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Abstract—The rapid availability of new services makes that 
network operators cannot exhaustively test their impact on the 
network or anticipate any capacity exhaustion. This situation will 
be worse with the imminent introduction of the 5G technology 
and the kind of totally new services that it will support. In 
addition, the increasing complexity of the network makes 
unreachable analyzing its behavior in front of the specific traffic 
that needs to be supported, which prevents from training human 
operators and much less, machine learning algorithms that might 
automatize network operation. In this paper, we present CURSA-
SQ, a methodology to analyze the network behavior when the 
specific traffic that would be generated by groups of service 
consumers is injected. CURSA-SQ includes input traffic flow 
modelling with second and sub-second granularity based on 
specific service and consumer behaviors, as well as a continuous 
G/G/1/k queue model based on the logistic function. The 
methodology allows to accurately study traffic flows at the input 
and outputs of complex scenarios with multiples queues systems, 
as well as other metrics such as delays, while showing noticeable 
scalability. Application use cases include, packet and optical 
network planning, service introduction assessment, and 
autonomic networking, just to mention a few. 

Index Terms—Service-based traffic generation, logistic queue 
model, aggregated traffic models. 

I. INTRODUCTION 
he advent of 5G networks will open the possibility to 
service providers to offer new services such as Video-On-

Demand (VoD) contents in mobile devices with 4K ultra-high 
definition (UHD) and Virtual Reality [1]. Such exciting 
scenario will impose enormous challenges for network 
operators and vendors, since those new services will require 
stringent quality of service (QoS) from the network. To 
achieve these challenges, the adoption of optical technologies 
increasing the capacity and flexibility of fronthaul [2] and 
backhaul networks [3] is needed. However, before 5G 
deployment and service commercialization, the impact on the 
traffic injected to Multiprotocol Label Switching (MPLS)-
over-optical metro and core networks need to be considered so 
they can be adequately planned. 

Besides, the introduction of 5G will increase even more the 
complexity of multilayer networks, so they need to be 
complemented with new architectures for control and 
management to facilitate network operation and to evolve 
towards an autonomic networking paradigm [4]. Autonomic 
networking is based on three fundamental pillars that define 
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the observe–analyze–act (OAA) loop [5]. Monitoring 
heterogeneous network elements (observe) produces huge 
amounts of metered data containing relevant information 
about network performance. Monitoring data is then processed 
by statistical and/or machine learning algorithms (analyze) [6] 
aiming at detecting and identifying some evidence requiring 
some further actions to be taken (act). Some examples include 
the reconfiguration of virtual network topologies following 
traffic changes [7]-[8] and the dimensioning of next planning 
steps based on traffic prediction [9]; both require the analysis 
of monitoring data to model and characterize network traffic. 

Nonetheless, a crucial fact affecting the observe step is 
hindering the research on autonomic networking: no real 
monitoring data is available for the targeted networking 
scenarios. Incipient services to be supported by 5G network 
technologies limit the availability of real monitoring data to 
only what it can be obtained from test-beds, which, in most of 
the cases, do not represent those realistic scenarios that 
autonomic networking pursues. To overcome the lack of real 
monitoring data, analyzing synthetically generated traffic data 
becomes a requirement to train and test data analytics 
algorithms and to validate network optimization procedures 
before they enter into operation in a real network.  

Trying to replicate the observed self-similarity and long-
range dependency in packet network traffic [10], several 
theoretical models have been based on stochastic processes. 
These models can be used within discrete-event simulators 
[11] to generate discrete random input (packet) traffic 
propagated by a queue system that models the network under 
study. For instance, the authors in [12] presented a traffic 
generator for optical packet switching studies. This 
methodology achieves accurate traffic measurements for 
different single network elements (e.g., interfaces, links, 
connections), as well as additional traffic-related 
measurements, like end-to-end delay. However, traffic 
generation based on discrete stochastic processes requires a set 
of parameters to be fit, which entails having real traffic traces. 

Looking at the literature, many research contributions 
related to queue systems make use of discrete-event 
simulation assuming M/M/1 queues [13], where arrivals 
follow a Poisson distribution and holding times are 
exponentially distributed. Even recent research works 
presenting hot topic networking use cases rely on such model 
[14]. However, these M/M/1 memoryless processes do not fit 
with the behavior of real dynamic traffic, as suggested in [15]; 
this can be extended to the traffic generated by 5G services. 
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For this very reason, current research effort is in producing 
models to generate synthetic realistic cellular traffic data for 
5G networks and applications [16]. Consequently, discrete-
event network simulation must evolve from service-agnostic 
M/M/1 models to more realistic and accurate G/G/1 ones, 
where both arrivals and departures are distributed following a 
wide range of statistical functions. 

Nevertheless, the scalability remains a major issue; realistic 
simulations would consist in generating days or even weeks of 
traffic sourced by thousands of consumers in a network 
modelled as a system of queues that packets need to traverse. 
For instance, several weeks of traffic need to be analyzed to 
obtain accurate traffic models that would be required for 
traffic forecasting [8]. In consequence, it is required that 
execution time must be orders of magnitude smaller than 
simulation time, which is not typically achieved when huge 
amounts of packets need to be processed [17]. Therefore, the 
use of discrete-event simulation is clearly impractical. 

