
Research Article Journal of Optical Communications and Networking 1

RIFL: A Reliable Link Layer Network Protocol for Data
Center Communication
QIANFENG SHEN1,*, JUN ZHENG2, AND PAUL CHOW1

1The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, 10 King’s College Road Toronto, Ontario, M5S3G4,
Canada
2Alibaba Group US, 525 Almanor Ave, Sunnyvale, CA, 94085, USA
*Corresponding author: qianfeng.shen@mail.utoronto.ca

Compiled September 19, 2023

More and more latency-sensitive services and applications are being deployed into the data center. Perfor-
mance can be limited by the high latency of the network interconnect. Because the conventional network
stack is designed not only for LAN, but also for WAN, it carries a great amount of redundancy that is not
required in a data center network. This paper introduces the concept of a three-layer protocol stack that can
fulfill the exact demands of data center network communications. The detailed design and implementation
of the first layer of the stack, which we call RIFL, is presented. A novel low latency in-band hop-by-hop
re-transmission protocol is proposed and adopted in RIFL, which guarantees lossless transmission in a
data center environment. Experimental results show that RIFL achieves 110 nanoseconds point-to-point
latency on 10-meter Active Optical Cables, at a line rate of 112 Gbps. RIFL is a multi-lane protocol with
scalable throughput up to multi-hundred gigabits per second. It can be the enabler of low latency, high
throughput, flexible, scalable, and lossless data center networks. © 2023 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Major data center services and applications such as remote direct
memory access (RDMA), machine learning, and cloud storage
demand the network interconnect to be low latency and lossless
while preserving high bandwidth. Previous works, such as [1, 2],
demonstrate how the performance of applications in various
fields can be drastically impacted by interconnect latency. It is
important to realize that most of the technologies and concepts
used in today’s data center networks (DCNs) existed before
the large-scale data centers of today were even imagined. For
example, IP protocols were first defined in 1974 [3], well before
any massive data center was built. Today, with rapidly evolving
technologies, it is time to explore new approaches for the DCN
that are designed for the needs of today’s data center.

The conventional TCP/IP stack is designed to work reliably
not only in a local area network (LAN), but also in a wide area
network (WAN). The physical properties of a LAN and a WAN
are significantly different. Both bandwidth-wise and latency-
wise [4], TCP/IP and UDP/IP carry too much redundancy when
used in a LAN. Considering the diameter of a data center server
room is rarely more than 100 meters, a DCN is essentially a LAN.
There should be a more efficient protocol stack that fulfills the
exact needs of a DCN.

Nevertheless, protocols based on TCP/IP and UDP/IP [5, 6]
still dominate the data center market. One of the most impor-

tant reasons for cloud providers to use these protocols is that
hardware changes would be required to both the end devices
and the network switches to deploy a new protocol in a data
center. Traditionally, the network switches and the NICs are
all implemented using ASICs. It would take years to design,
fabricate, test, and deploy the ASICs for a new protocol.

Compatibility with the established infrastructure and the bar-
rier to developing new ASICs makes it extremely difficult to
introduce major changes. However, it is still interesting to know
what opportunities exist that might influence DCN infrastruc-
ture over time. The basis of our work is to build an experimental
platform that enables us to explore what might be possible if we
could start over, i.e., how would we build the DCN infrastruc-
ture starting with what we know is feasible today and not be
constrained by any legacy requirements, either technical or busi-
ness. In this paper, we will show what we can do by leveraging
the capabilities of modern FPGAs.

Today, the number of high-speed transceivers is quickly in-
creasing in modern FPGAs. Off-the-shelf FPGAs containing
multiple QSFP28 ports are already available in the market [7],
showing that a flexible and economically efficient approach to
redesigning DCNs starting from the very bottom layer of the
protocol stack can be prototyped without needing new ASICs.

There are many network protocols apart from TCP/IP and
UDP/IP. However, some of them [8, 9] are dedicated to the

ar
X

iv
:2

30
9.

08
69

6v
1

 [
cs

.N
I]

 1
5

Se
p

20
23

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Research Article Journal of Optical Communications and Networking 2

link layer, providing limited scalability and flexibility. Some of
them are based on the Media-Independent Interface (MII) [10] or
UDP [6], and you cannot remove the redundancy carried with
the conventional network stack. Others such as Infiniband [11]
implement re-transmission in their Transport Layer. We will
discuss its inefficiency in Section 2.

To meet the exact demands of a DCN, we propose a new
protocol stack as follows:

Layer 1: Link Layer This layer is implemented immediately
next to the transceivers. It is a combination of the data link layer
(layer 2) and the physical layer (layer 1) in the OSI model. It
should provide a line protocol with appropriate data packetiza-
tion, channel bonding and clock compensation. Re-transmission
should also be a part of this layer to resolve link-level data cor-
ruption. The benefits of implementing re-transmission at this
layer is discussed in Section 2. Beyond this layer, there should
be no data corruption caused by link noise.

Layer 2: Network Layer This layer should provide a low latency
routing scheme that avoids using a centralized routing table.
Switch initiated congestion control mechanisms should also
be implemented in this layer. Beyond this layer, all the data
transfers should be lossless. Anything sitting above this layer
does not have to worry about checksums, re-transmission, or
congestion at all.

Layer 3: Application Layer This layer consists of two parts: hard-
ware and software. The hardware serves as an accelerator for
common DCN applications and services, e.g., a near-memory
computing engine to reduce the round trips for RDMA. The
software abstracts the usage of the hardware and provides the
software programmer an easy-to-use user interface.

With this protocol stack, we envision a lossless network can
be built. In our prototype, at its Layer 2 interface, this network
can provide lossless links with less than 300 ns typical latency
per hop with bandwidths beyond 100 Gbps.

This paper focuses on the Link Layer design, named RIFL.
The Network Layer and the Application Layer designs will be
the subject of our future work. The rest of this paper is organized
as follows: Section 2 discusses the physical properties of a DCN
and how they can be leveraged to build a more efficient Link
Layer protocol. In Section 3, we define the RIFL Frames. Section
4 introduces the RIFL protocols. Section 5 presents the hardware
implementation of RIFL. Section 6 provides performance results.
Section 7 discusses the related work and Section 8 concludes this
work.

2. LAYER 1 - THE LINK LAYER

The goal of our Layer 1 is to provide a reliable Link Layer point-
to-point protocol as a foundation for the higher layers. This
layer should be low-latency, high-bandwidth and use minimal
hardware resources. Reliability here means correcting any bit
errors that occur during transmission across the link. With a
reliable link, the higher layers need not be concerned with any
data integrity issues resulting from the physical transmission.

In this section we cover the following topics: The develop-
ment of our Layer 1 first requires the selection of the mech-
anism for error detection and correction. After selecting re-
transmission, we show that it can work within the constraints of
a DCN. After justifying hop-by-hop Link Layer re-transmission,
we show that an additional property can be introduced. Finally,
we explain why we can solely rely on negative acknowledg-
ments (NACKs) as the re-transmission notifications in DCNs,

and why doing so is critical for the efficiency. Given these justifi-
cations we can then develop the circuit for our protocol imple-
mentation.

We start by imposing the first constraint:

A the distance between any two nodes within a DCN is less
than 500 meters.

A. Forward Error Correction (FEC) vs Re-transmission
There are two major approaches to eliminate the effect of data
corruption caused by bit errors: FEC and re-transmission.

FEC is widely used in wireless and low-level wired commu-
nication. It requires the sender to send redundant data along
with the payload. The redundant data, which is usually an error
correction code (ECC), can be used to detect the errors in the
payload as well as correct the errors.

Re-transmission requires redundant data as well. The redun-
dant data is usually a checksum. However, the checksum is not
used to correct the errors. Instead, it only needs to carry enough
information to detect the errors in the payload. While sending
data to the receiver, the sender keeps a copy of the most recent
transmitted data. Once an error is detected, the receiver notifies
the sender to resend the corrupted data.

While FEC detects and corrects the errors, the checksum only
detects the errors. Consequently, for the same size of the payload,
the size of the ECC used by FEC is much larger than the size of
the checksum used by re-transmission, which means the band-
width overhead for FEC is much larger than re-transmission.
Moreover, because FEC usually involves large matrix multipli-
cations, the typical latency overhead for FEC is much larger as
well. Therefore, FEC is more suitable in situations where re-
transmission is impossible or very expensive. E.g, in one-way
communications such as radio networks or simplex links, or in
any bidirectional communication that operates on a very high
bit error ratio (BER).

In current DCNs, 100G Ethernet is slowly becoming the dom-
inant interconnect technology [12]. The commercially available
QSFP28 cables used by 100G Ethernet can guarantee BERs bet-
ter than 10-12 without using FEC. Under such a low BER, re-
transmission is much more efficient than FEC. However, as the
next generation cable technologies pursue higher throughput
per lane, their associated BER can be significantly higher than
10-12. Thus, for better compatibility with the future technologies,
our BER constraint is:

B the effective BER of the link that RIFL operates on must
not exceed 10-7.

