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Generic Dijkstra for Optical Networks
Ireneusz Szcześniak, Andrzej Jajszczyk, Bożena Woźna-Szcześniak

Abstract—We present the generic Dijkstra shortest path al-
gorithm: an efficient algorithm for finding a shortest path in
an optical network, both in a wavelength-division multiplexed
network, and an elastic optical network (EON). The proposed
algorithm is an enabler of real-time softwarized control of large-
scale networks, and is not limited to optical networks. The
Dijkstra algorithm is a generalization of the breadth-first search,
and we generalize the Dijkstra algorithm further to resolve the
continuity and contiguity constraints of the frequency slot units
required in EONs. Specifically, we generalize the notion of a
label, change what we iterate with, and reformulate the edge
relaxation so that vertices are revisited, loops avoided, and worse
labels discarded. We also used the typical constriction during
edge relaxation to take care of the signal modulation constraints.
The algorithm can be used with various spectrum allocation
policies. We motivate and discuss the algorithm design, and
provide our free, reliable, and generic implementation using the
Boost Graph Library. We carried out 85000 simulation runs for
realistic and random networks (Gabriel graphs) of 75 vertices
with about a billion shortest-path searches, and found that
the proposed algorithm outperforms considerably three other
competing optimal algorithms that are frequently used.

Index Terms—Dijkstra algorithm, shortest path routing, elastic
optical network, wavelength-division multiplexing

I. INTRODUCTION

Routing of a single connection in an optical network is

one of the most important tasks of operating an optical

network, and one of many research problems of the optical

network design, planning, and operation. In the wavelength-

division multiplexed (WDM) network, the problem is called

the routing and wavelength assignment (RWA) problem, and in

the elastic optical network it is called the routing and spectrum

assignment (RSA) problem, or the routing, modulation, and

spectrum assignment (RMSA), if we take into account the

constraints of the signal modulation. Related problems exist

in other optical networks: in the optical transport network

(OTN) for the virtual and contiguous concatenation, or in the

space division multiplexing (SDM) network for the fiber-core

assignment.

In EONs, the optical spectrum (the erbium window) is di-

vided into fine frequency slot units (of, e.g., 6.25 GHz width),

or just units, as opposed to coarse fixed-grid channels (of,

e.g., 25 GHz width) of WDM networks. In EONs, contiguous
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units are concatenated to form a slot. Slots are tailored for a

specific demand, unlike WDM channels, thus making EONs

more spectrum efficient than WDM networks.

Future optical networks should deal with dynamic traffic,

where connections are frequently established, and are of short

duration as opposed to the quasi-static WDM connections that

are characteristic of traditional networks. Furthermore, given

the increasing deployment of optical networks, the network

densification, the softwarization of the network control, the

ever-increasing need for bandwidth and agility, further in-

creased by the content-oriented services, network and service

orchestration, and the next generation wireless network re-

quirements, a shortest optical path should be found fast. The

proposed algorithm enables real-time control of future optical

networks.

The RWA, RSA and RMSA problems come in many

versions, most notably static (a.k.a. offline) and dynamic

(a.k.a. online). The objective of the static version is to route

a number of demands along shortest paths in an unloaded

network using the least spectrum. The objective of the dynamic

version is to route a single demand along a shortest path in

a loaded network using the available spectrum. The static

version is nondeterministic polynomial time complete (NP-

complete), but the dynamic version is not, because it can be

solved tractably (though inefficiently) by finding a shortest

path in a number of filtered graphs.

Our novel contribution is the algorithm which efficiently

solves the dynamic RWA, RSA and RMSA problems. The

algorithm is the generalization of the Dijkstra shortest-path

algorithm. With simulations, we demonstrate its efficiency in

comparison to three other optimal algorithms frequently used

in research. The implementation of the algorithm using the

Boost Graph Library is available at [2]. We published the first

implementation of the algorithm in 2013 [3].

The shortest path Dijkstra algorithm is a premier graph

algorithm, amenable to various adaptations due to its simple

and clever design. Dijkstra is optimal (i.e., it finds a shortest

path) and efficient (no better algorithm has been proposed

yet after half a century since it was proposed), and follows

the label-setting paradigm, as opposed to the label-correcting

paradigm [4]. At first look, our generalization seems to discard

the label-setting paradigm in favor of the label-correcting

paradigm, because we allow for revisiting vertices, which

Dijkstra does not do, and which is a hallmark of the label-

correcting algorithms. But this is not so; the proposed algo-

rithm is still a label-setting algorithm, only with a generalized

notion of a label and reformulated edge relaxation.

The paper is organized as follows. In Section II we review

related works, in Section III we define the research problem,

in Section IV we describe the proposed algorithm, and in

Section V we report on the simulation results. Finally, Section
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VI concludes the paper.

II. RELATED WORKS

We extended our conference paper [1] in a number of

significant ways. First, we refined the algorithm description by

defining better the relation between labels. Second, we took

into account the signal modulation constraints. Third, since

the proposed algorithm is not heuristic, we evaluated its per-

formance in comparison with three other optimal algorithms,

and not with heuristic algorithms as before.

The proposed algorithm was inspired by the generic pro-

gramming paradigm which is based on mathematical abstrac-

tion: generic data structures and algorithms can operate on

any algebraic structure, provided it has the required properties,

such as operations or ordering relations [5]. We call the

proposed algorithm the generic Dijkstra algorithm as a tribute

to generic programming.