Aiming at providing faster and more scalable approaches, 
the authors in [18] proposed a hybrid discrete-continuous 
fluid-flow approach that can considerably speed up the 
simulation of complex flow networks as compared to 
traditional queueing models. In fact, continuous queue models 
can be used to simulate G/G/1 queue systems. Among 
different models, the Vickrey's point-queue model [19] allows 
formulating an uncapacitated queue system as a differential 
equation that depends on input and output traffic flows. 
Although theoretically this continuous model scales much 
better than discrete ones based on packets, it has some 
additional limitations, such as i) the restriction of using 
infinite queues; ii) the impossibility to obtain packet-level 
measurements such as delay; and iii) the impossibility to use 
practical numerical methods for solving differential equations, 
such as ordinary differential equation (ODE) methods. 

Assuming that a continuous queue system propagating 
flows instead of packets is adopted, a question still remains: 
how input flows entering the network need to be generated. 
Authors in [8] proposed a methodology to generate input 
traffic flows for distinct service types according to different 
daily patterns of expected traffic and distributions for the 
variance around that expectation. However, this approach 
makes difficult to generate profiles of new, incipient services, 
where there is no clear evidence on how the traffic generated 
by the service consumers behaves. In that case, a methodology 
to derive input traffic models as a function of additional 
information, such as the expected behavior of service 
consumers and the characteristics of the service, is needed. 

In this paper, we propose a fast, accurate, attainable, and 
scalable service-centric traffic flow analysis methodology 
based on statistical flow characterization and continuous 
queuing models, named CURSA-SQ. Starting from the packet 
traffic generated by single service consumers, CURSA-SQ 
generates synthetic network traffic, as well as other related 
traffic variables resulting from the activity of consumers and 
providers of 5G services for a wide range of use cases. 

The rest of the paper is organized as follows. Section II 
overviews the proposed CURSA-SQ methodology. Our 
proposal of queuing building blocks for synthetic traffic 
generation is presented in Section III. Moreover, a continuous 
queue model is formally defined, extending the Vickrey's 
point-queue model supporting capacitated queues and the use 
of ODE integrators for its computation. Input traffic flow 
modelling is detailed in Section IV by means of statistical 
formulation aiming at producing traffic models of flows 
aggregating multiple consumers. Finally, the proposed 
generation procedure is presented. CURSA-SQ numerical 
validation is presented in Section V and an illustrative 
application targeting the analysis of the impact of traffic 
evolution in a multilayer metro network scenario is eventually 
presented. Finally, Section VI concludes the paper. 

II. SERVICE-CENTRIC TRAFFIC FLOW ANALYSIS 
In this section, we present a general overview of the 

CURSA-SQ methodology. Without loss of generality, let us 
consider a scenario where a network operator provides 
connectivity between service consumers and service 
providers. This can be extended to other scenarios like 
machine-to-machine communications, etc. Fig. 1 illustrates the 
scenario, where service is requested by the consumers; the 
upstream traffic arrives from service consumers in a network 
node that aggregates and forwards it toward the selected 
service provider, whereas in the downstream direction, such 
node forwards the traffic coming from a service provider (in 
response to service requests) to the specific service consumer. 

We are interested in studying and generating traces of the 
aggregated traffic flows as a function of consumers traffic 
flows (hereafter, input traffic) and the characteristics of the 
network node (e.g., link capacity). To reduce the number of 
input traffic flows, we group consumers of the same type of 
service and with the same characteristics. For instance, 
consumers of a VoD service of a specific provider (e.g., 
Netflix) with 4K definition. Finally, a consumer group can be 
served from one or more locations of the same provider. 
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Fig. 1. General overview of targeted scenarios 
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Fig. 2. Overview of the CURSA-SQ Methodology 

In the absence of capacity constraints in the node, the 
aggregated traffic flows would follow a distribution as simple 
as just the summation of the input traffic. However, this 
scenario is not realistic in practice as a result of the limited 
capacity of the interfaces, the size of the buffers, etc. In 
consequence, the aggregated traffic will appear limited as it is 
suggested in Fig. 1. 

Regarding the location of the network node, it does not need 
to be at the network edge; any intermediate location between 
consumers and providers can be subject of study even if 
upstream or downstream traffic is previously altered by 
capacity constraints, traffic shaping, etc., aa seen at the node. 

We will use different traffic flow generators for upstream 
and downstream traffic. Those generators will generate traffic 
flows, in terms of bitrate, with granularity T fine enough to 
study flows (in the order of hundreds of milliseconds) but 
several orders of magnitude higher than those typical times 
and sizes of packet-based traffic generation (Fig. 2a). In the 
upstream direction, one single flow generator per consumer 
group will be used to produce the traffic flow for all the active 
consumers in the group; this flow generator will be located at 
the consumer group location and will target one or more 
service provider’s sites. In the downstream direction, each 
service provider’s site will contain a flow generator to produce 
the traffic flows toward the consumer groups. 

The generation process is summarized in Fig. 2b; it is based 
on first characterizing each service (labeled 1 in Fig. 2b) to 
find the upstream and downstream traffic characteristics (2) 
for one single service consumer. Then, the traffic flow bitrate 
is generated by scaling the traffic characteristics to the number 
of active consumers forecasted for a given time period (3), 
while transforming the characteristics from the discrete to the 
continuous domain (4). The following groups of 
characteristics have been identified: 

1. Consumer behavior: these characteristics capture the 
behavior of the consumers of a specific service. Assuming 
a VoD service, key characteristics of active consumers are 
the time between consecutive content reproductions, the 
duration of the content, and the completion rate of every 
content according to its duration [20]. 