We set the minimal BER requirement as 10-7 because in our sim-
ulations, we found that in any link shorter than 500 meters with
a BER better than 10-7, re-tranmission can be done efficiently.
Plus, a minimal BER of 10-7 means RIFL can work not only with
the current popular cables, but also with any future physical
links providing BERs better than 10-7. For links whose BERs are
worse than 10-7, FEC must be incorporated to guarantee reliable
transmissions. Otherwise, the bandwidth will be mainly occu-
pied by re-transmissions instead of regular data transmissions.
Nevertheless, even if FEC is used, RIFL still has advantages
because it only needs a lightweight FEC code to improve BER
to better than 10-7 while other protocols, such as Ethernet, re-
quire much lower post-FEC BERs [13]. Even with FEC, they still
cannot guarantee lossless transmissions.

To summarize, we choose re-transmission as the main error
recovery method for RIFL. When BER is higher than 10-7, FEC

Research Article Journal of Optical Communications and Networking 3

has to be applied to improve the BER so that constraint B can be
satisfied.

B. Re-transmission Efficiency vs Round Trip Time (RTT)
To guarantee a lossless link, the re-transmission mechanism
should be designed for the worst case. Because any Frame1

being transmitted during the RTT may have errors, the size of
the re-transmission buffer, denoted as Sretrans, must be larger
than the size of the data being transmitted during the largest
RTT between the sender and the receiver, namely:

Sretrans ⩾ λline ∗ RTT (1)

where λline denotes the line rate.
The larger the RTT is, the larger the re-transmission buffer

needs to be. It is worth noting that when line rate is larger than
100 Gbps and RTT exceeds 100 µs, it requires more than one
megabytes of re-transmission buffer. It is no longer suitable to
use embedded memories such as SRAM as the buffer. Otherwise,
the circuit area will be too large. This issue is encountered by
some TCP implementations [14, 15]. Their solution is to use
DDR memory as an alternative. However, it further increases
the RTT and complexity because the latency of a DDR memory is
not constant and is sometimes more than 100 nanoseconds [16],
whereas the latency of an embedded memory is much more
stable and is usually a few nanoseconds.

Moreover, a shorter RTT also lowers the latency and band-
width overhead introduced by re-transmission: a shorter RTT
means quicker interaction between the sender and the receiver,
and a shorter stalling time after a Frame error is detected. There-
fore, for optimal efficiency, re-transmission should be imple-
mented in a protocol layer where the RTT is minimized.

The RTT consists of two parts, the circuit delay (Tcircuit) and
the cable delay (Tcable). The circuit delay is the time the circuit
logic spends to process and forward the data, including the
latency introduced by the transceivers (Tgt), the upper layer
protocols (Tproto), as well as the buffer queues (Tbuffer). The cable
delay is the time the data travels along the cable, determined
by the speed of light and the total link length. Assuming both
directions of the link are symmetric, we have:

RTT = 2 ∗ (Tcircuit + Tcable) (2)

Tcircuit = Tgt + Tproto + Tbuffer (3)

Tcable =
Lcable

C
(4)

where C denotes the speed of light in the cable and Lcable denotes
the link length.

While the Tcable is a constant as the link length will not grow
or shrink over time, the Tcircuit can vary in a very wide range,
depending on the protocol layer where the RTT is measured. If
re-transmission is implemented within or above the Network
Layer, where more than two nodes are involved and the data
needs to go across a switching node to be routed to the destina-
tion, then end-to-end RTT is used. Otherwise, if re-transmission
is done hop-by-hop within the Link Layer, then hop-by-hop RTT
is used.

Figure 1 shows the difference between end-to-end and hop-
by-hop. For end-to-end, the worst case RTT can be hundreds
or thousands of times larger than the typical RTT. When the

1Frame: the basic unit of data transmitted across the link. Any data is transmit-
ted along the link by the means of one or multiple Frames.

Fig. 1. Hop-by-hop vs End-to-end

network is congested, the Tbuffer can be unpredictably large. Fur-
thermore, congestion can cause frame losses, frame losses lead
to re-transmission, and re-transmission can intensify network
congestion, causing a positive feedback. For hop-by-hop, be-
cause there is no congestion at this level, the RTT will be constant
and there will be no congestion-caused frame loss. Although
end-to-end re-transmission is adopted by protocols such as TCP
and Infiniband, according to the above discussion, hop-by-hop
is better for minimizing the memory usage, the latency and the
bandwidth overhead because it achieves the minimal RTT.

However, despite its significant advantages, re-transmission
is seldom included in existing Link Layer protocols. One of the
reasons we believe is related to the circuit area and complexity.
The hardware implementation of a Link Layer protocol should
not be heavy and power hungry. Specifically, a Link Layer
protocol should not need megabytes of memory to function
properly. In our case, assuming the line rate is 100 Gbps and
the TCircuit is 100 nanoseconds, according to Equations 1, 2 and
4 and the Constraint A, the Sretrans required is no larger than
45 KB. The size is comparable to a CPU L1 cache, making Link
Layer re-transmission feasible.

In conclusion, in a DCN, re-transmission should be done
hop-by-hop within the Link Layer.

C. Leveraging Hop-by-Hop Link Layer Re-Transmission
Once hop-by-hop Link Layer re-transmission is chosen, a unique
and vital property can be added to the constraint set, that is:

C In the hop-by-hop Link Layer transmission, the receiver
can assume that Frame N+1 will always arrive immedi-
ately after Frame N from the same sender.

Such an assumption is not true for end-to-end transmission
protocols such as any Ethernet-based protocol, where Frames
from multiple senders can be routed to the same receiver. The
receiver may receive Frame N and Frame N+1 from different
sources. The traffic can also stop at Frame N if none of the
senders continues to send data to the receiver after Frame N.
However, for the Link Layer, a receiver is always paired to the
same sender at the other end of the cable. If the user at the
sender stops sending valid data after Frame N, the Link Layer
protocol can pack invalid/idle data into Frames to create Frame
N+1 and the subsequent Frames. The invalid Frames can be
used by the protocol internally without being delivered to the
user. This is an extremely useful property for hop-by-hop Link
Layer re-transmission. We will discuss how it can be leveraged
in the upcoming sections.

There is another equivalent expression of Constraint C that is
worth emphasizing, i.e.:

Research Article Journal of Optical Communications and Networking 4

The receiver will never receive Frame N+1 before receiving
Frame N because in the hop-by-hop Link Layer transmission
there is no buffer overflow caused by congestion. Starting from
the sender logic, the data is handed over to the transceiver and
then it is serialized, crosses the cable, is de-serialized, and finally
it is handed over to the receiver logic. There can be a few bits that
are not sampled, causing the link to be out-of-sync. However,
there is no way that a whole Frame is lost during this process.

D. ACK vs NACK
ACK (acknowledgment) and NACK (negative acknowledgment)
are the two possible acknowledgement mechanisms for re-
transmission. For ACK, the receiver sends acknowledgements
whenever it receives correct Frames. For NACK, the receiver
sends acknowledgements whenever it receives Frames with bit
errors.

In a DCN context, NACKs have a significantly better effi-
ciency over ACKs: let p denote the Frame Error Ratio (FER2),
and N denote the total number of Frames to be transmitted
during a certain period. For ACK, at least N*(1-p) acknowledg-
ments need to be transmitted from the receiver to the sender;
For NACK, at least N*p negative acknowledgments are needed.
In DCNs, as a result of Constraint B, p is much smaller than
1-p. Therefore, with NACKs, a much higher reverse channel
bandwidth efficiency3 can be achieved compared to ACKs.

Nevertheless, for end-to-end re-transmission, reliability can-
not be guaranteed with only NACKs and no ACKs. Assume
Frame N is the last Frame to be transmitted from the sender to
the receiver, and Frame N is dropped by an intermediate node
(e.g., a switch). The receiver will never know that Frame N has
been sent, hence no NACK will be generated. Similarly, the
sender will never know that Frame N is not received, hence
Frame N will not be re-transmitted. However, for hop-by-hop
Link Layer re-transmission, with Constraint C, it is feasible to
use only NACKs to achieve reliability, because there are always
Frames being transmitted and none of them can be lost. They can
only be corrupted. As a result, NACK is the acknowledgment
mechanism we choose for RIFL.

E. Summary
In this section we have now provided the basis for RIFL. We
summarize the characteristics here before describing its imple-
mentation:

• Data corruption is handled by re-transmission.

• The buffers required by re-transmission can be imple-
mented entirely using embedded memories.

• Link Layer frames will always arrive in sequence.

• We will use NACKs to reduce bandwidth overhead intro-
duced by acknowledgments.

3. DEFINING THE RIFL FRAMES

In Section 2, we justified that Link Layer hop-by-hop re-
transmission is an efficient solution for eliminating bit errors in
DCNs. However, the protocol itself and its microarchitecture
will also significantly impact the efficiency.

2Frame Error Ratio: ratio of Frames received with errors over total Frames
received.

3Bandwidth Efficiency: ratio of the usable bandwidth to the line rate.

Without a concrete protocol, we are still far away from the
final answer.