The dynamic RWA, RSA, and RMSA problems are defined

in the literature in two different ways. First, they can be defined

to optimize the overall network performance expressed in,

e.g., the bandwidth blocking probability for a set of demands,

bearing similarity to the static version, thus this problem is

considered hard [6]. Second, these problems can be defined to

optimize a single connection (i.e., to find a shortest path or a

path of minimal cost), since in an operational network requests

usually arrive sequentially [7]. We concentrate on the second

definition of the dynamic RWA, RSA, and RMSA problems,

i.e., we optimize a single connection.

The static RWA was proven to be NP-complete nearly

three decades ago, and then the static RSA was proven NP-

complete too [8]. The status of the single-connection dynamic

RWA, RSA, and RMSA problems was unclear: no proof of

NP-completeness was proposed, but heuristic algorithms and

linear-programming formulations were proposed and reviewed

[9], [10], [11].

The dynamic RWA, RSA, and RMSA problems can be

solved inefficiently by finding shortest paths in filtered graphs.

A filtered graph retains only those edges which can support a

given slot. For a given demand and available modulations,

we compute set S of slots for which we filter the input

graph, and search for a shortest path. From among the shortest

paths found, the shortest one is selected. This algorithm,

termed filtered-graphs algorithm, is of O(|S| × |V | log |V |)
complexity, where V is the set of vertices of a (sparse, we

assume) graph. This computational complexity is the upper

bound, and a proof that these problems are tractable.

We argue that the filtered-graphs algorithm is inefficient

and we show through simulations on realistic networks that

the proposed algorithm is considerably faster than the filtered-

graphs algorithm. To the best of our knowledge, we are the first

to propose an optimal and efficient algorithm for the dynamic

routing problem, as simulated in realistic optical networks.

In [12] the authors report that by computing in advance the

set of slots that can be assigned to a demand, the complexity

added by the contiguity constraint is removed. We, in con-

trast, show that the time performance of the filtered-graphs

algorithm is worse than the time performance of the proposed

algorithm, because we process not a slot, but contiguous units,

which can include many slots.

In [13] the authors proposed an algorithm for solving the

dynamic RSA problem with the brute-force search strategy of

enumerating the paths capable of supporting a demand. The

algorithm does not use the edge relaxation to limit the search

space. The algorithm stores the complete paths in a priority

queue, and does not use the dynamic-programming principle

of reusing intermediate results, like Dijkstra does with node

labels. For these reasons, we refer to this algorithm as the

brute-force algorithm.

In [14] the authors proposed an algorithm, which checks

whether the consecutive paths provided by the Yen K-shortest

path (KSP) algorithm can support a demand. When K is

limited to some value (e.g., K = 10), we call this algorithm

the limited Yen KSP, and if there is no limit on K , we call

the algorithm the unlimited Yen KSP. The limited Yen KSP

algorithm is heuristic, while the unlimited Yen KSP is optimal.

If there is a path capable of supporting the demand, the

unlimited Yen KSP algorithm will eventually find this path,

but its K could be very large, possibly a million, even for

small graphs.

In [15], the authors proposed a dynamic RWA algorithm,

which is based on the algorithm in [16], and in turn based

on the Dijkstra-based algorithm proposed in [17]. In [17],

the authors introduced the transitive path domination relation

to solve the max-min problem, where the network resources

are continuous. This relation was adapted in [16] for discrete

network resources and then used [15] to model the availability

of wavelengths. That adaptation, however, leads to a less

efficient search, since it was defined with the ≥ relation for the

wavelength availability vector, which models the ⊇ set rela-

tion. We, in contrast, define the relation of the incomparability

of solution labels using the ) relation for a set of contiguous

units, and show that this relation is intransitive.

The authors in [15], and [16] report on the complexity of

their algorithms, which may be exponential. This complexity

is the result of the way the path cost vectors are defined,

compared, and produced when an edge is traversed. In [15]

the path cost vector stores the availability information of all

wavelengths of a path. The edge traversal produces paths

which are non-dominant, but which can have overlapping

wavelengths, thus possibly leading to the explosion of the

search space (the set of non-dominant paths). We, in contrast,

store in a solution label a single sequence of contiguous

units (represented by two integer numbers), which is faster

to process. During the edge relaxation, we produce a set of

incomparable labels (without overlapping units), which limits

the search space (the set of incomparable labels).

The algorithm in [15] finds an optimal solution in two

phases: in the first phase, the complete set of non-dominated

solutions is obtained, and in the second phase an optimal

solution is selected. In contrast, our algorithm can make

optimization decisions for intermediate solutions by sorting the

priority queue elements, taking into account, e.g., the spectrum

allocation policy. Thus, our algorithm has a single phase, and

produces a single result, which is more efficient.

In [14], the authors also proposed a heuristic algorithm,
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termed a modified Dijkstra algorithm, which is the Dijkstra

algorithm with the constrained edge relaxation, where a can-

didate path is rejected if it cannot support a demand.

In [18], the authors proposed a heuristic algorithm, which

is a constrained Yen K-shortest path algorithm that drops the

path deviations incapable of supporting a demand. The Yen

algorithm delegates the shortest path search to the Dijkstra

algorithm.

The limited Yen, the modified Dijkstra, and the constrained

Yen algorithms, which find a candidate path with the Dijkstra

algorithm, fail to find a shortest path meeting the spectrum and

modulation constraints, when there is a shorter path unable to

meet the spectrum and modulation constraints, because that

shorter path diverts the algorithms into a dead end.