2. Data exchange: these characteristics focus on how the 
service generates the data to be transferred according to 
consumers’ activity. Continuing with the VoD service 
example, when a content reproduction is requested by a 
user, a certain amount of audio and video (media) is sent to 
the user to fill an initial buffer. After that, media segments 
of a given short duration (e.g., 5 sec.) are regularly sent 
following a typical ON/OFF pattern until the content 
finishes or the reproduction is stopped [21]. 

3. Consumer infrastructure: these characteristics allow 
adapting the data exchange to packet traffic since network 
infrastructure can impact the service. In a VoD service, 
video quality is adapted as a function of the throughput 
[22]. This could impact on the size of media segments and 
consequently, on the packet traffic characteristics. 

The above service-related characteristics are not 
deterministic, but they follow statistical distributions. 
Therefore, by analyzing them, the packet traffic that every 
individual consumer introduces in the network can be modeled 
in terms of a few random variables capturing how bursts (and 
even packets) are generated by a single active consumer. The 
most relevant random variables are: i) inter-arrival burst rate, 
defined as the rate between consecutive bursts; ii) burst size, 
defined as the number of bytes transmitted in a burst; iii) inter-
arrival packet rate, as the rate between consecutive packets in 
a burst; and iv) packet size, as the total amount of bytes 
(headers included) of a packet. 

Once input traffic flows are generated in terms of bitrate for 
every period and every direction, they are used to generate 
aggregated traffic flows. To this end, a number of upstream 
input upstream traffic flows are aggregated, and the resulting 
flow feeds a queue system (Fig. 2c). The reverse process is 
followed in the downstream direction; the downstream input 
traffic flows are aggregated (not showed in the figure) and the 
resulting traffic flow enters a queue system; at the output, a 
disaggregator separates the resulting flow into the defined 
traffic flows.  

The aggregator, queue system, and disaggregator in Fig. 2c 
are the building blocks that, by concatenating them, allow to 
study more complex problems, such as the one depicted in 
Fig. 3 targeting at modelling a packet switch in a typical 
MPLS-over-optical metro network. The switch consists of a 
number of access optical interfaces of a given speed (e.g., 10 
Gb/s) connecting access networks, few high-speed (e.g., 100 
Gb/s) optical metro interfaces, and several MPLS Label-
Switched Paths (LSP). In the upstream, the consumers traffic 
flows are first aggregated and a queue system representing an 
access network ensures that the capacity of the switch  
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Fig. 3. Application example: Metro packet switch modelling 

interface is not exceeded. Next, flows are aggregated into 
LSPs that are routed through the network. A queue system is 
used to ensure that the capacity of each LSP is not exceeded. 
Finally, LSPs leave the packet switch through metro 
interfaces, where another queue system enforces the capacity 
of the interface. 

In the downstream, traffic flows from the service provider 
arrive through the metro interfaces, where queue systems 
model network devices between the service providers and the 
switch. Traffic is disaggregated into the configured LSPs (note 
that the LSP configuration is different in the upstream and the 
downstream to model asymmetric traffic). Finally, the traffic 
is disaggregated and sent through the access interfaces. 

In the next section, we develop a general queuing module 
and queue model that supports the CURSA-SQ methodology. 
Although input flow generators are a crucial part to inject 
traffic in the proposed queue system, its formal development 
will be faced in the subsequent section together with the 
algorithm that exploits the proposed models. 

III. CURSA-SQ QUEUE SYSTEM AND MODEL 
In this section, we first define the general queuing module 

of the CURSA-SQ methodology, which is built with the above 
defined building blocks; then, we define our continuous queue 
model based on the logistic function. 

A. Building blocks and queuing module 
Traffic flow measured after every queue system is the result 

of the aggregation and propagation of traffic flows through the 
system under study, such as that in Fig. 3. In this subsection, 
we define a general queuing module that relates the 
aggregator, queue system, and disaggregator and allow 
keeping track of traffic flows. 

To generalize the queuing module, let us consider a number 
n of input traffic flows that will be aggregated, queued, and 
finally disaggregated into m output traffic flows (Fig. 4). The 
traffic input flows are aggregated to generate the input flow X, 
which is converted to capacity units (bytes) and stored in a  
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Fig. 4. Queuing module and building blocks 

First-In-First-Out (FIFO) queue (Q) with capacity k bytes, 
provided that enough capacity is available in the queue. The 
server (S) processes queued data at a rate μ, which is 
configured according to the throughput of the element that the 
queue system models; e.g., if the queue system represents an 
interface, μ is the interface speed. According to the 
heterogeneity of input flows and server rates, we consider that 
the queue system follows a G/G/1/k model with FIFO 
discipline [13]. The flow Y leaving the queue system can be 
divided into m output traffic flows, to allow configuring the 
proportion of traffic to be forwarded to every single output; 
flow splitting is computed according to the measured 
magnitude of every input flow and the output configuration. 

Finally, queuing modules store traces with granularity T of 
the traffic flows measured at every single input and output in a 
centralized repository. Additionally, queues’ capacity usage is 
continuously monitored, aggregated and stored in a different 
repository for capacity and delay analysis purposes. 