In this Section, we will define the RIFL Frames by answering
the following questions:

1. The Frame Structure: What are the header fields in a RIFL
Frame?

2. The Frame Size: How large is a Frame in RIFL?

A. High-Level Exploration of the Data Frame Structure
There is no universal definition of Frame. In Section 2 we defined
a Frame as the basic unit of data transmitted across the link. At
higher protocol layers, we use the term packet to denote a bundle
of data, such as an IP packet. A packet will be transmitted as a
number of RIFL Link Layer Frames. To function properly, Link
Layer Frames not only carry the payload, but also carry other
essential signals. For example, when re-transmission or flow
control events occur, the corresponding control signals need to
be exchanged between the sender and the receiver. There should
be Frames that carry such information. However, such events
are assumed to occur much less frequently than regular data
transmission. For bandwidth efficiency there is no reason to
include both the control signals and the payload in every Frame.

We need to define different types of Frames. By functionality,
we divide the Frames into the Data Frames and the Control
Frames. The Data Frames are the Frames that carry the payload,
and all the other Frames are Control Frames that help maintain
state transitions. In a healthy link, most of the Frames being
transmitted are Data Frames.

It is important to define the Data Frame structure well so that
it serves the goal of making RIFL a low latency, high bandwidth,
lightweight (small circuit area) and lossless Link Layer protocol.
Section 2 showed that the circuit area is mainly impacted by the
cable length and the microarchitecture of the protocol, and it
is less relevant to the Data Frame structure. When define the
Data Frame structure, we should mainly study its impact on the
latency and the bandwidth efficiency.

A.1. Header Fields

To make the bandwidth overhead small, only essential informa-
tion should be included in the header of the Data Frames.

First, to be able to detect any errors, a checksum must be
included in every Data Frame. Second, a Data Frame should
carry a Frame ID. Usually, there will be more than one Data
Frame being transmitted during an RTT, so the Frame ID is
used as the identifier to indicate which Data Frames should be
re-transmitted when errors are detected. Third, for better gran-
ularity, a Data Frame should carry the information to indicate
how many bytes in the payload are valid. Also, because any
packet is divided into one or multiple Data Frames, there should
be a marker in the Data Frame header to distinguish the end-
of-packet Data Frames from other Data Frames, so that packet
boundaries can be defined. Finally, for any Link Layer protocol,
a line code should be adopted to re-align the data after dese-
rialization. For 64b/66b encoding in Ethernet and Aurora [9],
and 64b/67b encoding in Interlaken [8], the encoding is done
independently from the protocol framing. Different from the
conventional protocols, in RIFL, to minimize the complexity and
the latency, the line code is integrated into every Frame.

In summary, the Data Frame header should carry the follow-
ing essential information: the checksum, the Frame ID, the count
of valid bytes in the payload, the end-of-packet marker and the
line code header.

Research Article Journal of Optical Communications and Networking 5

A.2. Data Frame Size

The first decision RIFL made for the Data Frame size is to use
a fixed frame size instead of a variable frame size. While a
variable frame size is overall good for bandwidth efficiency, it
is more complicated to implement, introduces longer latency,
and requires a much larger buffer. Most importantly, a variable
frame size introduces variable frame intervals (the difference
of the arrival times between two adjacent frames), which can
greatly increase the complexity of the re-transmission protocol.
It is not worth sacrificing so much to save only three percent of
the bandwidth. Thus, we only study the frame size impact of
fixed size Data Frames. We start with exploring the impact of
the Data Frame size on the bandwidth efficiency.

The following equation can yield the bandwidth efficiency:

Effbandwidth = (1 − SDheader
SDFrame

)× RDFrame (5)

where Eff bandwidth denotes the bandwidth efficiency, SDheader de-
notes the size of the header in a Data Frame, SDFrame denotes the
Data Frame size, and RDFrame denotes the fraction of the Data
Frames transmitted to all Frames transmitted.

By Constraint C, there are continuous Frames transmitted, re-
gardless of whether there is valid data to transmit. Let RNDFrame
denote the fraction of all the non-Data Frames, we get:

RDFrame = 1 − RNDFrame (6)

Assuming when an error is detected, on average, there are
Nstall subsequent non-Data Frames (including the re-transmitted
Data Frames and the Control Frames) being transmitted, we get:

RNDFrame = Nstall × FER (7)

Combining Equation 5, 6, 7, we get:

Effbandwidth = (1 − SDheader
SDFrame

)× (1 − Nstall × FER) (8)

where
FER = 1 − (1 − BER)SDFrame (9)

According to Equation 8, a higher bandwidth efficiency is
achieved by reducing the ratio of SDheader to SDFrame, and mini-
mizing Nstall and FER. Among the three factors, Nstall is mainly
affected by the protocol design, while the others are mainly
determined by SDFrame.

For a good re-transmission protocol, most of the frames trans-
mitted should be Data Frames. For environments with a low
BER, RNDFrame will be much smaller compared to the ratio of
SDheader to SDFrame. So, the Eff bandwidth will be mainly impacted
by the ratio of SDheader to SDFrame. As SDFrame increases, SDheader
will also increase because some of the header fields, such as
the checksum, need to be expanded for a larger SDFrame, but
SDheader increases more slowly than SDFrame increases. For exam-
ple, among all the Cyclic Redundancy Check (CRC) codes that
feature a Hamming Distance [17] (HD) of four (can detect at
most three errors), 8-bit CRC codes can protect at most 119 bits
of payload, while 16-bit CRC codes can protect at most 32751
bits of payload [18] [19]. Therefore, generally, the ratio of SDheader
to SDFrame decreases when SDFrame increases. Nevertheless, this
does not mean SDFrame can be infinitely large. For the same BER,
the larger SDFrame is, the larger the FER is. Even though by Con-
straint B, the BER should be smaller than 10-7, if SDFrame is large
enough, RNDFrame can still impact Eff bandwidth.

Table 1. Meta Code Encoding

Meta Code Payload Valid EOP ABV

00 No No No

01 Yes No Yes

10 Yes Yes Yes

11 Yes Yes No
* EOP: end of packet
* ABV: all bytes valid

In addition, a larger SDFrame also means a larger latency. Dur-
ing transmission, the receiver can only verify the correctness of
a Data Frame after all the bits of the Data Frame are received. To
guarantee a lossless transmission, before examining the entire
Data Frame, not a single bit of the Data Frame can be delivered
from the receiver. That is to say, the larger SDFrame is, the larger
the latency will be introduced by checksum verification.

In summary, SDFrame cannot be too small, otherwise the band-
width overhead of the header will be too large. On the other
hand, SDFrame cannot be too large as well, otherwise the band-
width can also be reduced because of a high FER, and the latency
will also be too large.

B. The Data Frame

With the conclusions of Section A, we define the following Data
Frame header fields:

B.1. Syncword (SYN)

SYN is a 2-bit line code header. It is also used as a marker to
mark whether a Frame is a Data Frame or a Control Frame.
Using the Verilog constant notation, in Data Frames, SYNs are
set to 2’b01; in Control Frames, SYNs are set to 2’b10. A SYN of
2’b00 or 2’b11 is illegal, indicating that data is not aligned.

B.2. Payload

The user payload.

B.3. Meta Code

The Meta Code is used to indicate whether the Payload is not
valid, partially valid, or all bytes of the Payload are valid. The
end-of-packet marker is also encoded by the Meta Code. Table
1 shows the Meta Code encoding and the corresponding inter-
pretation. With only two bits, the Meta Code cannot indicate
how many bytes in the Payload are valid. It can only indicate
whether all bytes of the Payload are valid. When not all bytes
of the Payload are valid, the last byte of the Payload, which is
certainly invalid as user data, becomes the Format Code.

B.4. Format Code

The Format Code is an 8-bit field. It is used to indicate how many
bytes in the Payload are valid when the Meta Code indicates
that not all bytes of the Payload are valid. By combing the Meta
Code and the Format Code, the count of the valid bytes in the
payload and the end-of-packet marker mentioned in Section A
can be represented with only a cost of two bits in the Data Frame
header. Meanwhile, because the Format Code is limited to eight
bits, it only works when the Payload size is not larger than 2048
bits (256 bytes).

Research Article Journal of Optical Communications and Networking 6

B.5. Verification Code

The Verification Code is the exclusive-or result of the checksum
and the Frame ID. It combines the functionalities of the check-
sum and the Frame ID, i.e., the Verification Code is used to verify
the correctness of the Data Frames as well as to locate the error
Frame when an error is detected. More details of usage of the
Verification Code will be illustrated in the next section.

Figure 2 shows the Data Frame Structure, where SDFrame
4 de-

notes the Data Frame size, Spayload denotes the size of the Payload,
and Sverification denotes the size of the Verification Code. We use
Xilinx FPGAs for prototyping, and the available transceivers of-
fer 32-bit, 64-bit and 128-bit interfaces [20] [21] [22]. To minimize
the latency and complexity of data width conversion, SDFrame
should be a multiple of the interface width of the transceiver. In
our prototype, we set SDFrame to be a power of two, and no less
than 128. According to Figure 2, we get:

SDFrame = Spayload + SDheader

= Spayload + Sverification + 4
(10)

If we assume RNDFrame is small, then RDFrame is close to 1. Com-
bining Equation 5 and Equation 10, we get:

Effbandwidth = 1 −
Sverification + 4

SDFrame
(11)

As discussed in Section A, to minimize the latency and maxi-
mize the bandwidth efficiency, both SDFrame and Sverification need
to be small. Because SDFrame is set to be a power of two, and no
less than 128, and the Frame Code can only support up to 2048
bits of Payload, the SDFrame options are limited to: 128, 256, 512,
1024, and 2048.