III. PROBLEM STATEMENT

Given:

• directed multigraph G = (V,E), where V = {vi} is a

set of vertices, and E = {ei} is a set of edges,

• cost function cost(ei), which gives non-negative cost

(length) of edge ei,
• available units function AU(ei), which gives the set of

available units of edge ei, which do not have to be

contiguous,

• s and t are the source and target vertices of the demand,

• a decision function of monotonically increasing require-

ments, which returns true if a candidate solution (the

given contiguous units at the given cost) can support the

demand, otherwise false,

• the set of all units Ω on every edge.

Find:

• a shortest path (a sequence of edges),

• continuous and contiguous units.

We refer to a set of contiguous units as a CU. We denote

a CU with the units starting at a and ending at b inclusive as

[a . . b]. For instance, [0 . . 2] denotes units 0, 1 and 2. A set of

units can be treated as a set of CUs. For instance, {0, 1, 3, 4, 5}
and {[0 . . 1], [3 . . 5]} are the same.

Two CUs are incomparable, when one is not included in the

other. For instance, [0 . . 2] is incomparable with [2 . . 3]. We

denote the incomparability of CUs with the ‖ relation. For

instance, [0 . . 2] ‖ [2 . . 3].
We intentionally stated the problem generically by intro-

ducing the decision function to consider the RWA, RSA, and

RMSA problems at once. The decision function is responsible

for accepting or rejecting a candidate solution, and gives a user

leeway to define what an acceptable candidate solution is. For

RWA, the function should check whether a CU has at least

one unit (wavelength), for RSA, whether a CU has at least the

number of contiguous units required by the demand, and for

RMSA, whether a CU has at least the number of contiguous

units required by the demand at a given cost (distance). The

decision function could also check other parameters such as

the signal quality.

The requirements of the decision function should be mono-

tonically increasing as the cost increases, i.e., a candidate

solution rejected at a given cost could not be accepted at a

s i t

e1
(1, [1 . .2])

e2
(2, [1 . .3])

e3
(10, [2 . .3])

Fig. 1: Example for vertex revisiting and looping.

higher cost. It is a valid assumption, since as the distance

grows, the number of required contiguous units can only grow.

This assumption allows us to reject a candidate solution due

to its insufficient number of the available contiguous units,

because as distance grows, that rejected solution would fail

to provide the same or greater number of required contiguous

units anyway.

The demand bitrate is not a given of the stated problem,

because that would narrow the problem statement. If need

be, the demand bitrate should be considered by the decision

function. In Section V we use the proposed algorithm to solve

the RMSA problem, and there, in Algorithm 3, we define a

decision function which takes into account the demand bitrate.

IV. PROPOSED ALGORITHM

We generalize and constrain the shortest path Dijkstra

algorithm to find a shortest path in EONs for a given demand.

The generalization is novel, and the constriction is trivial.

The generalization resolves the unit continuity and contiguity

constraints, while the constriction takes into account the signal

modulation constraints.

In label-setting algorithms, a label is associated with a

vertex, and gives information on what cost and how to reach

that vertex from the source. In Dijkstra, the label is defined

as a pair of a cost and a preceding vertex. Each vertex has at

most one label, which we call the vertex label. For a given

vertex, the vertex label is initially tentative, because it can be

updated by the edge relaxation, and then becomes permanent

when the vertex is visited.

The Dijkstra algorithm is label setting in that once a vertex

is visited, its label is set for good (the status of the vertex label

changes from tentative to permanent), but before that happens,

the vertex label converges to its optimum by edge relaxation.

In Dijkstra, when relaxing edge e, a tentative vertex label

is updated with a better candidate label. The tentative vertex

label, if it exists (i.e., it has been found by some earlier

relaxation), is the tentative vertex label of the target vertex

of edge e. The candidate label is the label produced for edge

e, and tells the cost of reaching the target vertex of edge e.

The candidate label is better than the tentative vertex label if

it has a lower cost.

A. Observations on the stated problem

The following three observations shaped the generalization.

1) Revisit vertices: In Dijkstra, a vertex is visited only once

for a single label. We, however, want to revisit a vertex even

for a label of a higher cost than the vertex label, because it
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s i t

e1
(1, [1 . . 2])

e3
(1, [1 . . 3])

e2
(2, [2 . . 3])

e4
(1, [1 . . 3])

Fig. 2: Example for discarding worse labels.

may eventually yield a shortest path capable of supporting a

given demand.

To demonstrate vertex revisiting, we show an example in

Fig. 1, where an edge is annotated with the length and the

available units, e.g., (1, [1 . . 2]) says the edge is of length 1

with units 1 and 2 available. We are searching for a shortest

path with two units from vertex s to vertex t.
In the first iteration of Dijkstra, vertex s is visited, vertex i

is discovered along edge e1, and the discovery along edge e2
is discarded because of a higher cost. In the second iteration,

vertex i is visited, and now we know that we can get to vertex

i along edge e1 at cost 1, and with [1 . . 2]. The problem is that

vertex t cannot be discovered, because the spectrum continuity

constraint would be violated: the demand requires two units,

vertex i is visited with [1 . . 2], but AU(e3) = [2 . . 3]. We reach

a dead end; the search stops with no solution.

