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Convergence Comparison of the CMA and
ICA for Blind Polarization Demultiplexing
Pontus Johannisson, Henk Wymeersch, Martin Sjödin, A. Serdar Tan, Erik Agrell, Peter A. Andrekson,

and Magnus Karlsson

Abstract—An algorithm based on independent component
analysis for blind polarization demultiplexing in a coherent
transmission system is presented. A comparison with the
constant modulus algorithm in terms of the convergence
properties is performed, and it is found that the suggested
algorithm has a significantly faster convergence rate and does
not have any singularity problems. We also demonstrate that
the algorithm convergence is strongly dependent on the choice
of starting condition and show how this can be exploited to
increase the convergence rate.

Index Terms—Coherent detection; Demultiplexing; Optical
fiber communication; Optical fiber polarization.

I. INTRODUCTION

D ual-polarization transmission allows for a doubling of
the data rate in coherent optical transmission systems

and the polarization demultiplexing at the receiver is then
typically performed through digital signal processing. Several
approaches are possible and, following the early attempts [1],
polarization demultiplexing has been performed, for example,
by channel estimation [2] and by assuming the transmitted
data to be known [3]. However, for the time being, the most
commonly used algorithm seems to be the constant modulus
algorithm (CMA) [4]. The CMA is a blind algorithm and
requires no training, but it has the drawback that the two
polarization tributaries can converge to the same channel. This
problem is due to the choice of cost function and requires
ad hoc solutions [5,6]. In addition, the CMA is not designed
for non-constant modulus formats such as 16 quadrature am-
plitude modulation (16-QAM), implying that performance im-
provements could be expected by using a better cost function.

Independent component analysis (ICA) is a class of
algorithms for separating received linear combinations of
signals [7,8]. The underlying assumption is that the trans-
mitted signals are statistically independent. Already from this
starting point it is clear that the same type of singularity
that exists in the CMA cannot occur: if the two polarization
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tributaries converge to the same channel, then the output
channels are not independent.

Although ICA is well known in the field of signal processing,
its application to optical communication systems has not
attracted much attention. In the first suggestion of using ICA
for polarization demultiplexing by Zhang et al. [9], it was
concluded that no singularity is present in the ICA algorithm
and that the tracking performance is similar to the CMA.
Another ICA approach, called magnitude-bounded blind source
separation, has been suggested by Öktem et al. [10,11], and
a simpler algorithm based on signal kurtosis optimization
has been investigated by Xie et al. [12]. The algorithm
presented here uses a different statistical description but
otherwise similar algorithm design approach to [9]. The two
other algorithms are significantly different and use other cost
functions.

In this paper, an algorithm based on ICA is derived,
analyzed, and the convergence properties are compared in
detail to the CMA. The reason for this choice is that the CMA
is well known and often used in practice. A comparison with
other, previously suggested algorithms would be interesting
but is outside the scope of this work. We compare with the
CMA also in the case of 16-QAM, where the CMA is clearly
suboptimal, since there are few alternatives. For example, the
recently proposed cascaded three-modulus algorithm has worse
convergence properties than the CMA [13] and can only be
used after a channel estimate has been obtained. The same
holds true for decision-directed algorithms, which depend on
most decisions being correct. For example, the radius-directed
algorithm [14] relies on decisions based on the amplitude, and
it has been found that this algorithm does not converge well in
practice [15].

Our main contributions are as follows. We have

• rigorously developed an ICA algorithm for quaternary
phase-shift keying (QPSK), that, under a simplified
statistical model, reverts to the algorithm in [9];

• extended this algorithm to arbitrary constellations with
multiple amplitude levels;

• carried out a comparison with the CMA, based on a
novel performance criterion that encapsulates the perfor-
mance/latency trade-off; and

• proposed a novel method to initialize the CMA and the ICA
algorithm, and quantified the resulting performance gain.