Let SFrameID denote the size of the Frame ID field and Schecksum
denote the size of the checksum. Because the Verification Code
is the exclusive-or result of the checksum and the Frame ID, we
get:

Sverification = Max(SFrameID, Schecksum) (12)

A valid tuple of (SDFrame,Sverification) should satisfy the following
requirements:

1. The size of the Frame ID should provide enough unique
data frame IDs to cover all the data frames being sent during
an RTT.

2. For any BER that is better than 10-7, the Mean Time Before
Failure (MTBF)5 associated with the checksum should be at
least longer than the lifetime of the circuit, say 100 years.

The first requirement can be quantitatively described as:

2SFrameID ⩾
λline × RTT

SDFrame
(13)

The second requirement can be expressed by:

(1 − FFR)
λline×MTBF

SDFrame = 99% (14)

where FFR denotes the Frame Failure Ratio, representing the
ratio of the error Frames that cannot be detected by verifying the
checksum to the total number of frames transmitted. In RIFL,
we use a CRC code as the checksum. For an m-bit CRC code that
features a Hamming Distance [17] (HD) of n + 1, it can detect all

4We use bit as the size unit for the rest of this paper
5In this paper, we define MTBF as the time to make the system failure possibility

equal to 1%

Table 2. Minimal SFrameID and Schecksum for different SDFrame

SDFrame SFrameID Schecksum HD MTBF(year)

128 9 8 4 9.7*104

256 8 9 4 2.4*104

512 7 10 4 5.9*103

1024 6 11 4 1.5*103

2048 5 12 4 3.6*102

*
λline: 100 Gbps RTT: 500 ns BER: 10-7

Table 3. Sverification vs SDFrame

SDFrame Sverification Eff bandwidth

128 12 87.5%

256 12 93.25%

512 12 96.87%

1024 12 98.43%

2048 12 99.22%

error Frames that carry no more than n error bits. If the number
of the error bits are more than n, one over 2m of the error Frames
cannot be detected. Therefore:

FFR =
1

2m × (1 −
n

∑
i=0

P(i)) (15)

where P(i) denotes the possibility of a frame carrying exactly i
bits of errors:

P(i) =
(

SDFrame
i

)
BERi(1 − BER)SDFrame−i (16)

There are a wide range of CRC codes listed in [19]. Let the line
rate be 100 Gbps, RTT be 500 ns, and the BER be 10-7. Combining
Equations 13, 14, 15, 16, and the CRC codes in [19], the minimal
SFrameID and Schecksum for different SDFrame can be found in Table
2.

Because the Payload is input from the user interface, and
following the convention that the data width of the user inter-
face should be a power of two, there should be a data width
conversion module to convert the user input to the Payload.
To minimize the latency and the complexity of the conversion
module, the Payload should be byte-aligned:

Spayload ≡ 0 mod 8 (17)

Because we have limited SDFrame to a power of two and to be no
less than 128, we get:

SDFrame ≡ 0 mod 8 (18)

Combining Equations 10, 17, 18 , we get:

Sverification ≡ 4 mod 8 (19)

The minimal Sverification and the corresponding Eff bandwidth for
various values of SDFrame can be found in Table 3.

Let 90% be the acceptance threshold of the bandwidth effi-
ciency, then the available options for the Data Frame size are

Research Article Journal of Optical Communications and Networking 7

Fig. 2. Data Frame Structure

256, 512, 1024, and 2048 bits, and Sverification should always be
12 bits. Because the Sverification should be 12 bits, we extend the
CRC code to 12 bits for a stronger protection. We choose not
to extend the Frame ID field, because a larger SFrameID means
larger Sretrans, which leads to larger circuit area.

In summary, we defined the Data Frame fields and the size
of each field in this subsection.

C. The Control Frame

As discussed in A, there should be Control Frames in RIFL to
help maintain state transitions. Because the Control Frames are
used much less than Data Frames, the size of the Control Frames
does not have much affect on the protocol efficiency. Therefore,
we don not need to further analyze the impact of the Control
Frame size like we did for the Data Frame size. To minimize the
complexity, the Control Frame size is set to be equal to the Data
Frame size.

Figure 3 shows the Control Frame structure, where SDFrame
denotes the Data Frame size, Sverification denotes the size of the
Verification Code.

The SYN and the Verification Code do the same thing in the
Control Frames as they do in the Data Frames. The Control
Codes are:

Idle This code indicates the sender is not in the normal data
transfer state. This code is sent out when the sender is in the
transition state between the pause state, the re-transmit state,
and the normal state. Detailed explanations of each state will be
introduced in the next section.

Pause Request This code is sent by the receiver when the link
is out-of-sync. It notifies the sender to pause from sending data.

Re-transmit Request This code is sent by the receiver when
a bad verification code is encountered. It tells the sender to
switch from the normal data transmission to the re-transmission
procedure.

D. Summary

In this section, we analyzed the Frame structure’s impact on
the bandwidth efficiency and the latency of the protocol. We
defined the structure of the Data Frames and the Control Frames
based on our analysis. It is worth noting that, the Frame sizes we
chose are based on the interface data width of the transceivers
we used for prototyping. For other types of transceivers that
offer different interface data widths, the same analysis can be
done again to determine the best Frame size options.

4. DEFINING THE RIFL PROTOCOL

In this Section, we will introduce how RIFL operates with the
Frames we defined in Section 3. By functionality, this section are
divided as follows:

1. The TX and the RX Protocol: How RIFL TX and RX side
operates.

2. Re-transmission: How re-transmission is done with the
Verification Code we defined in the Section 3.

3. Flow Control and Clock Compensation: Explanation of
the flow control procedure and the clock compensation
procedure.

4. Channel Bonding: How RIFL aggregates multiple
transceivers to achieve higher line rates.

A. The TX Protocol

There are six states for the TX logic:

• Init: In this state, invalid Data Frames are generated with
Meta Code 2’b00, and Frame ID from zero to the max6. The
corresponding Verification Codes are also computed and in-
serted into each Frame. These invalid Data Frames will fill
the re-transmission buffer during initialization. Through-
out this state, the TX logic sends out back-to-back Pause
Request Frames.

• Send Pause: Transmitting falls into this state when the RX
logic detects that the link is out-of-sync, or right after the
TX logic finishes initialization. Throughout this state, the
TX logic sends out back-to-back Pause Request Frames.

• Pause: Transmitting falls into this state when Pause Re-
quests Frames are received by the RX logic. Throughout
this state, the TX logic sends back-to-back Idle Frames.

• Retrans: Transmitting falls into this state when Re-transmit
Request Frames are received by the RX logic, or a re-
transmission is resumed from an interruption caused by
higher priority events. In this state, the TX logic can send
three types of Frames: Re-transmitted Data Frames, Idle
Frames or Re-transmitted Request Frames. More details
will be elaborated in the upcoming Re-transmission subsec-
tion.

6The max value depends on how many bits are used for the Frame ID. E.g, if
SFrameID is 8 bits, then the max value is 255. The SFrameID can be at most 12 bits
because the Sverification is set to 12 bits.

Research Article Journal of Optical Communications and Networking 8

Fig. 3. Control Frame Structure

• Send Retrans: Transmitting falls into this state when an
error is detected by the RX logic and there is no other higher
priority condition. Throughout this state, the TX logic sends
out back-to-back Re-transmit Request Frames.

• Normal: The normal data transmission state. As discussed
previously, the link should stay in this state for most of the
time if the BER is within the designed operation range (10-7

in our case). In this state, user is allowed to transmit data.
When valid user data is input, the data is transformed into
the Payload of one or multiple Data Frames. When user
does not input valid data, invalid Data Frame with Meta
Code 2’b00 are generated. In other words, in this state, the
TX logic constantly sends out back-to-back Data Frames and
copy them to the re-transmission buffer. Whenever user
input is not valid, protocol-generated invalid Data Frames
will be transmitted along the link to fill in the gaps.

Figure 4 shows the state transition diagram for the TX logic.
Except for the Init state, all the other states follow the same
transition logic.

B. The RX protocol
There are in total five special events in RIFL: Out-of-sync, Pause
Request, Re-transmit Request, Frame Error and Flow Control.
The reactions of the TX logic to the first four events are already
described in Sections A. The Flow Control protocol will be intro-
duced in Section D. The RX logic is responsible for monitoring
such events and generating the event flags. Once an event is
detected, the RX logic turns on the corresponding flag to notify
the TX logic to make a proper reaction.