Continuing with the example, and allowing for vertex revis-

iting, now vertex i is discovered along both parallel edges e1
and e2, and none of the discoveries is discarded. Now there

are two tentative labels for vertex i. Then vertex i is visited

along edge e1 at cost 1 with [1 . . 2], and then revisited along

edge e2 at cost 2 with [1 . . 3], thus allowing vertex t to be

discovered, end eventually visited at cost 12 with [2 . . 3].
2) Avoid loops: In Dijkstra, loops are avoided, because an

edge is relaxed only if it yields a candidate label of a lower

cost. Since edge costs are non-negative, loops cannot decrease

cost, and so they will not be allowed by edge relaxation.

The problem is we will find loops if we revisit vertices at

higher costs. For instance, considering the same example in

Fig. 1: when we visit vertex i, we rediscover vertex s and later

revisit it, thus finding the loop with edges e1 and e2.

To avoid loops, we refine when we can revisit a vertex. We

still allow a revisit at a higher cost, but only for a CU not

included in the CUs of previous visits. Therefore, a vertex is

visited and possibly revisited always at the lowest cost for a

CU not included in the CUs of previous visits.

For example, in Fig. 1, we start the search by visiting vertex

s at cost 0, and with the CU of Ω. While visiting vertex i at

cost 1, and with [1 . . 2], we rediscover vertex s along edge e2,

but the edge will not be relaxed, because vertex s was already

visited with Ω, which includes [1 . . 2]. This example would

hold even if the loop did not increase the cost.

3) Discard labels: In Dijkstra, when a tentative vertex label

is updated by the edge relaxation, the previous value of the

tentative label is discarded. In generic Dijkstra, when we relax

an edge, we can discard a number of tentative labels.

For instance, in Fig. 2, while visiting vertex s, three edges

are relaxed: first edge e1 is relaxed at cost 1, and with [1 . . 2],
next edge e2 is relaxed at cost 2, and with [2 . . 3], and, finally,

edge e3 is relaxed at cost 1, and with [1 . . 3]. The results for

edges e1, and e2 are discarded, because the result for edge e3
is better: at cost 1 it offers [1 . . 3], which includes both [1 . . 2],
and [2 . . 3]. Thus, vertex i is visited at cost 1, and with [1 . . 3].

B. Changes to the Dijkstra algorithm

Based on the observations, we motivate the changes to the

Dijkstra algorithm that make it generic, and applicable to the

stated problem.

1) Labels: We define a label as a tuple of cost, a CU, and

a preceding edge, to keep track of the CU used. For instance,

label (1, [1 . . 2], e1) says that a vertex is reached at cost 1 and

with the CU of [1 . . 2] along edge e1. To allow for multigraphs,

we keep a preceding edge, not a preceding vertex, in the label.

The cost of label li we denote as cost(li), and the contiguous

units as CU(li). This label can be a candidate label, a tentative

vertex label, or a permanent vertex label.

Label li is better than label lj (or label lj is worse than

label li), denoted by li < lj , if either:

1) label li offers a CU which includes the CU of label lj
at a lower cost than the cost of label lj , i.e., cost(li) <
cost(lj) and CU(li) ⊃ CU(lj), or

2) label li offers a CU which properly includes the CU of

label lj at a cost that is lower than or equal to the cost of

label lj , i.e., cost(li) ≤ cost(lj) and CU(li) ) CU(lj).

Our < label relation is a strict partial order, since it is

irreflexive and transitive [19]. Furthermore, in a strict partial

order some pairs can be incomparable. We say that labels li
and lj are incomparable, denoted by li ‖ lj , when neither li <
lj nor lj < li holds. Indeed, our labels can be incomparable.

However, our < order is not a strict weak order, because

the incomparability of labels is not transitive. For example,

while (0, [1 . . 1]) ‖ (2, [1 . . 2]) and (2, [1 . . 2]) ‖ (1, [1 . .1])
hold, (0, [1 . . 1]) ‖ (1, [1 . . 1]) does not, because (0, [1 . . 1]) <
(1, [1 . . 1]) holds.

Table I shows the label relations depending on their costs

and CUs, where relation li > lj means lj < li.

When we rediscover or revisit a vertex, we grow a set of

incomparable labels, i.e., for any labels li and lj that are

different, li ‖ lj is true, or equivalently li < lj is false. The

incomparability of labels insures that in the set we do not store

a label that is worse than some other label.

2) Iteration: In an iteration, Dijkstra processes a tentative

vertex v (i.e., a vertex with a tentative label) of the lowest

cost, while generic Dijkstra processes a tentative label of the

lowest cost, where the edge of the tentative label has the target

vertex v. The labels we iterate over are provided by the edge

relaxation.

An iteration corresponds to visiting (or revisiting) vertex

v. In Dijkstra, only the status of the label of vertex v
changes from tentative to permanent. In generic Dijkstra, we

insert the tentative label into the set of permanent (optimal)

incomparable labels of vertex v.

3) Relaxation: We reformulate the edge relaxation. In Di-

jkstra, an edge is relaxed when a candidate label is better than

the vertex label. In generic Dijkstra, we relax an edge when
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TABLE I: Relations between labels li and lj depending on their costs and CUs.

CU(li) ) CU(lj) CU(li) = CU(lj) CU(li) ( CU(lj) CU(li) ‖ CU(lj)
cost(li) < cost(lj) li < lj li < lj li ‖ lj li ‖ lj
cost(li) = cost(lj) li < lj li = lj li > lj li ‖ lj
cost(li) > cost(lj) li ‖ lj li > lj li > lj li ‖ lj

Algorithm 1 Generic Dijkstra

In: graph G, source vertex s, target vertex t
Out: a pair of a shortest path, and a CU

Here we concentrate on permanent labels l.

