − 1

2r1 + �21−r1 − 1��M/2k+1�r1

�
Rk sin�	/2k+1�

sin��/2 − 	/2k+1�

�M/2k+1�r2 − 1

2r1 + �21−r1 − 1��M/2k�r1

�
c1

c2
⇒ ��k + 1� � 0. �18�

�k+1� is the additional cost introduced by further
artitioning a subtree of tree t. ��k+1��0 implies
hat further partitioning will not yield a smaller cost.
e thereby prove that recursive partitioning can ob-
, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 
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tain the optimal distribution AWG.

2) Simulations. In the simulations, we set the dis-
tance between the OLT and the ONUs as 20 km, the
number of ONUs as 512, and � as 120°.

Figures 14 and 15 show the impact of the AWG price
and optical cable price on the total cost, respectively.
In Fig. 14, q�x�=1000x0.7. In Fig. 15, p�x�=8000.4. Both
r1 in Fig. 14 and r2 in Fig. 15 are varied from 0.1 to
0.9. Both c1 in Fig. 14 and c2 in Fig. 15 are varied from
700 to 1500. Figures 14 and 15 show that the total
cost increases with the increase of r1, r2, c1, and c2. As
compared with those shown in Fig. 11 and Fig. 12, the
pace of increase of the total cost with respect to r1 and
r2 are reduced, respectively. This is attributed to the
fact that the sizes of distribution AWGs employed in
this scenario are generally larger than the sizes of
AWGs employed in the scenario in which the construc-
tion tree forms a line. Comparing Eqs. (11) and (13),
we can find that the decrease of the optical cable cost
in the case with a binary construction tree is slower
than that in the case where the construction tree
forms a line. The small decrease of the optical cable
cost discourages partitioning in the case of a binary
construction tree. Hence, large sizes of distribution
AWGs are yielded. Since r1�1, c1xr1 increases slower
with larger x. We therefore get a slower pace of in-
crease of the total cost.

VI. CONCLUSION

We have presented a scheme to optimize the trade-
off between the AWG cost and the optical cable cost of
deploying ODNs of WDM PONs. Specifically, we de-
compose the problem into two subproblems: minimize
the optical cable cost for a given cascaded AWG struc-
ture, and then decide the cascaded AWG structure
that minimizes the total cost of AWGs and optical
cables. The former problem is further divided into two
subproblems: decide ONUs connected to each AWG,
and decide geometric positions of AWGs. We have dis-

Fig. 14. (Color online) Total cost versus r1 and c1; simulation con-
dition: the construction tree is a binary tree, the number of ONUs is
512, and q�x�=1000x0.7.
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ussed these problems in detail and proposed corre-
ponding algorithms to solve them. We have also ana-
yzed the impact of the fiber cost, AWG cost, and
ubscriber density by using our proposed algorithms
or deploying an ODN of a WDM PON. The WDM
ON has to overcome a few hurdles to see its wide-
pread deployment. The contributions of this work are
ridging the gap toward this promising solution for an
ccess technology with high-bandwidth provisioning.
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