B. Logistic queue model 
According to the queuing module scheme in Fig. 4, a 

continuous input flow X is processed by a capacitated queuing 
system to generate output flow Y. Let us consider that X is 
known in advance and it is defined in the time interval [t0, t1]; 
hence, X(t) can be evaluated for any t in the interval. Before 
entering into the mathematical details of the proposed queue 
model, it is worth defining the used notation: 

X(t) Input bitrate (b/s) at time t 
Y(t) Output bitrate (b/s) at time t 
Q(t) Bytes in queue at time t 
k Queue capacity (bytes) 
μ Server rate (b/s) 
Δt Small time interval << T 

 

For the sake of completeness, let us start from the flow 
conservation equality [23], i.e., the general relation between 
input and output flows of a queue system and the state of the 
queue, when a small time interval Δt is considered: 

( ) ( ) ( ) ( )( )1
8

Q t t Q t X t Y t t+ ∆ = + ⋅ − ⋅ ∆
 

(1) 

The queue state after Δt equals the queue state before Δt 
plus the difference between input and output flows during the 
interval. By considering the limit when Δt→0, we obtain the 
following differential equation Q’(t), where the factor of 1/8 
converts bits in a flow to bytes in a queue. 
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( ) ( ) ( ) ( )( )1'
8

dQ t
Q t X t Y t

dt
= = ⋅ − . (2) 

Assuming that input flow X(t) is known, the differential 
equation can be solved to obtain output flow Y(t) as a function 
of both X(t) and Q(t). In addition, since we aim at modelling 
capacitated queues, some amount of input flow will be 
dropped when Q(t) reaches its capacity. 

The proposed capacitated logistic queue model starts from 
adapting the well-known Vickrey’s point-queue model in [19]. 
Equation (3) presents a first approach based on that model, 
which characterizes a queue where the output flow is limited 
by the rate of the server. In case of an empty queue, Y(t) 
equals X(t) if the server rate is faster than X(t); otherwise, 
output flow is constantly μ while the queue is not empty. 

( ) ( ){ } ( )
( )

min , if 0

if 0

X t Q t
Y t

Q t

µ

µ

 == 
>  

(3) 

Note that eq. (3) presents a discontinuity, which makes 
solving eq. (2) computationally challenging since numerical 
methods such as ODE cannot be used. For this very reason, we 
propose a continuous formulation of the output flow based on 
an exponential function, as follows: 

( ) ( ){ }( )
( )8·

min , e
Q t

Y t X t
λ

µµ µ µ
− ⋅

= + − ⋅
 

(4) 

Equation (4) keeps the main features of eq. (3), namely: i) 
when Q(t) is empty, Y(t) equals the minimum of μ and X(t), 
and ii) if X(t) is greater than μ, Y(t) is fixed to μ. In addition, 
eq. (4) applies a smooth, exponential-based queue emptying 
when X(t) is smaller than μ. The exponent depends on the 
current size of the queue; in particular, it is proportional to 
Q(t)/μ, i.e., the expected emptying time of the current queue. 

To illustrate the difference between the point-queue model 
in eq. (3) and the logistic-queue model in eq. (4), Fig. 5 
presents an example of an input traffic flow with two plateaus, 
where the first one exceeds the capacity of the queue. Fig. 5a 
shows the input flow, as well as the output flows when each 
queue model is applied, whereas Fig. 5b shows the queue 
usage for each queue model. It is clear, in view of Fig. 5, that 
the logistic approach softens queue emptying without adding 
any other effect on the queue. To control the sharpness of the 
logistic function when the queue is almost empty, the 
exponent is weighted by parameter λ that can be computed as 
the expected average intensity, estimated as λ~avg(X)/μ. 

The derived logistic model assumes an uncapacitated queue, 
which is not realistic in general. To guarantee that Q(t) cannot 
exceed the queue capacity k, we propose to limit X(t) as a 
function of Q(t) based on the logistic function (see eq. (5)). 
The limited input flow, X̂(Q(t),t), approximates X(t) when Q(t) 
is far from k and tends to 0 as soon as Q(t) approximates k. 

 ( ) ( )( )
( )( ), ·

1 ·e Q t k

X tX Q t t
h ρ⋅ −

=
+  

(5) 

Weighting coefficient h can be setup proportionally to the  
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Fig. 5. Queuing module and building blocks. 

relation between the intensity of the aggregated input flow and 
μ, e.g., h=-(1-max(X)/μ). Parameter ρ adjust the slope of the 
descent when the queue is almost full; to guarantee a good 
convergence of ODE integrators, its value needs to be tuned to 
allow a fast descent with a smooth enough function. 

Finally, eq. (6) presents the differential equation defining 
the capacitated logistic queue model and it can be solved by 
considering that at some starting time t0 the queue had an 
initial value Q0 (equal to 0 if the queue was empty). The 
differential equation is computed in the time interval [t0, tmax]. 