Qs = {(0,Ω, e∅)}
while Q is not empty do

l = pop(Q)
e = edge(l)
v = target(e)
// Add l to the set of permanent labels of vertex v.

Lv = Lv ∪ {l}
if v == t then

break the main loop

for each out edge e′ of v in G do

relax(e′, l)
return trace(L, t)

there is no better vertex label than the candidate label. A small

tweak.

This tweak makes no difference when the relation between

labels is a strict total order, as in Dijkstra. However, for our

label order, the tweak entails we relax an edge not only

for better labels, but also for incomparable labels. A big

difference.

In Dijkstra, a vertex has a single label, which is either

tentative or permanent. In generic Dijkstra, a vertex has a

set of tentative labels, and a set of permanent labels. Labels

in these sets are incomparable: no label in the two sets is

better than some other label, i.e., for any two different labels

(tentative or permanent) li and lj of the given vertex, li < lj
is false. Our edge relaxation maintains the labels in the two

sets incomparable.

As part of the relaxation we discard those tentative labels

(of vertex v′), which are worse than the candidate label. The

permanent labels are left alone, because they are optimal.

C. Constriction

Typically, a constriction can be introduced in the edge

relaxation, where we drop a candidate label if it does not meet

some conditions. For instance, to limit the length of a shortest

path, we drop a candidate label if its cost is greater than a

given value. We use the decision function introduced in the

problem statement for the constriction.

D. Algorithm

Algorithm 1 presents the complete algorithm with the typi-

cal Dijkstra algorithm structure, where the main loop processes

the labels of the priority queue Q sorted in the ascending order

of the label cost.

Algorithm 2 relax
In: edge e′, label l
Here we concentrate on tentative labels l′.

c = cost(l)
c′ = c+ cost(e′)
C = CU(l)
v′ = target(e′)
for each CU C′ in C ∩ AU(e′) do

l′ = (c′, C′, e′)
if decide(l′) then

if ∄lv′ ∈ Lv′ : lv′ < l′ then

if ∄qv′ ∈ Qv′ : qv′ < l′ then

// Discard tentative labels qv′ such that l′ < qv′ .

Qv′ = Qv′ \ {qv′ ∈ Qv′ : l′ < qv′}
// Add l′ to the set of tentative labels of vertex v′.

Qv′ = Qv′ ∪ {l′}

The priority queue Q is a set of Qv, i.e., Q = {Qv}, where

Qv is the set of tentative incomparable labels of vertex v. The

solution of the search is maintained in L = {Lv}, where Lv is

the set of permanent (optimal) incomparable labels of vertex

v.

To boot the search, we initialize Qs = {(0,Ω, e∅)} to make

all units available at vertex s at cost 0. The null edge e∅, which

is not present in graph G, marks the beginning of a shortest

path.

In every iteration of the main loop, we process label l of the

lowest cost popped from queue Q, and along edge e we visit

vertex v. Function target(e) gives the target vertex of edge

e with the special case of target(e∅) == s, i.e., the source

vertex. If v == t, then we found a solution and break the

main loop. Otherwise, we try to relax each edge e′ leaving

vertex v.

Algorithm 2 shows the relaxation of edge e′ reached with

label l. We relax the edge for a set of incomparable candidate

labels l′, which we produce for each CU C′ in the set obtained

by intersecting the CU of label l and the available units of

edge e′. The candidate labels l′ have the same cost c′ and

edge e′, and differ in the CU C′ only. We examine label l′ if

the decision function decide(l′) permits.

Next, if there is no permanent or tentative label of vertex

v′ better than l′, we relax the edge by first discarding any

tentative label of vertex v′ which is worse than l′, and

then adding l′ to Qv′ . Edge relaxation replenishes the queue

with tentative labels, and the algorithm keeps iterating until

destination vertex t is reached, or the queue is empty.

The required spectrum allocation policy (e.g., first-fit, best-

fit) can be taken into account by the priority queue while

popping a label. From among the labels of the lowest (equal)
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cost, the priority queue should pop the label with the CU

preferred by the given spectrum allocation policy. For instance,

for the best-fit spectrum allocation policy, the queue should

pop the label not only of the lowest cost, but also of the CU

with the lowest number of units.

Finally, once we leave the main loop, function trace(L, t)
traces back from node t a shortest path found, if any, based on

the vertex labels L, and returns a pair of a path and a CU. The

function selects, according to the spectrum allocation policy

used, the CU with the required number of units from the CU

of the vertex label of node t, which may have more units than

required. We do not present the function, since it is the typical

Dijkstra path back-tracing.

To be general, we stated and solved the problem for a di-

rected multigraph, but the algorithm can be used for undirected

multigraphs too. In our simulations we modeled an EON with

an undirected graph, and were able to use our algorithm.

V. SIMULATIONS

We compared the memory and time performance of the

proposed algorithm applied to the dynamic RMSA problem

with three other optimal algorithms: the filtered-graphs algo-

rithm, the brute-force algorithm, and the unlimited Yen KSP

algorithm.

Early in our simulation studies, we realized that the unlim-

ited Yen KSP is very time inefficient, which prohibited using

it in our large-scale simulations. In one case, Yen produced

over three hundred thousand shortest paths in 24 hours which

had not met the spectrum continuity and contiguity constraints.