There is no state in the RX logic. All the special events are
monitored independently and concurrently. The priority order
of these events is presented in Figure 4. To prevent a Frame that
carry errors from being recognized as a Control Frame, eight
consecutive Pause Requests or Re-transmit Requests need to be
received by the RX logic to activate the Pause or Re-transmit
control flag. The Out-of-sync flag is turned on whenever an
illegal Syncword is received. The Frame Error flag is turned
on whenever a Data Frame with a wrong Verification Code is
received.

C. Re-transmission
When both directions of the link are synchronized, the TX logic
will switch between Normal, Retrans and Send Retrans states.
The re-transmission falls into three scenarios:

C.1. No error for both directions

When there is no error for both directions of the link, both ends
stay in the Normal state. In this scenario, the SYN of every Frame
is always set to 2’b01 to represent a Data Frame. The Meta Code
and the Payload are generated based on different scenarios of
the user input. Every time a new Meta Code and Payload is
generated, the 12-bit CRC checksum will be calculated. The
Verification Code is then yielded by performing exclusive-or

between the Frame ID and the checksum. After the TX logic
sends out a Data Frame, the Frame ID will increment by one.
Each Data Frame being sent out will also be copied to the re-
transmission buffer. The re-transmission buffer is essentially
a shift register, when a new entry is written, the oldest entry
will be removed. Because Sretrans is set to be equal to 2SFrameID ,
each entry in the re-transmission buffer holds a Frame with an
unique Frame ID. When a new Frame is written in to the buffer,
the old Frame to be removed has the same Frame ID with the
new Frame.

C.2. Errors are detected in one of the directions

When errors are detected in only one of the directions, the end-
point where the errors are detected enters the Send Retrans state,
the other end enters the Retrans state. In the endpoint that is in
the Send Retrans state, Frame Error flag is raised, its TX logic will
send out back-to-back Re-transmit Request Frames. In the end-
point that is in the Retrans state, Re-transmit Request flag will
be raised after the most recent received eight Control Frames
are all Re-transmit Request. The TX logic will then perform
the re-transmission procedure. Throughout the re-transmission
procedure, the TX logic will send 2.5*2SFrameID Frames. The
first 2*2SFrameID Frames are interleaved with Idle Frames and Re-
transmitted Data Frames. The last 0.5*2SFrameID Frames are Idle
Frames. After the last Frame of the re-transmission procedure is
sent, if the Re-transmit Request flag is still raised, the TX logic
will perform the re-transmission procedure all over again, until
the Re-transmit Request Flag is down.

C.3. Errors are detected in both directions

When errors are detected in both direction, both endpoints will
enter the Retrans state and start the re-transmission procedure.
Different from the situation where only one direction detects
the errors, for this scenario, the first 2*2SFrameID Frames will be
Re-transmitted Data Frames interleaved with Idle Frames or Re-
transmit Requests Frames. The last 0.5*2SFrameID Frames can also
be either Idle Frames or Re-transmit Requests Frames. Whether
to send the Re-transmit Requests Frames depends on the Frame
Error flag is down or not.

By interleaving the Idle/Re-transmit Request Frames with the
Re-transmitted Data Frames in the first 2*2SFrameID Frames, even
there are errors in both direction, both endpoints can perform
re-transmission while sending re-transmission notifications at
the same time. In addition, when one of the endpoints stops
sending the Re-transmit Request Frames, it will take a half of the
RTT for the last Re-transmit Request Frame to arrive the other
end, and only if the other end stops receiving the Re-transmit
Request Frames, it can put down the Re-transmit Request flag.
To cover this delay, the last 0.5*2SFrameID Frames are designed to
be the buffer Frames.

Thus far, we have introduced the re-transmission procedure
for the TX logic. On the RX side, there is also a procedure
to verify if a Data Frame should be delivered to the user and
if the Frame Error flag should be raised. Pseudo code of the
verification procedure is shown in Listing 1.

Research Article Journal of Optical Communications and Networking 9

Fig. 4. TX State Transition Diagram

Listing 1. RX Verification Procedure
1: Input: SYN , Meta Code , Payload , VCode
2: Output: Frame_Valid , Frame_Error
3: Init:
4: FrameID = 0
5: Threshold_FrameID = 16
6: Always:
7: Checksum = CRC12 ({Meta Code ,Payload })
8: if VCode == FrameID ^ Checksum:
9: if SYN == 2’b01:

10: FrameID += 1
11: if FrameID == Threshold_FrameID:
12: Threshold_FrameID += 1
13: Frame_Valid = True
14: Frame_Error = False
15: else:
16: Frame_Valid = False
17: else:
18: FrameID = Threshold_FrameID - 16
19: Frame_Valid = False
20: Frame_Error = True

As shown in Listing 1, the RX logic keeps its own Frame ID
counter (FrameID) and a threshold counter (ThresholdFrameID).
FrameID is initialized as 0 and ThresholdFrameID is initialized as
16. When a Frame is received, the RX side will first calculate
the CRC checksum of the Frame. The exclusive-or result of
the checksum and FrameID will then be compared against the
Verification Code in the Frame. If the compare result is not
equal, it implies the Frame has errors and the verification failed.
The Frame Error flag will be raised and the Frame will not be
delivered to the user. If the compare result is equal, meaning the
verification passed, the RX logic will then examine the Syncword.
If the Syncword is 2’b10, meaning the Frame is a Control Frame,
the RX verification logic will not do anything. If the Frame is
a Data Frame that carries a Syncword of 2’b01, FrameID will
then be compared against ThresholdFrameID, only if FrameID
is equal to ThresholdFrameID, the Data Frame can be delivered
to the user, and both FrameID and ThresholdFrameID will then
increment by one. If FrameID is not equal to ThresholdFrameID,
then only FrameID will increment by one, the Frame will not be
delivered to the user. In the case that the verification is failed.
the FrameID will be rolled back to ThresholdFrameID minus 16.

The RX verification procedure is designed to deal with a spe-
cial sequence of errors that can cause a false-positive verification
result without the verification procedure. Here is an example
of the special sequence of errors: assume Frame 68 has an er-
ror. A re-transmission is requested. Meanwhile, the subsequent
frames, such as Frame 69 and Frame 70, are already on the fly.
Because the 12-bit Verification Code is the exclusive-or result

of the Frame ID and the CRC checksum, if either Frame 69 or
Frame 70 has an error, they can be misrecognized as a correct
Frame 68 - there is only one bit difference between the binary
representations of 69 and 70 from 68. Also, because the TX logic
will start re-transmission whenever the Re-transmit Request flag
is raised, the re-transmission will not start exactly from Frame 68.
Instead, it will start from a Frame sent before Frame 68. If some
of the re-transmitted Frames before Frame 68 carry errors, they
may also look like Frame 68 for the same reason. Thus, when
an error is detected in Frame 68, the Frame ID will be rolled
back to 52. We require the RX logic to see a correct sequence
from Frame 52 to Frame 67 before accepting Frame 68. This
means the RX logic must see a correct sequence of sixteen 12-bit
Verification Codes. In this way, even a Frame with white noise
(BER = 0.5) has only a chance of one over (212)16 to be misrecog-
nized as Frame 68. For BER better than 10-7, the probability of a
false-positive is even more negligible.

D. Flow Control
As we discussed in Section 1, congestion control should be done
at the Network Layer. However, besides congestion control,
flow control is still necessary - the receiver may not be able
to receive the data all the time, a method for the receiver to
notify the sender to stop transmitting data is needed. To provide
flow control, a buffer is added between the RX logic and the user
interface. A simple ON/OFF flow control mechanism is adopted
for low complexity. When the buffer queue length exceeds the
ON threshold (ThrON), the TX logic of the receiver will send
out a flow control pause Frame7. When the buffer queue length
drops below the OFF threshold (ThrOFF), the TX logic of the
receiver will send out a flow control resume Frame. The sender
completely stops transmitting any data after receiving the flow
control pause Frame, and it resumes transmitting at the line rate
after receiving the flow control resume Frame.

The size of the flow control buffer (SFC) must be carefully
chosen to prevent any buffer overflow or starving during a flow
control process - buffer overflow will cause frame losses and
buffer starving will cause bandwidth under-utilization. Because
it takes a half of the RTT for a flow control notification Frame
to arrive from the receiver to the sender, during this period, the
flow control buffer must reserve enough space to receive the
Frames sent from the sender at the line rate, hence:

SFC − ThrON ⩾ λline ∗
RTT

2
(20)

7The flow control pause Frame is different from the Pause Request Control
Frame

Research Article Journal of Optical Communications and Networking 10

Also, during this period, the buffer must also be able to deliver
Frames to the user at the line rate, then we get:

ThrOFF ⩾ λline ∗
RTT

2
(21)

Lastly, ThrON and ThrOFF must not be too close. Otherwise,
frequently switching between ON and OFF will cause the flow
control notification Frames occupying too much bandwidth of
the reverse channel. For convenience, we set:

ThrON − ThrOFF ⩾ λline ∗
RTT

2
(22)

Combing Equation 20 and 21 and 22, we get:

SFC ⩾
3
2
∗ λline ∗ RTT (23)

and we can set:
ThrON =

2
3
∗ SFC (24)

ThrOFF =
1
3
∗ SFC (25)

After defining the flow control mechanism and the flow con-
trol buffer size, there is one remaining issue for flow control:
bit error. Every Frame, including the flow control notification
Frames, can end up being corrupted during transmitting. If
there is a bit error in the flow control pause Frame, then it can
result in a buffer overflow and a Frame loss. If there is a bit error
in the flow control resume Frame, then the link may stop trans-
mitting data forever. In our case, we extended the Meta Code
encoding scheme and defined flow control notification Frames
as special Data Frames. Previously, when the Meta Code is 2’b00,
it indicates the Frame is an invalid Data Frame. Now, three types
of Frames share Meta Code 2’b00. Only if the last byte of the
Payload is 2’h00, it represents an invalid Data Frame. Otherwise,
2’h01 represents a flow control pause Frame and 2’h02 represents
a flow control resume Frame.