( )

( ){ }( )
[ ] ( )

( )8

0 max 0 0

1 ˆ'( ) ( ),
8

ˆmin , ( ), e ,

,

Q t

Q t X Q t t

X Q t t

t t t where Q t Q

λ
µµ µ µ

− ⋅ ⋅

= ⋅ −

 
 − + − ⋅
  

∈ =
 

(6) 

Let Q0 and X̂ be ≥ 0 and μ and k be > 0. Then, the system in 
eq. (6) satisfies the following properties: i) there exists a 
unique and positive solution for the defined time interval; ii) if 
X̂ < μ then, the queue gets empty exponentially fast; iii) a flow 
arriving in the system at t1 will exit from it before other input 
flow arriving at t2 > t1 (FIFO property), and iv) Q(t) ≤ k, ∀t 
(capacitated queue). Proofs of the above properties can be 
found in [24]. 

IV. INPUT TRAFFIC FLOWS AND TRAFFIC ANALYSIS 
Owing to the fact that even simple studies entail generating 

input flows that aggregate many service consumers and 
creating a complex system of queues to propagate traffic flows 
through the outputs, a meaningful part of the CURSA-SQ 
methodology is devoted to reducing the computational effort 
of generating large amount of fine granular traffic flows while 
ensuring the required accuracy. To this end, in this section we 
first propose statistical and mathematical models to generate 
aggregated input flows feeding the queue systems in practical 
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execution times. Next, the general CURSA-SQ methodology 
to generate traffic flows that takes advantage of the input flow 
generation and queue models is detailed. 

A. Input traffic flow characterization 
Four random variables were enumerated in Section II 

characterizing the traffic activity of one single consumer. 
From the perspective of a flow aggregating several individual 
active consumers, the effect of both packet size and inter-
arrival packet rate variables can be neglected compared to 
burst size and burst inter-arrival rate. Since such traffic 
characteristics do not depend on the number of active 
consumers, the main source of input flow variations is 
precisely the evolution of consumers over time. Variations in 
the expected number of active consumers need to be modeled 
to capture any pattern, such as periodic behaviors (e.g., a daily 
pattern) or evolutionary trends (e.g., an annual increment). 

With the above in mind, let us define the following random 
variables to model the traffic flow of a specific consumer 
group aggregating consumers of the same service: 

ibr Inter-arrival burst rate (s-1), defined as the rate of 
consecutive bursts. 

bs Burst size (in bits for convenience) 
r Consumer maximum flow rate (b/s) 
γ Traffic burstiness degree 
u(t) Number of active consumers at time t 
x(t) Bitrate (b/s) generated by a consumer group or service 

provider site 
T Traffic generation granularity (s) 

 

Since bitrate is expressed in b/s units, it seems natural to 
consider T = 1sec. as a reference. Aiming at supporting a wide 
range of statistical distributions and functions for traffic 
characterization and consumers time evolution, we consider a 
modelling approach based on computing approximations of 
the expectation (E) and variance (V) of x(t) based on the 
expectation and variance of ibr, bs, and u(t); these can be 
easily obtained assuming prior knowledge on service traffic 
random variables distribution and active consumers models. 
Note that the product of ibr and bs results into a new random 
variable representing the bitrate generated by one single user. 

E(x(t)) can be approximated as the product of the expected 
number of users and the expected single user bitrate: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )E x t E u t E bs ibr E u t E bs E ibr≈ ⋅ ⋅ = ⋅ ⋅  (7) 

Regarding the variance and assuming that bs and ibr are 
independent, the variance of the individual user bitrate can be 
derived according to well-known expressions to estimate the 
variance of the product of two independent variables [25]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2V bs ibr V bs V ibr E bs V ibr E ibr V bs⋅ = ⋅ + ⋅ + ⋅  (8) 

Then, V(x(t)) can be approximated as the sum of the 
variance of individual users. According to the definition of a 
consumer group and the independence assumption, V(x(t)) can 
be estimated as: 
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Fig. 6. Traffic generated with second (a) and sub-second (b) granularity 

( ) ( )( ) ( )( )V x t E u t V bs ibr≈ ⋅ ⋅  (9) 

The model in eq. (7) and eq. (9) allows generating random 
traffic flows with the selected T. To that aim, a pseudo-
random generator function ϕ following a given distribution, 
e.g., uniform, Gaussian, etc., can be used to generate random 
traffic x’(t) according to E(x(t)) and V(x(t)).  

( )( ) ( )( )( ){ }'( ) min ( ) , ,x t u t r E x t V x t= ⋅ Φ  (10) 

where u(t)·r is the maximum traffic that the consumer group 
can inject/receive due to access speed constraints. 

Although eq. (10) works fine generating random traffic 
flows for T ≥ 1 sec. traffic flows with sub-second granularity 
need to be generated to estimate queuing delays. Such sub-
second scale generation must reproduce the nature of a bursty 
traffic with on-off periods producing short intervals of high 
activity that fill queues up. 

To this aim, a flow x’’(t,i) with sub-second granularity is 
generated from x’(t); index i represents the i-th interval T 
within the one-second interval centered in t. To allow 
computing maximum expected delays, a worst case of traffic 
bursty behavior is considered, as sketched in Fig. 6. 
Specifically, the example of x’(t) flow in Fig. 6a is used to 
produce the x’’(t,i) with T=100 ms. in Fig. 6b; every bitrate 
sample in x’(t) is transformed into 10 samples in x’’(t,i). 
Within every one-second interval, a first on period where 
bitrate can exceed that of x’(t) is followed by an off period 
where bitrate is fixed to 0. Note that the summation of all 
samples in x’’(t,i) within one-second interval equals the bitrate 
in x’(t). The number and magnitude of samples in the on 
period depends on the degree of burstiness γ of the traffic of 
the consumer group, and it is computed as follows: 

1 
bs r

bs r ibr
γ

+
= . (11) 

γ thus, represents the proportion of time within a second 
where traffic is actually generated. Then, the generation of 
random traffic samples with sub-second interval is defined as: 

( ){ }1

0..