We have found that (i) contrary to [9], the suggested ICA
algorithm significantly outperforms the CMA, and (ii) the

1943-0620/11/060493-09/$15.00 © 2011 Optical Society of America



494 J. OPT. COMMUN. NETW./VOL. 3, NO. 6/JUNE 2011 Johannisson et al.

choice of algorithm initial condition is critical, which can
be exploited to further increase the convergence rate. The
final algorithm we propose could potentially be important in
a flexible optical network, where frequent rerouting of data
should be expected.

The organization of this paper is as follows. In Section II,
the problem is formulated and the system model is described.
In Section III, the polarization demultiplexing algorithms
(both CMA and ICA) are stated in detail, and the statistical
description needed to apply ICA to an optical communication
system is found in Section IV. The objective functions that
are optimized by the algorithms are visualized for both the
ICA algorithm and the CMA in Section V, leading to the
discussion on the dependence on the algorithm initial condition
in Section VI. In Section VII, we describe how the performance
comparison of the ICA algorithm and the CMA is carried out,
and finally a report of the results from numerical simulations
follows in Section VIII.

Notation: Vectors are denoted in bold letters (e.g., a), and
matrices in capital bold letters (e.g., A). Transposition is
written as aT, conjugation as a∗, and conjugate transpose is
denoted by aH. The identity matrix is written as I and the
expectation operator is denoted by E[·].

II. PROBLEM FORMULATION

We assume that chromatic dispersion has been compensated
for in prior receiver components. As was also done in [9,10,12],
we consider a case where polarization mode dispersion (PMD)
and polarization-dependent losses (PDL) are negligible. This
allows us to reduce the system complexity and focus on the
fundamental task the polarization demultiplexing algorithm is
designed to do—to separate the two multiplexed channels. The
extension of the proposed ICA algorithm to a dispersive sce-
nario seems straightforward, and we expect it to perform well
in the presence of PMD/PDL. However, we focus on introducing
the algorithm and investigating the convergence phase, and a
PMD/PDL study is outside the scope of this work. Thus, we
consider a system with optical amplifier noise, phase noise, and
polarization mixing. An equivalent block diagram is shown in
Fig. 1. At time k, the independent and identically distributed
(i.i.d.) complex data symbols on the two polarizations, ak =
[a(X)

k ,a(Y)
k ]T, are affected by complex additive white Gaussian

noise (AWGN), nk, from the optical amplifiers and an unknown
phase rotation, φk, due to the frequency offset of the signal
and the local oscillator. The received signal phases need not be
i.i.d. and can have an arbitrary distribution, possibly including
symbol-by-symbol phase shifts from self-phase modulation.
The sampled output is written xk = Aksk. The complex 2×2
matrix Ak is modeled as unitary, i.e., AH

k Ak = I, and static
over the observation time, which is short compared to the
typical time scale of the polarization change. The goal of the
polarization demultiplexing algorithm is to use the incoming
stream of symbols to quickly converge to a demultiplexing
matrix Bk and then track the polarization changes so that
yk =Bkxk is a good estimate of sk.

Fig. 1. System model showing the addition of noise, the phase drift,
and the polarization change before the signal is sampled as xk .

III. ALGORITHM DESCRIPTION

For ease of reference, we start by describing the CMA, and
then a description of the ICA algorithm follows.

A. The Constant Modulus Algorithm

Using the CMA [4], we minimize (w.r.t. Bk) the cost function

JCMA = E
[
(|y(X)

k |2−ρ2)2 + (|y(Y)
k |2−ρ2)2

]
, (1)

where ρ2 = E[|a(X) |4]/E[|a(X) |2] = E[|a(Y) |4]/E[|a(Y) |2]. The
corresponding stochastic gradient descent update rule is

Bk+1 =Bk −µψ(yk)xH
k , (2)

where µ> 0 is a step size parameter and ψ(yk) = (ψ(X),ψ(Y))T

with ψ(m)(yk) = (|y(m)
k |2−ρ2)y(m)

k , m ∈ {X,Y}. We observe that
the CMA may converge to a singular matrix Bk, in which the
rows are identical, as this is not penalized by the cost function
given in Eq. (1).