For this reason, we were unable to include the unlimited Yen

KSP algorithm in the comparison.

We report the simulation results only for the first-fit spec-

trum allocation policy, since the best-fit and random-fit policies

performed worse for all algorithms compared.

To make the comparison unbiased, we implemented all

algorithms with a great attention to detail, and an emphasis on

time and memory performance. We especially carefully treated

the filtered-graphs algorithm, and implemented it using our

generic Dijkstra implementation, which is ultra efficient, em-

ploying the latest C++17 functionality, such as the extraction

of the associative-array elements with the move semantics.

We made sure that the proposed algorithm and implemen-

tation were correct with unit tests, assertions, and extra code

that validated the optimality and integrity of the results found.

We validated, with the filtered-graphs algorithm, not only the

final results found, but also the intermediate results. In the

production runs, we disabled the assertions and the extra code,

so that the time measurements were not disturbed.

In the simulations, we concentrated on the long-haul net-

works with 75 nodes, since they model the current and future

optical transport networks well. However, we also carried

out simulations for legacy long-haul networks with 25 nodes,

and found that the brute-force algorithm, and the proposed

algorithm performed comparably in terms of memory usage

(using tens of kB), and execution time (taking milliseconds),

while the filtered-graph algorithm was about a hundred times

slower, but used only hundreds of bytes.

TABLE II: Statistics of the generated Gabriel networks.

Measured quantity Min Average Max Variance

number of edges 119 131.53 145 33.84
edge length 1 97.12 499 2712.19
vertex degree 1 3.51 8 1.21
shortest-path hops 1 5.96 20 8.62
shortest-path length 1 510.45 1369 59518.11

We also carried out fragmentary simulations for large, ultra-

dense random networks with 100 nodes and 1000 edges. We

found that the brute-force algorithm needed very large amounts

of memory (more than 96 GB), which we did not have. The

proposed algorithm on average was using a few hundred kB,

and taking milliseconds. The filtered-graph algorithm was on

average a thousand times slower, and used only a few kB.

A. Simulation setting

The simulation setting had three major parts: the network

model, the traffic model, and the signal modulation model.

1) Network model: We generated a set of random long-

haul graphs with random traffic to obtain reliable statistical

results for various populations of interest. Specifically, we used

Gabriel graphs, because they have been shown to model the

properties of the long-haul transport networks very well [20].

A network model is defined by a network graph, and the

number |Ω| of edge units. We randomly generated 100 Gabriel

graphs. Each graph had 75 vertices, which were uniformly

distributed over a square area with the typical density of one

vertex per 104 km2. In generating Gabriel graphs, the number

of edges cannot be directly controlled, as it depends on the

location of vertices, and on the candidate edges meeting the

conditions of the Gabriel graph. The statistics of the generated

graphs are given in Table II.

For |Ω|, we used the three values of 160, 320, and 640. For

the conventional band (C-band), 160 units would require the

spacing of 25 GHz, 320 units the spacing of 12.5 GHz, and

640 units the spacing of 6.25 GHz.

2) Traffic model: Demands arrive according to the ex-

ponential distribution with the rate of λ demands per day.

The probability distribution of the demand holding time is

also exponential with the mean of δ days. The end nodes

of a demand are different and chosen at random. The num-

ber of units a demand requests follows the distribution of

(Poisson(γ − 1) + 1) with the mean of γ, i.e., the Poisson

distribution shifted by one to the right, to ensure that the

number of units is greater than zero.

We describe a demand with a requested number of units,

and not with a bitrate, to keep the discussion simple, and

because the algorithms operate on units, and not on bitrate.

If needed, a demand can be described with bitrate, and the

required number of units can be obtained using function n1(b),
which should take into account the technical details of the

specific modulation and optical hardware used.

To investigate the difference in algorithm performance as γ
increases, we used two values of 1 and 10 for γ. Using γ =
1 approximates the algorithm performance for a traditional

WDM network.
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We argue that the choice of a traffic model is irrelevant

to our study as the traffic only produces the input data (i.e.,

the state of the graph) for the routing algorithms, and we

chose the exponential and Poisson distributions to keep the

discussion simple. The question is how the algorithms perform

under the given utilization, regardless of how the utilization

was obtained, which could have been equally well produced

randomly.

We express the mean demand arrival rate λ as a function of

the offered load µ as estimated by (1), where α is the mean

number of edges of all shortest-paths in a network being sim-

ulated. We define the offered load µ as the ratio of the number

of units demanded to the number of units in the network. The

average number of demanded units is λδαγ, since there are λδ
active connections (assuming every demand has a connection

established), and since in an unloaded network a connection

takes on average αγ units. The number of units in the network

is |E||Ω|, and so the offered load µ = λδαγ/(|E||Ω|), from

which (1) follows.

λ(µ) =
µ|E||Ω|

δαγ
(1)

We define the network utilization as the ratio of the number

of units in use to the total number of units on all edges.

We cannot directly control the network utilization, but only

measure it in response to the offered load µ.

3) Signal modulation model: In EONs, signal modulation

can be adapted to the quality of the optical path, which

depends on the length of the path and the optical components

traversed. If we assume that the quality of the optical path

depends mostly on its length, then a modulation can be

characterized by the reach, i.e., the maximum length of a path

above which the modulation cannot be used, because the signal

would suffer unacceptable bit error rate. The reach increases

as the spectral efficiency of the modulation decreases.