By defining the flow control notification Frames as special
Data Frames, the flow control notifications are guaranteed de-
livering to the sender. Even when there are bit errors, the flow
control notifications will only be delayed, but not be missing.
During the delay time, regular data transmissions at both sides
of the link will be completely stopped because of re-transmission.
Hence, there will be no data loss because of the flow control
pause notifications not taking effect on time.

E. Clock Compensation
Although both sides of the link should operate at the same nom-
inal line rate, the actual frequencies of their clocks will not be
exactly the same because of the crystal oscillator frequency devi-
ation. The endpoint with the faster clock will send data slightly
faster than the slower end can receive. This will eventually
overflow the slower end’s receive buffer. With flow control, the
issue can be resolved. However, it comes with a price of higher
latency. Because flow control relies on the buffer queue length
to slowly increase to ThrON for a pause, the Frames at the end
of the queue will experience large latency. It will be ideal if the
TX logic at the faster endpoint can proactively regulate its rate.
Because clocks are embedded into the data streams for serial
transmission between transceivers, and RIFL directly interfaces
with the transceivers, we are able to compare the frequency of
the recovered clock with the frequency of the local clock to de-
termine whether and when the TX logic should pause for one
cycle for clock compensation. Details of the clock compensation
implementation will be introduced in Section 5.

Fig. 5. RIFL Top-Level Architecture

F. Channel Bonding
So far, we have introduced the single-lane protocol of RIFL. It
works when both ends of the link only use a single transceiver
for transmission. Nevertheless, although transceiver technol-
ogy evolves rapidly, transceivers that support above 100 Gbps
line rate are still rare to see. To achieve a bandwidth of hun-
dreds gigabytes per second, channel bonding has to be done
to aggregate the bandwidths of multiple transceivers. In RIFL,
when multiple transceivers are used, every single pair of the
transceivers runs the single-lane protocol. The channel bonding
logic is responsible for dispatching the user data to each lane
and aggregating the received data from each lane. To simplify
the logic, we divide the user data into segments, the size of each
segment is SPayload. At the TX side, the first segment goes to lane
1, the second goes to lane 2, and so on so forth. The same applies
to the RX side, the Frame received from lane 1 is delivered first,
followed by the Frame received from lane 2, and so on so forth.
Because of the lane skew, lane 1 is not guaranteed to be the first
lane to receive a Frame. The flow control buffer at each lane is
used to overcome the lane skew. Details of the channel bonding
implementation will be introduced in Section 5.

G. Summary
In this section, we have defined the RIFL protocols. We first
introduced how TX and RX logic operates in general. We then
added more details of re-transmission, flow control and clock
compensation. Finally, we presented the channel bonding proto-
col.

More details on the implementation of the protocols are pre-
sented in Section 5.

5. IMPLEMENTATION

In this section, we present the FPGA implementation of RIFL
that is open sourced at [23]. RIFL is fully parameterized. Imple-
mentation options such as the Frame size and the transceiver
line rate are exposed as synthesis parameters. For convenience,
in this section, we demonstrate a four-lane implementation. In
the implementation, each lane runs at 28 Gbps, and the Frame
size is set to 256 bits.

A. Top-Level Architecture
Figure 5 shows the top-level architecture. RIFL provides a pair
of AXI4-Stream [24] interfaces to the user. Both interfaces consist

Research Article Journal of Optical Communications and Networking 11

of TDATA, TVALID, TKEEP, TLAST, and TREADY fields. With
these fields, each flit 8 of the user data stream carries all the
essential information we discussed in Section A. Adjacent to
the user interfaces is the AXI4-Stream data width conversion
block. It converts the stream width from any power of two to a
multiple of SPayload.

When more than one transceiver is used, the AXI4-Stream
data width converter will then be connected to the channel bond-
ing module. In the TX path, the channel bonding module splits
a single data stream into multiple data streams. In the RX path,
it does the inverse. To provide more flexibility, two different
channel bonding methods can be used in the channel bonding
module: Temporal Channel Bonding and Spacial Channel Bond-
ing. Temporal Channel Bonding splits a single data stream that
runs at a higher frequency into multiple data streams that run
at a lower frequency. After being split, the data width remains
unchanged. Spacial Channel Bonding splits a single wider data
stream into multiple narrower data streams and it does not
change the frequency. In the example shown in Figure 5, both
methods are used, the 512-bit AXI-4 Stream is first converted
a 480-bit AXI-4 Stream. Then, inside of the channel bonding
module, it is split into two 480-bit AXI-4 Streams running at
half of the original frequency. Finally, each of the 480-bit AXI-
4 Stream is split into two 240-bit streams. With two channel
bonding methods, more user interface data width options are
provided. For a four lane implementation with a Frame size
of 256 bits, the data width can be 256 bits, 512 bits or 1024 bits.
When implements RIFL on a low speed device such as a low end
FPGA, wider interfaces with lower frequency can help timing
closure, while on a high speed device, narrower interfaces are
ideal for smaller circuit area.

If there is only a single lane, then the channel bonding module
will be omitted. The AXI4-Stream data width converter will
directly connect the single-lane logic. Details of the single-lane
architecture will be presented in the next subsection.

B. Single-Lane Architecture
Figure 6 shows the single-lane architecture of RIFL. As shown
in the figure, there are two clock domains: the RX Domain is
driven by the recovered clock generated by the transceiver, and
the TX Domain is driven by two local clocks - a high speed clock
drives transceiver-facing logic and a low speed clock drives the
rest of the protocol logic. The high and low speed clocks are
derived from the same clock source. The frequency of the faster
one is a power of two times of the frequency of the slower one.
Hence, the two TX clocks are synchronous to each other. In the
example, the high speed clock runs at 437.5 MHz and the lower
speed clock runs at 109.4 MHz.

In the RX domain, the Lane Aligner converts the unaligned
transceiver output stream to an aligned stream by locating the
position of the Syncword. The Lane Aligner is essentially a two-
level cascaded multiplexer chain. After the Lane Aligner, the
Verification Code Validator is used to verify the correctness of
the Verification Code. It is responsible for raising the Frame
Error Flag. The scrambler and the descrambler used in RIFL
are implemented in linear-feedback shift registers (LFSRs). The
standard 33-bit scrambler code (1 + x13 + x33) is adopted for
good DC balance and transition density [25]. After descram-
bling, the Clock Domain Crossing (CDC) module filters out the
non-Data Frames by checking the Syncword. It then converts
the filtered stream from the RX Domain to the TX Domain using

8flit: The data being transmitted in a single clock cycle

a low latency asynchronous FIFO. The Control Event Monitor
and the Flow Control Monitor are responsible for checking every
Frame and generating the Pause Request flag, the Re-transmit
flag and the flow control ON/OFF notifications.

In the TX domain, the modules that are closer to the
transceiver are driven by the high speed clock. They are the
scrambler and the Verification Code generator. A pair of the
GT data width converters are used to perform the conversion
between the high-speed narrow stream used by the transceiver
and the low-speed wide stream used by the rest of the protocol
logic. The modules driven by the low-speed clock are the TX
Controller, the Meta Code Encoding and Decoding modules,
and the Flow Control Buffer. The finite-state machine (FSM) in
the TX Controller implements the TX logic described in Section
A. The Meta Code Encoding and Decoding modules convert the
AXI4-Stream signals to the Meta Code signals. The Flow Control
Buffer is a synchronous FIFO. It monitors its buffer queue length
and issues flow control requests to the TX Controller.

Finally, the Clock Compensation module takes the TX clock
and the RX clock from the transceiver, and a free-running clock
as inputs. Each transceiver clock drives a gray code counter.
Both counters are then brought to the free-running clock domain
for comparison. If the counter of the TX clock increases faster
than the counter of the RX clock, then the difference of the
counter values will be kept in a register. Whenever the difference
increases, the Clock Compensation module will issue N cycles
of pause signals to the TX controller. N is equal to the change of
the difference between comparisons.

6. PERFORMANCE EVALUATION

We have validated the functional correctness of RIFL on both
Intel and Xilinx devices for line rates from 25 Gbps to 200 Gbps.
In this section, we present the performance results of RIFL that
we obtained from Xilinx devices. We will first introduce our
test setup. Then, we will compare the bandwidth efficiency,
the latency and the resource usage between RIFL and Xilinx’s
Aurora [9], Interlaken [26] and 100G Ethernet (CMAC) [27] im-
plementations. We will then provide RIFL’s performance result
under various BER to demonstrate RIFL’s reliability.