B. Independent Component Analysis

We here derive the ICA algorithm as a generalization of the
result by Cardoso [8] to the case of complex random variables.
Assuming that the distribution pS(sk) at a generic time k is
known and independent of k, the distribution of the received
symbol, xk =Aksk, is [16]

pX(xk|Ak)= |detA−1
k |2 pS(A−1

k xk). (3)

Replacing A−1
k with its estimate Bk we get

pX(xk|Bk)= |detBk |2 pS(Bkxk). (4)

The task of the ICA algorithm is to find a matrix Bk such that
the likelihood function given by Eq. (4) is maximized for the
received samples. We obtain the log-likelihood function as

Λ(Bk)= log pX(xk|Bk)= log |detBk |2+ log pS(yk). (5)

We notice that if the Bk matrix is close to singular, then the
determinant will be close to zero and the log-likelihood function
will be low, which will avoid the singularity problem seen
in the CMA.
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In order to perform symbol-by-symbol stochastic steepest
descent, the updating of B can be done according to

Bk+1 =Bk +µG(Bk), G(B)= ∂Λ

∂B∗ , (6)

where µ is the step size. (This update rule is rigorously
motivated by Theorem 3 in [17]. The differentiation ∂Λ/∂B∗
will yield a matrix of the same size as B, with the (k, l)
element being ∂Λ/∂B∗

k,l , with Bk,l treated as a constant [17].)
A variation of this update rule, known as the the relative
gradient, was proposed by Cardoso [8]. (It is also referred to as
the natural gradient, introduced independently by Amari [18].)
The update rule is then modified to

Bk+1 =Bk +µG(Bk)BH
k Bk. (7)

This leads to slightly better performance and, as shown below,
simpler calculations.

As shown in Appendix A, the differentiation of the
log-likelihood function yields

∂Λ

∂B∗ = [I+ f(y)yH]B−H, (8)

where

f(y)= 1
pS(y)

∂pS(y)
∂s∗ (9)

and B−H ≡ (BH)−1 = (B−1)H. We notice that the inverse of B is
canceled by the multiplication in Eq. (7), leading to a simpler
expression. However, as motivated in [8], when E[yyH]= I, the
G function can be modified to

G̃(B)= [I−yyH + f(y)yH −yf(y)H]B−H. (10)

We have found that this change leads to a performance
improvement. Equations (7), (9), and (10) together specify how
to update the B matrix, and the next step is to describe the
probability density function (PDF) pS(s). This will be done in
the next section.

IV. STATISTICAL DESCRIPTION

Here, we find the statistical description needed to apply
the ICA. First, a general derivation, which is independent
of the choice of modulation format, is made to determine
Eq. (9). Then, the simplifications that occur for M-ary
phase-shift keying (M-PSK) are identified, and suggestions for
simplifications of the general expression are given.

A. General Derivation

Without loss of generality, we assume that the phase φk
contains a static component and a time-varying component.
The static component is uniformly distributed in [0,2π) and
unknown to the receiver. Thus, we first note that (i) pS(s)
exhibits a rotational symmetry: pS(s) = pS(se jθ), for any θ,
and (ii) pS(s) does not depend on the time instant k. Second,

for complexity considerations, the joint PDF pS(s) will be
approximated by the product of the marginal PDFs. This
independence assumption gives

pS(s)≈ pS(s(X))pS(s(Y)). (11)