In [21], the authors experimentally demonstrated that if,

for a demand requesting bitrate b in b/s, the most spectrally-

efficient modulation available of reach rM requires nM (b)
units, then a less spectrally-efficient modulation of reach rm
requires (M + 1 − m)nM (b) units, where m = M, (M −
1), ..., 1 is integer and is called the modulation level, and

M is the modulation level of the most spectrally-efficient

modulation considered. Reach rm doubles for the next less

spectrally-efficient modulation (i.e., m decreases), as given by

(2). Therefore, for a path of length rM < d ≤ r1, we need to

use modulation level m given by (3), derived from (2) with

the assumption that m is integer. For d ≤ rM we use m = M ,

and for r1 < d we have no modulation available.

rm = rM2M−m (2)

m(d) = M + 1− ⌈log2(2d/rM )⌉ (3)

However, the assumption that the number of required units

is an integer multiple of nM (b), because m is integer, is too

strict. The bit error rate, which is increasing with the increasing

path length d, can be lowered by using more units for the

overhead of the error correction codes. In the most general

Algorithm 3 decide
In: label l′

Out: boolean

// Make sure that l′ has the required number of units.

return n(b, cost(l′)) ≤ |CU(l′)|

case, the number of required units should increase by one.

For this reason, we allow the number of required units to be

any integer from nM (b) to MnM (b) depending on distance

0 ≤ d ≤ r1, as given by (4).

n(b, d) =











nM (b) if d ≤ rM

∞ if r1 < d

⌈nM (b)log2(2d/rM )⌉ otherwise

(4)

The decision function in Algorithm 3 uses (4) to check

whether candidate label l′ is able to support the demand of

bitrate b, i.e., whether l′ has at least the number of contiguous

units required for bitrate b at the cost (distance) of l′.
In our simulations we assumed r1 equals the length of the

longest of all shortest paths multiplied by 1.5, which allows

us to consider paths which were far longer than an average

shortest path. Using (2), we calculated rM for (4). We tried

to increase the multiple from 1.5 to 2.0, but the brute-force

algorithm would cause the simulations to run out of memory.

We assumed M = 4.

B. Runs and populations

A simulation run simulated 100 days of a network in

operation. The parameters of a simulation run were: the

network graph, the number of units |Ω|, the mean number of

demanded units γ, the offered load µ, and the mean connection

holding time δ. A simulation run reported the mean network

utilization, and, for each of the algorithms evaluated, the mean

and maximum memory used, and the mean and maximum

times taken by a shortest-path search.

When a demand arrived, we searched for an optical path

using all evaluated algorithms. We made sure that either all

algorithms found no result, or that all results found were of the

same cost and the same number of contiguous units. The result

of the proposed algorithm was used to establish a connection.

During a shortest-path search we measured the maximum

number of 32 bit words required by the largest data structures

of the algorithm evaluated: the sets of tentative and permanent

labels of the proposed algorithm, the vertex labels and the

priority queue of the filtered-graphs algorithm, and the priority

queue of the brute-force algorithm. We tracked separately the

words required to store the costs, edges, and units. We stored

a cost in one word, an edge in two words, a single unit

in one word, and a CU in two words. Using the obtained

memory measurements of a shortest-path search, we calculated

the mean and maximum memory used by each algorithm

throughout a simulation run. With careful implementation and

testing, we made sure that the memory measurement had

negligible effect on the time measurement.
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Time measurement required special attention, because we

ran simulations using a supercomputing infrastructure. While

we were able to select one specific hardware type for all our

simulations, we had little control over how much the hardware

was loaded with the processes of other users, which could have

severely degraded the performance of our simulations. For this

reason we repeated a simulation run after a few hours, and for

every time measurement, we took the minimum of the two

values obtained, based on which we calculated the mean and

maximum time taken by each of the algorithms throughout a

simulation run.

We are interested in the results for a statistical population

of simulation runs, rather than in the results for a single

simulation run only, because a simulation run could have been

an outlier with unusual results due to its randomly-generated

network and traffic. To estimate a mean result for a population,

we carried out the simulation runs which were the population

samples, and calculated a sample mean of all the mean results

reported by the simulation runs. We estimated the pessimistic

algorithm performance of a population by a sample maximum,

which is the maximum of the maximum results reported by

the simulation runs.

In a given population there were 100 simulation runs whose

parameters differed only with the network model. Hence,

we had 100 Gabriel graphs generated, and used for every

population. We had 102 populations, because we varied 3

values of the number of units |Ω| (160, 320, 640), 17 values

of the offered load µ (0.05, 0.075, 0.1, 0.125, 0.15, 0.175,

0.2, 0.3, 0.45, 0.55, 0.65, 0.75, 1, 1.25, 1.5, 1.75, and 2),

and two values of the mean number of demanded units γ
(1, 10). For all populations, the mean connection holding

time δ = 10 days was constant. In total we carried out

10200 simulation runs (102 populations × 100 samples),

which then we repeated. For the proposed algorithm and the

filtered-graphs algorithms, the sample means credibly estimate

the mean results of populations, since their relative standard

error is usually around 1%. For the brute-force algorithm, the

sample means frequently have the relative standard error of

around 20%.

C. Simulation results

Figure 3 shows the sample means and the sample maxima

of the time taken and memory used by a shortest path

search, regardless of whether the search was successful or not.