A. Experimental setup

Our prototype is implemented on Fidus Siderwinder-100
(SW100) [28] boards. There are two QSFP28 ports on the board,
connected to an XCZU19EG FPGA. Ten-meter Active Optical
Cable (AOC) and 3-meter Direct Attach Copper (DAC) cables
are used for the QSFP28 connections. For the sake of simplicity,
we only present the results for the AOC in this Section.

A software-defined AXI4-Stream traffic generator is built to
generate the testing traffic. This traffic generator allows AXI4-
Stream traffic to be defined cycle by cycle in CSV format. The
CSV file is then encoded into binary format and moved from
an X86/ARM host to the FPGA memory. The hardware driver
of the traffic generator retrieves the traffic data from the FPGA
memory, performs decoding, and generates the traffic in a cycle-
accurate manner according to the CSV definition.

A traffic validator is also built. It can cache the transmitted
packets and compare them against the loopback traffic to verify
the correctness. It also internally time-stamps each packet to
monitor the bandwidth and latency.

Two different tests are designed for the performance com-
parison and the reliability test. The setup shown in Figure 7a is

Research Article Journal of Optical Communications and Networking 12

Fig. 6. RIFL Single-Lane Architecture

(a) Performance Comparison Test Setup (b) Reliability Test Setup

Fig. 7. Performance Test Setups

used for performance comparison between the RIFL implemen-
tations and the Xilinx cores. The designs under test (DUTs) are
placed in two FPGA boards to represent their general use case.
The bandwidth efficiency and the RTT is measured in the first
board. The point-to-point latency is yielded by halving the RTT -
assuming the latencies for both direction are the same. For fair
comparison, all DUTs use four Xilinx GTY transceivers. The line
rate of each transceiver is set to 25.78 Gbps.

The reliability test setup is shown in Figure 7b. In this test,
the same BER is imposed to both directions. To make the error
patterns of the two directions independent, their random seeds
are set different. In this case, the point-to-point latency cannot
be considered as a half of the RTT anymore, because the link
is not symmetric. For example, in a round trip, errors may
happen in one of the directions, causing the latencies of both
directions to be unequal. Therefore, the point-to-point latency
has to be directly measured. As a result, both RIFL cores are
placed in the same FPGA. Traffic generators and traffic validators
are connected to both RIFL cores. The bandwidth efficiency
and the average latency are computed by averaging the test
results of both directions. The tail latencies are computed from
the aggregated results of both directions. In the reliability test,
each RIFL core uses four GTYs [21] running at 28 Gbps. The
aggregated line rate is 112 Gbps, which is the maximum line rate
a QSFP28 cable can support.

B. RIFL vs Aurora vs Interlaken vs CMAC

In this subsection, we compare the bandwidth efficiency, latency,
and resource usage performance between RIFL, Aurora, Inter-

laken and CMAC.
For bandwidth efficiency comparison, we test the bandwidth

efficiency results for different user payload sizes. The payload
sizes sweep from 1 byte to 8192 bytes9, with a step of one byte.
When the size of a payload is larger than the maximum frame
size of the DUT (32 bytes for RIFL256, 64 bytes for RIFL512,
Interlaken and Aurora, 9600 bytes for CMAC), it is divided
into multiple frames for transmission. For each payload size, a
traffic of ten gigabytes is sent. The traffic generator saturates the
available bandwidth of the DUT by sending out a flit of traffic
whenever the DUT can accept one.

Figures 8a, 8b and 8c show the bandwidth efficiency compari-
son between RIFL, Aurora, Interlaken and CMAC. In the figures,
RIFL256 represents the RIFL implementation with a Frame size
of 256 bits and RIFL 512 represents RIFL with a Frame size of
512 bits. To preserve more details for small payload sizes, the
results for payload sizes that are larger than 1500 bytes are not
included in the figures. As the figures show, in terms of band-
width efficiency, from the best to the worst, it is CMAC, RIFL512,
RIFL256 and Interlaken. Unlike the zigzag curves of the other
three cores, CMAC shows a much smoother curve. It is because
for RIFL, Aurora and Interlaken, if the payload size is not a
multiple of the user interface data width, then for the last flit
of the packet, only a fraction of the user interface will receive
valid data. After receiving the partial valid flit, the entire flit is
fed into the pipeline, the invalid bits are replaced with bubbles.
Meanwhile, for CMAC, the data received from the user interface
is first buffered, and is then reconstructed. The last flit of packet

9CMAC starts at 64 bytes because its minimal accepted payload size is 64 bytes.

Research Article Journal of Optical Communications and Networking 13

0 500 1,000 1,500
0 %

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

Payload Size [Byte]

Ba
nd

w
id

th
Ef

fic
ie

nc
y

RIFL512
RIFL256
Aurora

(a) Bandwidth Comparison: RIFL vs Aurora

0 500 1,000 1,500
0 %

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

Payload Size [Byte]

Ba
nd

w
id

th
Ef

fic
ie

nc
y

RIFL512
RIFL256

Interlaken

(b) Bandwidth Comparison: RIFL vs Interlaken

0 500 1,000 1,500
0 %

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

Payload Size [Byte]

Ba
nd

w
id

th
Ef

fic
ie

nc
y

CMAC
RIFL512
RIFL256

(c) Bandwidth Comparison: RIFL vs CMAC

0 2,000 4,000 6,000 8,000
0

100

200

300

400

500

Payload Size [Byte]

La
te

nc
y

[n
s]

Interlaken
CMAC
Aurora
RIFL512
RIFL256

(d) Latency Comparison

Fig. 8. Performance Comparison between RIFL, Aurora, Interlaken and CMAC

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5
0 %

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

BER

Ba
nd

w
id

th
R

at
io

Bandwidth Ratio

(a) Bandwidth vs BER

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5100

101

102

103

104

BER

La
te

nc
y

[n
s]

Average Latency
Tail Latency 95%
Tail Latency 99%

(b) Latency vs BER

Fig. 9. Bandwidth and Latency under different BERs

Research Article Journal of Optical Communications and Networking 14

Table 4. Resource Comparison

Protocol LUTs Flip Flops BRAM36Ks DSPs

RIFL(256,256) 15308 15935 16 0

RIFL(256,1024) 20048 14098 16 0

RIFL(512,512) 28995 28960 32 0

Aurora 10192 9447 4 0

Table 5. MTBF vs BER

BER MTBF (year)

1.00E-11 1.81E+23

1.00E-09 1.81E+15

1.00E-07 1.88E+8

1.00E-05 6.33

N can be concatenated with the first flit of packet N+1 to elimi-
nate the pipeline bubbles as much as possible. While buffering
and reconstructing benefit the bandwidth efficiency, they come
with a trade-off of the latency and the complexity.

For latency comparison, the same traffic patterns are used.
Same with the bandwidth comparison, the traffic generator sat-
urates the available bandwidth of the DUT.

Figure 8d shows the point-to-point latency comparison re-
sult. From the best to the worst, it is RIFL256, RIFL512, Aurora,
CMAC and Interlaken. For CMAC, as previously mentioned, by
buffering and reconstructing the user packets, the latency is in-
creased. The latency for small packets varies significantly more
than the large ones. For Aurora and Interlaken, without know-
ing their implementation details, we cannot infer what form up
their latency. However, we are confident that it is our micro-
architecture optimizations mentioned in the previous sections
that make RIFLs the lowest latency implementations.

Table 4 shows the resource usage comparison between three
different implementations of RIFL and Aurora. In Table 4,
RIFL(X,Y) represents RIFL with a Frame size of X bits and a
user interface width of Y bits. Interlaken and Aurora are not
included in the resource usage comparison because they are both
hard cores, i.e., they are not implemented in FPGA soft logic.

It can be learned from the table that RIFL uses more resources
than Aurora. One of the main reasons is that RIFL adds the
re-transmission buffer and the flow control buffer for reliability.
Another reason is that our FPGA prototype is not fully optimized
for resource usage. For example, the data widths of BRAMs in
the Sidewinder board are at most 64 bits while the buffer data
width in RIFL is equal to its Frame size, being at least 256 bits.
Although the capacity of a single BRAM is enough for the flow
control buffer, we have to use multiple BRAMs for enough data
width. Both reasons are related to the FPGA itself. If RIFL is
hardened, the resource usage can be significantly reduced.

C. Reliability Test
In this subsection, we present the bandwidth ratio, latency, and
MTBF result of RIFL256 under different BERs. The bandwidth
ratio is the ratio of the bandwidth under current BER to the
bandwidth of a error-free link.

In the test, the size of the traffic is set to ten gigabytes. The
traffic consists of mixed length packets. Payload sizes are ran-

domly distributed from 1 byte to 8192 bytes. The BERs sweep
from 10−12 to 10−5, with a step of 10 0.25.