In order to derive an expression for the marginal PDF pS(s),
we will first condition on the lth symbol, cl , taken from an
M-ary constellation, and then average over all M symbols. The
corresponding s can be modeled as

s = (cl +n)eiφ, (12)

where n ∼ N C (0,2σ2) and φ is a real, uniform random
variable in [0,2π). As outlined in Appendix B, we then find the
PDF to be

pS|C(s|cl )=
1

2πσ2 exp

(
−|cl |2+|s |2

2σ2

)
I0

( |cl s|
σ2

)
, (13)

where I0(·) is the 0th order modified Bessel function of the
first kind. A complex random variable with this PDF has
Rician modulus and uniform argument. The PDF for the entire
M-point constellation in one of the polarizations is then

pS(s)= 1
M

M∑
l=1

pS|C(s|cl ). (14)

Simplifying this expression, there will be only a single term
for M-PSK and a sum of three terms for rectangular 16-QAM,
since pS|C(s|cl ) only depends on cl through its modulus |cl |.
Using Eq. (14) and the assumption of independence Eq. (11),
the differentiation in Eq. (9) can be performed. This allows us
to find f= [ f (s(X)), f (s(Y))]T by evaluating the function

f (s)= 1

2σ2

M∑
l=1

pS|C(s|cl )
[

I1(|cl s|/σ2)
I0(|cl s|/σ2)

|cl |ei∠s − s
]

M∑
l=1

pS|C(s|cl )

. (15)

B. Simplifications and Approximations

Equation (15) is general and can be used for any modulation
format. However, the expression for f is quite complicated, and
exponential and Bessel functions may be difficult to use in a
real-time optical receiver. It is therefore necessary to simplify
the expressions. For M-PSK, significant simplification occurs
automatically since there is only one amplitude level and the
PDF function in Eq. (15) cancels out. Furthermore, at realistic
signal to noise ratio (SNR) levels, the ratio I1/I0 is typically
close to unity. It is reasonable to replace the ratio with a
constant value by evaluating it at the symbol amplitude to get

fM–PSK(s)≈ 1

2σ2 (D|c1|ei∠s − s), (16)

D = I1(|c1 |2 /σ2)

I0(|c1 |2 /σ2)
. (17)

As discussed in [19], the CMA needs 16 complex multiplica-
tions per update while the ICA algorithm needs 22 complex
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Fig. 2. (Color online) Contour plots of the objective functions Λ and
JCMA. Top row: QPSK. Bottom row: 16-QAM. Left column: ICA. Right
column: CMA. The solution is indicated by the dot.

multiplications and 2 phase extractions per update. When
using QPSK, the increase in computational complexity for the
ICA algorithm is therefore small compared to the CMA.

For modulation formats with more than one amplitude level
(such as 16-QAM), we see from Eq. (15) that f will be a sum
of terms weighted by the PDF. One possible approximation is
to replace this sum with a single term, by choosing the one
that has the largest weight. Apart from one decision based on
the y value, the computational complexity is then the same as
for the M-PSK case. Preliminary simulations have shown that
the impact from such an approximation is quite limited, but a
detailed trade-off analysis is outside the scope of this work.

V. VISUALIZATION OF THE OPTIMIZATION PROBLEM

The optimization by steepest descent is done, in the
case of the ICA algorithm, with the log-likelihood function
Λ, and, in the case of the CMA, with the cost function
JCMA. By plotting these objective functions for a set of trial
demultiplexing matrices, we can gain some valuable insight
into the performance properties of the different algorithms.
However, the A matrix has four degrees of freedom, since it
can be written as

A=
(

u v

−v∗ u∗

)
eiφcommon (18)

with |u |2+|v |2 = 1. This four-dimensional set of matrices is
hard to visualize, but the fact that a phase rotation of the X
and Y channels is of no consequence (since it will be dealt with
in the subsequent phase synchronization) means that we can
use a demultiplexing matrix of the form

B(θ,φ)=
(

cosθ sinθeiφ

−sinθe−iφ cosθ

)
. (19)

This is easy to prove by introducing a matrix

V=
eiη(X)

0

0 eiη(Y)

 , (20)

which simply rotates the X and Y channels individually. It is
then always possible to find θ, φ, η(X), and η(Y), so that VBA= I
is fulfilled.