0..

min , '( ) , ''( , ) '( )
''( , )

0, ''( , ) '( )
j i

j i

u t r x t T x t j x t
x t i

T x t j x t

γ −

=

=

 ⋅ ⋅ ⋅ <
= 

⋅ ≥


∑
∑

 (12) 

Finally, it is worth noting that, if T > 1 sec., x’(t) can be 
easily computed by averaging random samples generated with 
1 sec granularity, whereas x’’(t,i) do not need to be computed. 
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Fig. 7. CURSA-SQ methodology applied to VoD traffic analysis 

B. Traffic flow analysis 
With the input flow generation and queue models already 

presented, complex networking use cases can be reproduced. 
Then, we now focus on developing a general methodology for 
traffic flow generation using as guiding example the network 
scenario depicted in Fig. 3, where a metro packet switch 
connects consumers of different services in access networks to 
service providers located in the metro/core segment. 

As presented in Section II, input flows characteristics 
depend on those of the consumer group. Fig. 7 sketches the 
procedure that can be followed to characterize traffic 
distributions from the consumer group characteristics. For the 
sake of clarity, the VoD service will be used as an example. 

Random samples of the initial buffering and subsequent 
media segments will be generated according to both 
consumer-related and service-related characteristics; each 
sample consists of a tuple <startTime, duration, size>. 
Consumer-related characteristics are used to determine the 
starting time of a new video reproduction and the actual 
duration, considering not only video duration distribution but 
also completion rate. Moreover, upstream/downstream access 
speed is stochastically determined for the whole reproduction. 

According to the previous values and the configuration of 
service-related characteristics, media segment samples are 
randomly generated and stored for further modelling purposes. 
As soon as enough samples to accurately fit traffic 
characteristics are available, ibr and bs statistical distributions 
are obtained by testing several known distributions and 
returning the one maximizing some common goodness-of-fit 
indicator such as the logarithm of the likelihood function [26]. 

Once burst traffic characteristics are available, traffic flow 
can start to be generated. In general, any scenario under study 
can be modeled as a number of unidirectional graphs, with 
three types of nodes: aggregators, disaggregators and queue 
systems. For instance, in the network scenario in Fig. 3, two 
unidirectional graphs (upstream and downstream) can be 
observed, where the path connecting consumers to providers 
and vice versa involves three queue systems (stages). 

Table I presents the pseudocode of the traffic flow 
 

TABLE I TRAFFIC FLOW GENERATION ALGORITHM 
INPUT Gup, Gdown, t_start, t_end, T 
OUTPUT Traffic 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

Traffic ←Ø; δ←max(T,1s) 
nlup, nldown ←getNumStages(Gup, Gdown) 
CG←getCGs (Gup, Gdown) 
for each cg∈ CG do 

if trafficModelAvailable(cg) then continue 
fitTrafficModel(cg) (see Fig. 7) 

t←t_start 
while t < t_end do 

for G ∊{Gup, Gdown} 
I1←generateCGFlows(getCGs(G),[t, t+δ], T) 
for l=1..(getNumStages(G)-1) do 

Ol, Ql ← propagateFlows(Gl, Il) 
storeFlowData(Traffic, Il,Ol,Ql) 
if l ≠ getNumStages(G)-1 then Il+1 ← Ol 

t ← t+T 
return Traffic 

 

generation algorithm; the algorithm receives upstream (Gup) 
and downstream (Gdown) graphs, a time window [t_start, 
t_end] of interest, and the granularity T. To avoid dealing with 
flows as large as the duration of the selected time window, 
short flows of duration δ≥1s are generated and propagated. 
Note that, according to T, such flows will be either x’(t) or 
x’’(t,i). After initializing the database where the traffic flows 
will be stored and computing δ as a function of T, all input 
flow generators are retrieved, and the availability of traffic 
models is checked before running consumer group traffic 
model procedures (lines 1-6). A traffic modelling procedure 
needs to be executed if a traffic model for the consumer group 
is not yet available or if some consumer-related and/or 
service-related characteristics have changed becoming thus an 
existing traffic model obsolete. 

Next, traffic flows with the required granularity are 
generated by propagating flows in both upstream and 
downstream directions (lines 8-15). To this aim, input flows of 
duration T are generated from the burst traffic statistical 
distributions following the input flow generation described in 
the previous subsection (line 10). Then, flows are propagated 
through the different stages and input and output traffic data, 
as well as queue state, are stored (lines 11-13). Note that the 
output of one stage is used as the input of the following one. 
Finally, when the time window is completed, the database 
with the traffic flows is retrieved (line 16). 