The results are shown on a logarithmic scale as a function

of network utilization. The curves are plotted solid for the

proposed algorithm, dashed for the filtered-graphs algorithm,

and dotted for the brute-force algorithm. The sample means

are plotted thin, and the sample maxima thick. Each curve

is drawn using 17 data points for different values of µ. The

error bars of the 95% confidence interval, appear only for the

sample means of the brute-force algorithm, since their relative

standard error was high, frequently around 20%, while for the

other sample means the error bars were too small to plot.

Figure 3 has 12 subfigures in four rows and three columns.

The first and the second rows show the time results for γ = 1,

and γ = 10, respectively, and the third and fourth rows show

the memory results for γ = 1, and γ = 10, respectively. The

first column shows the results for |Ω| = 160, the second for

|Ω| = 320, and the third for |Ω| = 640. We use the same

scales in the various plots to allow for easy comparison.

The sample mean time results for γ = 1 show that the

proposed algorithm was usually about 10 times faster and

at most 20 times faster than two other algorithms, except at

very heavy utilization, where most searches ended up with

no solution, and where the brute-force algorithm was able

to determine this more quickly. As the utilization increased,

the mean time of every algorithm decreased, as the solution

was less likely to exist. As the number of units increased

from 160 to 320, and from 320 to 640 the mean time results

increased about twice for the proposed algorithm and the

filtered-graphs algorithm, and stayed about the same for the

brute-force algorithm.

The sample mean time results for γ = 10 show that the

proposed algorithm was hundreds of times faster than two

other algorithms, and for the case of 640 units and light

utilization, the proposed algorithm was about 500 times faster

than the filtered-graphs algorithm.

As to the pessimistic time performance, i.e., the sample

maximum time taken, our algorithm and the filtered-graphs

algorithm usually took a few seconds, while the brute-force

algorithm usually took hundreds of seconds, which makes a

gap of two orders of magnitude.

The memory results are clear-cut: the filtered-graphs algo-

rithm performed the best (since it used the Dijkstra algorithm),

our algorithm performed very well, and the brute-force algo-

rithm performed the worst. While the sample mean memory

results of the brute-force algorithm are acceptable (even better

than those of the proposed algorithm for heavy utilization),

the sample maximum memory results reveal the unacceptable

memory performance of the brute-force algorithm: the brute-

force algorithm required about six orders of magnitude more

memory than the proposed and the filtered-graphs algorithms.

As the number of units increased from 160 to 320, and from

320 to 640 the mean memory results increased almost twice

for our algorithm, for the filtered-graphs algorithm the results

expectedly stayed the same, and for the brute-force algorithm

increased about 10%. The memory used by our algorithm

and the brute-force algorithm were smaller for γ = 10 in

comparison with γ = 1, because the spectrum was fragmented

less.

Figure 4 shows the stacked plots of the maximum number

of required memory words by our algorithm (Fig. 4a), the

filtered-graphs algorithm (Fig. 4b), and the brute-force algo-

rithm (Fig. 4c). In each of the plots there are 17 × 3 data

points, because for the 17 values of the offered load µ we

report the maximum number of required costs, edges, and

units. The results are at the order of 104 for our algorithm, 102

for the filtered-graphs algorithm, and 109 for the brute-force

algorithm. Clearly, the filtered-graphs algorithm performs best

(requiring at most 1.2 kB), followed by our algorithm (requir-

ing at most 160 kB), and then followed by the brute-force

algorithm (requiring at most 10 GB). For our algorithm, the

memory was used in 20% for costs, in 40% for edges, and

40% for units, since a label has one cost (one word), one edge
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Fig. 3: Simulation results: the sample means and maxima of the time taken and memory used by the evaluated algorithms.

TABLE III: Summary of algorithm comparison.

Algorithm Pros Cons

generic Dijkstra fastest complex

filtered-graphs ultra-low memory usage slow

brute-force good for small networks fails for large networks

(two words), and one CU (two words). For the filtered-graphs

algorithm, the memory was used mainly to store edges, and

costs, since a label has one cost and one edge. The brute-force

algorithm used most of its memory to store the units of the

paths in the priority queue.

Table III summarizes the algorithm comparison.

VI. CONCLUSION

We proposed a novel generalization of the Dijkstra shortest

path algorithm for finding a shortest path in the wavelength-

division multiplexed networks and the elastic optical networks.

Our extensive simulation studies show that the proposed

algorithm has a small memory footprint and is considerably

(even hundreds of times) faster than other routing algorithms

that are frequently utilized.

We provide no proof of correctness or complexity analysis.

However, with robust simulations, we corroborated the cor-

rectness and efficiency of the proposed algorithm.

We presented the algorithm in the setting of optical net-

works, but we believe that the novel ideas we introduced
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Fig. 4: Simulation results: the maximum number of required words by the evaluated algorithms.

can be applied in the routing in the multilayer and wireless

networks to make their control quicker. For instance, the

algorithm could be used to solve efficiently the contiguous

frequency and time resource allocation in the wireless orthog-

onal frequency-multiplexed wireless networks.

There are a number of directions for future work. First,

the algorithm could be adapted for parallel execution, making

it even faster. Second, the algorithm could be turned into

a distributed algorithm, very much like a distance-vector

algorithm. Next, the algorithm could be extended further to

be applicable to multilayer networks or space-division multi-

plexed networks. Finally, the algorithm could be extended to

take into account signal regeneration, spectrum conversion, or

inverse multiplexing.
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