A further reduction of the parameter space is obtained
by noticing that if one demultiplexing matrix B(θ,φ) has
been found, then B(θ+π/2,φ) and B(−θ+π/2,φ+π) are also
demultiplexing matrices. (This will introduce phase shifts
and/or swap the two channels, but neither is of consequence for
the demultiplexing task.) Thus, there is always one solution in
θ ∈ [0,π/2) and φ ∈ [0,π).

By generating a number of random data symbols according
to the system model, we can plot the objective function as a
function of θ and φ. Using a large number of data symbols, the
objective functions become similar for the ICA algorithm and
the CMA using both QPSK and 16-QAM. (The only qualitative
difference is that in the case of the ICA algorithm and 16-QAM,
the objective function has a slightly narrower peak around the
correct value.) It is of more interest, therefore, to visualize the
situation when only a small number of symbols are used to
estimate the demultiplexing matrix. Therefore, the objective
functions have been plotted using only 20 symbols in Fig. 2,
which makes the difference between the algorithms clearly
visible. The A matrix has been chosen to be B(π/4,π/2)−1, the
sign of JCMA has been changed to make the two plots more
visually similar, and a common set of symbols is used for both
the ICA algorithm and the CMA to obtain a fair comparison.
The details of these figures vary depending on the specific
realization of random data, but the case shown is typical.

In the case of QPSK (top row), both the ICA algorithm and
the CMA will position the optimum close to the true value.
Some deviation from the true case is seen, since the innermost
contour is slightly elliptical and offset a small distance from
the true value. It is not possible to draw any qualitative
conclusions about the QPSK performance differences of the
ICA algorithm and the CMA, but the fact that 16-QAM leads to
a significantly harder problem is well illustrated in the bottom
row. This fact is, however, manifested in quite different ways
for the ICA algorithm and the CMA. In the ICA case, the
objective function has a complex appearance, but the global
optimum is still located close to the true value, showing that
a good estimation of the demultiplexing matrix should be
possible. In the case of the CMA, the objective function remains
qualitatively similar to the QPSK case, but the optimum is
typically offset a larger distance from the true value. This
suggests the conclusion that, if the demultiplexing matrix is
reasonably close to the solution, then the ICA algorithm should
be capable of estimating the objective function gradient better
than the CMA for 16-QAM. This would correspond to faster
convergence and better tracking performance, which agrees
with our numerical results in Section VIII.
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VI. CHOICE OF INITIAL MATRIX

As shown in Section V, the objective function for the ICA
algorithm in the 16-QAM case is “bumpy” when estimated from
a small number of symbols. We therefore anticipate that, if the
initial matrix happens to be chosen in an area corresponding
to demultiplexing matrices that are far from the solution, then
the convergence will be slow. A remedy for this would be to
make sure that such cases are avoided, and this can be done
in (at least) two ways: either we select the initial matrix by
evaluating the objective function for a set of candidate matrices
or we perform the computation for a number of different initial
matrices in parallel and then select the best solution at a
later stage. Here, “best” refers to the matrix that corresponds
to the lowest cost/maximum log-likelihood. The first method
would require the evaluation of the objective function on a
number of symbols (as done in the previous section) and has
the disadvantage that the iteration by steepest descent cannot
be started until the initial matrix has been selected. Here,
we have investigated the second suggestion, which is more
computationally demanding but is easy to parallelize since the
computations are completely independent. We carefully notice
that such a scheme can be used to improve the convergence
rate regardless of the choice of algorithm. We have therefore
carried out numerical simulations using this method for both
the ICA algorithm and the CMA.