V. NUMERICAL RESULTS 
In this section, we first present the characteristics of the 

services that will be considered and then, numerically validate 
the CURSA-SQ methodology by comparing the results against 
traditionally packet-based generation and simulation. Finally, 
the illustrative application use case in Fig. 3 considering 
different types of services is used to generate examples of 
traffic analysis that can be carried out with the proposed 
methodology. 
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TABLE II SERVICES TRAFFIC CHARACTERISTICS 

Service E(ibr) (s-1) V(ibr) (s-1) E(bs) (MB) V(bs) (MB) 

VoD 0.25 2.54e-5 3.84 1.21 

Gaming 1.33 0.19 0.14 0.02 

Internet 1.66 0.40 0.12 0.04 

A. Services characteristics 
For the subsequent studies, we will consider three different 

services, namely: VoD, Gaming, and Internet. According to 
the CURSA-SQ methodology, relevant studies available in the 
literature providing consumer-related and service-related 
random variables characterization were used to characterize 
traffic sourced by consumer groups. Table II summarizes the 
expectation and variance of ibr and bs for all these services. 

Let us detail the characterization of the VoD (recall the 
characteristics identified in Section II). Regarding consumer 
behavior, according to the study presented in [20], the idle 
time y that an active user spends (e.g., deciding which content 
to watch) follows the power law probability distribution 
p=α×y-β, with parameters α=0.43 and β=1.2. On the other 
hand, the duration of the content selected by a user 
approximates an exponential distribution with a typical mean 
around 30 minutes and a reasonable maximum of 4 hours [27]. 
However, users usually stop a reproduction before its 
completion time. Completion rate depends on the content 
duration; the longer the duration is, the smaller the completion 
rate. A Weibull distribution with scale and shape parameters 
around 75 and 0.8 fits with a large variety of contents’ 
duration [20]. Regarding service-related VoD characteristics, 
we adopt a typical on-off pattern consisting of an initial 10-20 
sec transmission of media contents, followed by a number of 2 
sec media segments, until the reproduction finishes [21]. 
According to the previously defined statistical distributions, 
we simulated the activity of a single consumer and stored the 
time stamp and size of 10.000 traffic bursts. The analysis of 
this data lead to the VoD consumers traffic characteristics 
detailed in Table II, that indicates long spaced bursts of large 
number of bytes. 

A similar procedure was followed to characterize gaming 
and Internet consumers’ traffic from key statistical 
distributions detailed in [28]-[30]. The resultant traffic 
characteristics differ from that of VoD in both, the frequency 
of bursts (high ibr) and its size (small bs). Note that Internet 
traffic is the one that shows the highest variance in terms of 
ibr, which translates into a less regular traffic pattern. 

B. Validation results 
Aiming at validating the CURSA-SQ methodology 

including the aggregated input traffic flow model and the 
logistic queue model, we developed a packet-based simulation 
environment for benchmarking purposes. Specifically, a 
packet input traffic generator produces packets streams 
creating of a fixed size creating 1500-byte Ethernet frames, 
according to the specific mean and variance of ibr and bs; a 
packets stream is generated independently for each individual  
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TABLE III RELATIVE ERRORS OF AGGREGATED TRAFFIC FLOWS 
 VoD Gaming Internet 

users mean max mean max mean max 

10 6% 57% 4% 14% 4% 15% 

50 5% 34% 2% 5% 3% 4% 

100 4% 15% 2% 2% 2% 3% 
200 4% 10% 1% 1% 2% 2% 
 

user. Then, the aggregated packets stream is sent to a simple 
queue system with one discrete queue, which processes packet 
by packet. This combination of packet-based traffic generation 
and discrete queue simulation provides the baseline 
performance for comparison purposes. 

The CURSA-SQ methodology and the discrete simulator 
were implemented in Python 2.7 and executed in an Intel i7-
4790K -based computer with 16 GB RAM running Ubuntu 
16.04.3 LTS. 

For each defined service, we considered a scenario with a 
single consumer group configured with a constant number of 
users. For the sake of a fair comparative analysis, we run 
several executions with incremental number of users. Every 
execution generated a random flow of one day long and T = 
1sec. according to eq. (10) that was used for input flow 
comparison purposes. Then, a sub-second flow with T = 50ms 
was generated according to eq. (12) to evaluate the 
performance of the logistic queue model; both discrete and 
logistic queues were configured with a 10 Gb/s server. 

Fig. 8 shows the average bitrate of the traffic flows of each 
consumer group against the number of users, using flow-based 
and packet-based generation. As shown, flow-based 
generation accurately matches the correlation between 
generated bitrate and number of users that packet-based 
generation produced. A detailed accuracy analysis is presented 
in Table III, where mean and maximum errors of flow-based 
generation w.r.t. packet-based generation are detailed for 
every service and different number of users. Mean errors are 
not higher that 6%, whereas maximum error remarkably 
decreases with the number of users, reaching no more that 
15% in the worst case (for the VoD service) when 100 or more 
users are considered. Note that gaming and Internet services 
experience maximum errors not higher that 15% even with 10 
users. In light of these results, the accuracy of the proposed 
statistical methodology to generate aggregated input flows is 
validated assuming scenarios with a medium/high number of 
consumers per group. 

A comparison between discrete and logistic queues is  
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Fig. 9. Queue size (a) and scalability (b) analysis 

shown in Fig. 9a for downstream VoD traffic. In Fig. 9a, the 
maximum queued traffic is plot as a function of the traffic 
intensity, computed as the quotient between the average of the 
aggregated input flow and the speed of the queue server. Note 
that when the traffic intensity is under about 0.15 the logistic 
queue is unable to reproduce the behavior of the discrete 
queue, as for low traffic intensities the discrete behavior 
becomes more dominant. However, for the scenarios of 
interest entailing a meaningful traffic intensity, queued traffic 
evolves similar in both cases, which entails a key numerical 
evidence to validate not only the logistic queue model but also 
the procedure to generate aggregated input flows with sub-
second granularity. 