The question of how to select an arbitrary number of initial
matrices in such a way as to maximize the convergence rate is
non-trivial. We leave this issue for later study and only present
the results for the following case. Considering the periodicity
stated in Section V, it is reasonable to generate a set of initial
matrices by dividing the parameter space into a 2 × 2 grid,
yielding B(0,0), B(π/4,0), B(0,π/2), and B(π/4,π/2). However,
B(0,0) = B(0,π/2), so we can discard the latter. The remaining
set of three initial matrices is reasonable, but we do not claim
it to be an optimal choice. Starting from these three matrices
we perform the computation in parallel and the results are
presented in Subsection VIII.B.

VII. COMPARING THE ICA ALGORITHM AND THE CMA

In order to compare the ICA algorithm and the CMA in a
fair manner, a good performance measure needs to be defined.
The most relevant measure is the bit error rate (BER). This
is possible to use, since the system is entirely known at
every update of the B matrix, but it is quite computationally
demanding. An alternative way, which is directly related to
the BER, is to use the SNR penalty due to the imperfect
polarization demultiplexing. We will use this as the criterion
for comparing the two algorithms.

The SNR penalty is calculated in the following way. Defining
C=BA, we have y=Cs=C(a+n)eiφ, or

(
y(X)

y(Y)

)
=

(
C11 C12

C21 C22

)(
a(X) +n(X)

a(Y) +n(Y)

)
eiφ. (21)

Assuming |C11||C22| > |C12||C21|, we can view the a(Y)-term in
y(X) as part of the noise to obtain

SNR(X) =
E
[
|C11a(X) |2

]
E
[|C11n(X) +C12a(Y) +C12n(Y) |2] , (22)

which, when simplified, yields

SNR(X) = |C11 |2 Es

|C12 |2 Es +2σ2(|C11 |2+|C12 |2)
, (23)

where Es = E
[
|a(X) |2

]
= E

[
|a(Y) |2

]
. We notice that for perfect

demultiplexing, i.e., for C12 = 0, we recover the nominal
SNRnom = Es/(2σ2). The expression for SNR(Y) is obtained
in an analogous manner, and we define the SNR penalty at
iteration k as

SNRpen
k =SNRnom −min(SNR(X)

k ,SNR(Y)
k ), (24)

where we assume all SNR values to be given in dB.

There is one detail that must be resolved to use this method:
no demultiplexing algorithm is able to avoid the possibility
of channel swapping, since the two channels are identical in
every statistical sense (without the introduction of training
sequences or similar asymmetry) [8]. Thus, if |C11||C22| <
|C12||C21|, then the rows of the C matrix are swapped before
the SNR penalty is calculated.

VIII. NUMERICAL SIMULATIONS

Numerical simulations have been performed to compare
the convergence rates of the CMA and the ICA algorithm,
both without (Subsection VIII.A) and with (Subsection VIII.B)
the parallel approach. For the CMA, the updating of the B
matrix is done according to Eq. (2). For the ICA algorithm
the update rule defined by Eq. (7) has been used together
with the exact PDF found in Section IV. The A matrix
is drawn uniformly from the set of 2 × 2 unitary matrices,
and is then held constant during the simulation. This is
reasonable for limited observation times, say, 2000 symbols,
as this corresponds to 0.2 µs at 10 Gbaud, which is too short
a time to have any significant changes of the polarization
state. A symbol sequence is generated and complex AWGN is
added, corresponding to a nominal BER of 10−3. By running
a large number of simulations using different A matrices,
we can compute the probability of being above a given SNR
penalty threshold at every iteration. (This is possible since
the SNR penalty can be computed using the Bk matrix and
the expressions in the previous section.) We have set the
convergence threshold value to be 1 dB SNR penalty and used
the probabilities found as a measure of the convergence rate.

The step size µ must be chosen in every individual case since
it affects the computed probabilities. In all cases, the step size
has been selected to maximize the final probability of being
below 1 dB penalty.
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Fig. 3. (Color online) Probability for being above 1 dB penalty for
the CMA and the ICA algorithm on 200 symbols of QPSK data. The
thick lines are symbol-by-symbol updates and the thin lines use the
cumulative approach. The step size, µ, is indicated next to each curve.