Looking at analyzing the scalability of both packet-based 
and flow-based approaches, Fig. 9b presents the total 
execution time (input flow generation plus queue simulation) 
as a function of the number of consumers aggregated in the 
flow. For illustrative purposes, execution time is presented 
relative to the simulated time, so a value equal to 1 entails 
simulating the same amount of time that is needed for running 
the simulation (e.g., 1 day of simulation takes 1 day of 
execution). As it can be observed, CURSA-SQ runs in few 
seconds independently of the number of users; this contrasts 
with the packet-based approach, which execution time is 
dependent on the number of users and few orders of 
magnitude larger than that of CURSA-SQ. In addition, the 
packet-based approach is not practical when a large number of 
users need to be considered, as its execution time exceeds the 
simulated time. 

In light of the previous results, we can conclude that the 
proposed CURSA-SQ methodology leads to similar results in 
terms of flow characteristics and queue behavior that the 
classical packet-based flow generation and discrete queue 
simulation, and with excellent scalability. In consequence, this 
methodology can be used to generate traffic for network 
analysis purposes in complex scenarios. 

C. Illustrative use case: QoS evolution analysis 
Let us now apply the CURSA-SQ methodology on the 

example of the packet switch in a MPLS-over-optical metro 
network in Section II; specifically, on the downstream 
direction, depicted in Fig. 10 for convenience, where optical 
interfaces are labeled. In this example, we consider the VoD, 
gaming and Internet services with the traffic characteristics in 
Table II, as well as a new 4K UHD VoD service, which 
doubles the number of bytes transmitted per burst w.r.t. the 

standard VoD service. The expected evolution in the number 
of users of each of the services is represented in Fig. 11a. 

According to expected consumer evolution, we generated 
daily traffic during the period under analysis, measuring the 
traffic at every interface. Such traffic traces can be used for 
many purposes, like to train and validate machine learning 
algorithms for autonomic networking. In this paper, let us 
exemplify its use for network planning, particularly to 
anticipate when and where capacity exhaustion will seriously 
limit the network performance.  

Fig. 11b shows the average traffic at the peak hour for every 
interface, where it can be observed how the traffic in interface 
II reaches its 10 Gb/s capacity in 2019 Q4, so network 
planning decisions (e.g., upgrading optical interface II to 
40Gb/s or adding a new interface together with optical 
connectivity towards the access, etc.) should be made before 
that date. This illustrates the application of the proposed 
CURSA-SQ methodology as a tool for network planners. 

Let us now analyze the traffic between the service provider 
and consumer group A during a typical day before interface II 
capacity is exceeded, e.g., in 2019 Q2; Fig. 12a shows traffic 
monitored at every interface. The correlation between the 
traffic measured at each interface is guaranteed by the queue 
system that models the switch; the traffic queued at each 
interface is shown in Fig. 12b. Note that the combination of 
different interface speed and service mix in the flows leads to 
completely different behavior on the queued traffic. In line 
with the interface capacity analysis presented before, interface 
II is the one that shows largest queued traffic. Nonetheless, 
interface IV shows some queued traffic peaks during evenings. 

With the data generated before, extended network 
performance analysis can be done, e.g., for examining the 
delay of traffic flows from metro to access. Fig. 12c presents 
the maximum delay of two paths, namely from metro interface 
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Fig. 12. Bitrate (a), queued traffic (b), and delay (c) for a single day in 2019 Q2. 

IV to access interface I (IV->I), and from metro interface IV 
to access interface II (IV->II). As shown, path IV->I 
experiences an almost constant delay, even when interface IV 
experiences a peak of queued traffic during night hours. In this 
case, queue usage is very small (hundreds of MB) compared to 
the speed of the interface (100 Gb/s), which minimizes the 
impact of queued traffic on the accumulated delay. 
Conversely, queue usage for interface II entails a clear impact 
on the delay in path IV->II, reaching a maximum value of 
300ms, which is evidence of the need for planners to make 
some decision to support the expected demand increase. 

VI. CONCLUDING REMARKS 
The CURSA-SQ methodology has been proposed to 

generate accurate synthetic traffic flows based on service 
characteristics and consumers behavior, and to analyze its 
impact on the network infrastructure. Input traffic flow 
modelling was statistically formulated aiming at producing 
traffic models of flows aggregating a number of consumers, 
where second and sub-second granularities were considered. 
In addition, a continuous queue model was formally defined, 
being a key component to create queuing systems. 

The numerical validation of the CURSA-SQ methodology 
showed high accuracy and extraordinary scalability, compared 
to the classical packet-based generation and simulation. Once 
validated, the CURSA-SQ methodology was applied on an 
illustrative application use case focused on a metro switch 
scenario, where traffic from different types of services were 
generated. Useful studies for network planning purposes were 
carried out, analyzing capacity exhaustion in the interfaces to 
anticipate upgrading processes, as well as delay as an indicator 
of the QoS of the provided services. 

Finally, just to mention that the range of applications of the 
CURSA-SQ methodology is remarkable and interestingly 
includes the use of traffic traces to train and validate machine 
learning algorithms for autonomic networking scenarios. 
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