A. Symbol-by-Symbol and Cumulative Updates

Figures 3 and 4 show results for QPSK and 16-QAM,
respectively, with the initial estimate of B set to I. The
thick lines correspond to symbol-by-symbol updates, where the
gradient in every iteration is estimated from a single symbol.
The thin lines show cumulative updates, where at time k we
perform a gradient descent based on all the observed symbols
up to time k. This cumulative approach has high computational
complexity, but is included to show the achievable performance
by making use of all available information in every time step.

For the symbol-by-symbol updates, the ICA algorithm is
used for the blue line marked with circles and the CMA is used
for the two red lines. The solid line for the CMA corresponds
to an implementation suggested by Kikuchi [5], which avoids
the singularity problem by orthogonalizing the rows of Bk
in every time step. We have included this algorithm in the
comparison, since Kikuchi’s algorithm is very similar to the
conventional CMA but achieves singularity-free operation with
minimal changes. Other approaches have been suggested to
avoid the singularity. For example, algorithms that force the
demultiplexing matrix to be unitary are discussed in [20,21].
However, a comprehensive comparison of algorithms is outside
the scope of this work. It is seen that the ICA algorithm
outperforms the CMA for both modulation formats, since it
has a significantly lower probability of being above the SNR
penalty threshold. We also notice that it is not the singularity
problem that is causing the relatively low convergence rate of
the CMA. This shows that the ICA algorithm is much more
efficient in estimating the polarization state from a given set
of data. However, in the 16-QAM case, the probability for being
above 1 dB penalty is more than 10−3 for both algorithms also
after 2000 symbols. This problem is related to the observations
made in Section V; the CMA cost function is not designed for
16-QAM and the ICA objective function is no longer smooth,
leading to slower convergence toward the minimum.
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Fig. 4. (Color online) Probability for being above 1 dB penalty for the
CMA and the ICA algorithm on 2000 symbols of 16-QAM data. The
thick lines are symbol-by-symbol updates and the thin lines use the
cumulative approach. The step size, µ, is indicated next to each curve.

For the cumulative updates, the simulation results are
shown using thin lines in Figs. 3 and 4. Particularly striking is
the improvement for the CMA in the QPSK case, showing that
basing the gradient estimate on more than one symbol has the
potential of increasing the convergence rate considerably. This
improvement must, however, be weighed against the increased
computational complexity.

B. Convergence Improvements From Parallelization

From Figs. 3 and 4, we notice a tendency for several of
the curves to start to level out for increasing k. In general, it
should be expected that for a given step size, the curve will
level out at a corresponding probability value. This is because
in the converged state there is still a finite probability that the
matrix leaves the allowed 1 dB penalty region. Thus, there is a
limit on how quickly low failure probabilities can be obtained
by increasing the step size. As described in Section VI, we
have investigated how further convergence rate improvements
can be obtained by running three independent computations in
parallel using a set of initial matrices.

The numerical results are shown in Figs. 5 and 6 for the
CMA (red) and the ICA algorithm (blue with circles). The
thick lines are the individual symbol-by-symbol results, which
should become identical if averaged over a very large number
of invocations. (This is true since all initial guesses are equally
good.) Corresponding lines are also found in Figs. 3 and 4, but
the step sizes are reduced here to avoid the combined result
leveling out above the 10−3 level. The thin lines have been
generated by selecting the matrix corresponding to the lowest
cost/maximum log-likelihood in every iteration (based on all
previous symbols).

It is seen that the speedup of the convergence rate is
substantial for both algorithms and both modulation formats.
The ICA algorithm has a speed advantage over the CMA of
more than a factor of two in reaching the 10−3 level, but
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Fig. 5. (Color online) Probability for being above 1 dB penalty for the
CMA and the ICA algorithm on 200 symbols of QPSK data. The thick
lines show three parallel runs and the thin lines show the combined
result. The step size, µ, is indicated next to each curve.

if the CMA is preferred for its simplicity, then a careful
selection of the initial matrix would lead to significantly better
convergence properties.

Comparing this result to the cumulative approach above,
we conclude that the performance improvement from using a
better estimate of the gradient is small compared to the larger
gains that can be achieved in this way. Thus, the choice of
initial matrix is very important for the convergence rate of the
polarization demultiplexing algorithm.

IX. CONCLUSION

We have compared the constant modulus algorithm and
independent component analysis for polarization demultiplex-
ing in terms of their convergence rates. It was found that,
for a given number of symbols and a set SNR penalty limit,
the ICA algorithm has a significantly lower probability of
failure. It was further shown that the choice of the initial
matrix is very important for the algorithm performance and
that substantial improvement of the convergence rate can
be obtained by running a number of parallel independent
computations starting from different initial matrices.

APPENDIX A: DIFFERENTIATION OF THE

LOG-LIKELIHOOD FUNCTION

In order to differentiate the log-likelihood function in Eq. (5),
we rewrite

log |detB |2 = logdet(BB∗), (25)

and, using [22], we find the result

∂

∂B∗ log |detB |2 =B−H. (26)
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Fig. 6. (Color online) Probability for being above 1 dB penalty for
the CMA and the ICA algorithm on 2000 symbols of 16-QAM data.
The thick lines show three parallel runs and the thin lines show the
combined result. The step size, µ, is indicated next to each curve.

For the remaining part of the expression, we need the chain
rule for complex-valued functions of matrices [22], which says
that, if

H(Z,Z∗)=G(F(Z,Z∗),F∗(Z,Z∗)), (27)

then the derivative of the matrix function H(Z,Z∗) with respect
to Z∗ is

DZ∗H= (DFG)(DZ∗F)+ (DF∗G)(DZ∗F∗). (28)

This directly gives us

∂pS(Bx)
∂B∗ = ∂pS(Bx)

∂s
∂(Bx)
∂B∗︸ ︷︷ ︸
=0

+∂pS(Bx)
∂s∗

∂(Bx)∗
∂B∗

= ∂pS(Bx)
∂s∗ xH = ∂pS(y)

∂s∗ yHB−H, (29)

where it was used that y = Bx. (One easy way to check this is
to calculate ∂pS/∂B∗

11, etc.) This gives us the final result

∂Λ

∂B∗ =
[
I+ 1

pS(y)
∂pS(y)
∂s∗ yH

]
B−H. (30)

APPENDIX B: DERIVATION OF THE EXACT PDF

In order to derive the PDF given in Eq. (13), we study the
expression

S = (a+ X )eiΦ, (31)

where a is a complex constant, X is described by the PDF

pX (x)= 1

2πσ2 exp

(
− |x |2

2σ2

)
, (32)
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and Φ is a real, uniform random variable in [0,2π). Writing
this as

X = Se−iΦ−a, (33)

we identify the conditional PDF for a given Φ to be

pS|Φ,A(s|φ,a)= 1

2πσ2 exp

(
−|se−iφ−a |2

2σ2

)
. (34)

Thus, we find the sought PDF as

pS|A(s|a)=
∫ 2π

0
pS|Φ,A(s|φ,a)pΦ(φ)dφ

= 1

4π2σ2 exp

(
−|a |2+|s |2

2σ2

)
f
(

a∗s

σ2

)
, (35)

where

f (ξ)≡
∫ 2π

0
exp[Re(ξe−iφ)]dφ. (36)

Writing this as

f (ξ)=
∫ 2π

0
exp

{
|ξ|Re

[
ei(∠ξ−φ)

]}
dφ, (37)

we can easily find the result

f (ξ)= 2πI0 (|ξ|) , (38)

where I0(·) is the 0th order modified Bessel function of the first
kind.
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