As shown in Figures 9a and 9b, the bandwidth and latency of
RIFL do not degrade until the BER increases beyond about 10−7.
The bandwidth ratio starts to drop when the BER is 5.6 × 10−10,
and it drops to 96.3% when the BER is 10−7. The results agree
with the theoretical calculation result of Equation 11.

The latency of RIFL starts to increase when the BER is worse
than 1.7 × 10−6. When the BER is better than 10−7, the average
latency and the tail latencies remain within 107 nanoseconds.
This also agrees with the theoretical calculation.

As we discussed in Section C, during a re-transmisson, even a
Frame of white noise is impossible to be mis-detected as a correct
Frame. Therefore, for RIFL, Equation 14 should be modified as:

(1 − FFR)
λactual×MTBF

SDFrame = 99% (26)

where λactual denotes the actual bandwidth. With the bandwidth
result, MTBF can be calculated.

As shown in Table 5, when BER is 10−7, the MTBF is 1.88 ×
107 years. Therefore, it is safe to claim that RIFL is reliable for
any BER that is better than 10−7.

D. Cross-Vender Communication
We have successfully validated RIFL on a link between an Intel
Agilex device and a Xilinx Vertex Ultrascale+ device.

E. Summary
In this section, we compare the latency and bandwidth efficiency
result between two implementations of RIFL and three other
Link Layer protocol implementations. We show that RIFL has
the best latency and second best bandwidth efficiency while it
is the only protocol that ensures lossless transmission. We also
show RIFL can keep good performance and long MTBF when
the BER is better than 10-7.

7. RELATED WORK

In this section we describe the works that are most relevant to
RIFL.

Ethernet [13] was introduced in the 1980s and it is the most
common protocol used in modern data centers [12]. In the three-
layer model we introduced in Section 1, Ethernet includes not
only Layer 1 functionalities, but also some Layer 2 functionali-
ties, such as switching. Ethernet (Layer 1) allows variable frame
sizes from 72 bytes to 1530 bytes (some implementations allow
jumbo frames larger than 9000 bytes, but it is not compatible
with the IEEE 802.3 standard). A 32-bit CRC is included in every
Ethernet frame, enabling error detection but not error correction.
Any re-transmission protocol working on top of Ethernet has to
be end-to-end, which means Constraint C is not met any more.
Moreover, the re-transmission buffer has to be large enough
to handle a burst of the maximum-size frames. To summarize,
a re-transmission protocol working on top of Ethernet would
be more complex and less efficient than RIFL. Also, the experi-
mental results in Section 6 show that RIFL perform better than
CMAC, which is the Xilinx 100G Ethernet implementation [27].

Aurora [9] is a link layer protocol developed by Xilinx. It is
made for point-to-point communication between FPGAs. There
are two versions of Aurora, using two different line codes:
8b/10b for lower line rates and 64b/66b for higher line rates. The
user payload is broken into multiple eight-byte frames called
Data Blocks. The remaining bytes are transmitted using a special

Research Article Journal of Optical Communications and Networking 15

frame called the Separator Block. The Separator Block serves as
an indicator of the end of a packet. A 32-bit CRC code is used
in Aurora for error detection. Flow control directives are also
provided.

Interlaken [8] is invented by Cisco Systems and Cortina Sys-
tems. It uses 64b/67b encoding for better DC balance. There
are two methods of packetization for Interlaken: BurstMax and
BurstShort. The user payload is first broken into multiple 64-
byte blocks and then transmitted using the BurstMax method.
The remaining bytes are transmitted using BurstShort. The size
of BurstShort can be from 32 bytes to 56 bytes, with 8-byte incre-
ments. Both BurstMax and BurstShort are ended with an 8-byte
block named the Control Word. A 24-bit CRC code is integrated
into the Control Word. Interlaken also provides in-band and
out-of-band flow control, as well as out-of-band re-transmission.

Sanchez Correa et al. [10] create a protocol stack for FPGA-
based high performance computing. Their Layer 1 is based on
the 10 Gigabit Media Independent Interface (XGMII), limiting
the throughput per lane to 10 Gbps. Their work is based on the
assumption that the link channels are error free, hence reliability
is not being taken care of at all.

None of the related works described here can provide or im-
plement the low-latency, high bandwidth and especially reliable
protocol that we require for our Layer 1 link layer protocol.

8. CONCLUSION

We have presented RIFL, a low latency and reliable Link Layer
network protocol. Because of its novel in-band re-transmission
protocol, RIFL is capable of providing lossless point-to-point
links with ultra-low latency and high bandwidth. We imple-
mented RIFL on Sidewinder boards and showed that at the line
rate of 112 Gbps, approximately 100 nanoseconds point-to-point
latency is achieved. We have also demonstrated that RIFL is
capable of correcting all the data corruptions for standard point-
to-point links.

With RIFL at the bottom layer, there is no need for the up-
per layer protocols to deal with any checksum. Therefore, the
logic of the upper layer protocols can be simplified, and more
resources can be used to deal with congestion control. This sug-
gests that it is feasible to build a low-latency, high-bandwidth
network for a data center environment based on RIFL. Our fu-
ture work will address the Network Layer to enable congestion-
free multi-hop communication.

9. ACKNOWLEDGEMENTS

This work is generously supported by Xilinx, Alibaba and
NSERC. The authors declare that there is no conflict of inter-
est regarding the publication of this paper.

REFERENCES

1. D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “Strom:
smart remote memory,” in Proceedings of the Fifteenth European
Conference on Computer Systems, (2020), pp. 1–16.

2. Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM Comput. Commun. Rev.
45, 523–536 (2015).

3. R. Kahn and V. Cerf, “A protocol for packet network intercommunica-
tion,” IEEE Transactions on Commun. 22, 637–648 (1974).

4. A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “Farm: Fast re-
mote memory,” in 11th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 14), (2014), pp. 401–414.

5. M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
in Proceedings of the ACM SIGCOMM 2010 conference, (2010), pp.
63–74.

6. A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The QUIC Transport
Protocol: Design and Internet-scale Deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
(2017), pp. 183–196.

7. “ADM-PCIE-9H7,” https://www.alpha-data.com/alpha-data-announc
es-12x100g-network-accelerator-board-featuring-samtec-twinax-fly
over-systems-and-xilinx-ultrascale-fpga (2021).

8. “Interlaken Protocol Definition,” http://interlakenalliance.com/wp-conte
nt/uploads/2019/12/Interlaken_Protocol_Definition_v1.2.pdf (2008).

9. “Aurora 64B/66B Protocol Specification,” https://www.xilinx.com/suppo
rt/documentation/ip_documentation/aurora_64b66b_protocol_spec_
sp011.pdf (2014).

10. R. S. Correa and J. P. David, “Ultra-low latency communication chan-
nels for fpga-based hpc cluster,” Integration. 63, 41–55 (2018).

11. “Infiniband Architecture Specification,” https://www.infinibandta.org
(2020).

12. “Data center interconnect system share,” https://www.top500.org/stati
stics/list/ (2021).

13. “IEEE Standard for Ethernet,” IEEE Std 802.3-2018 (Revision IEEE
Std 802.3-2015) pp. 3492–4199 (2018).

14. M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and S. López-Buedo, “Limago:
An fpga-based open-source 100 gbe tcp/ip stack,” in 2019 29th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), (IEEE, 2019), pp. 286–292.

15. D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley,
“Scalable 10gbps tcp/ip stack architecture for reconfigurable hard-
ware,” in 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, (IEEE, 2015), pp. 36–43.

16. Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of dram
latency in multi-requestor systems,” in 2013 IEEE 34th Real-Time
Systems Symposium, (IEEE, 2013), pp. 372–383.

17. R. W. Hamming, “Error detecting and error correcting codes,” The Bell
system technical journal 29, 147–160 (1950).

18. P. Koopman and T. Chakravarty, “Cyclic redundancy code (crc) polyno-
mial selection for embedded networks,” in International Conference on
Dependable Systems and Networks, 2004, (IEEE, 2004), pp. 145–154.

19. Philip Koopman, “CRC Polynomial Zoo,” https://users.ece.cmu.edu/~k
oopman/crc/hd3.html (2019).

20. Xilinx, “UltraScale Architecture GTH Transceivers,” https://www.xilinx.c
om/support/documentation/user_guides/ug576-ultrascale-gth-trans
ceivers.pdf (2021).

21. Xilinx, “UltraScale Architecture GTY Transceivers,” https://www.xilinx.c
om/support/documentation/user_guides/ug578-ultrascale-gty-trans
ceivers.pdf (2017).

22. Xilinx, “Virtex UltraScale+ FPGAs GTM Transceivers,” https://www.xili
nx.com/support/documentation/user_guides/ug581-ultrascale-gtm-t
ransceivers.pdf (2020).

23. Qianfeng Shen, “RIFL,” https://github.com/QianfengClarkShen/RIFL
(2021).

24. ARM, “AMBA AXI and ACE Protocol Specification,” https://developer.ar
m.com/documentation/ihi0022/d (2011).

25. Sujan Pandey, “Scrambler Options for Multi-Gig PHYs,” http://groupe
r.ieee.org/groups/802/3/ch/public/nov18/Pandey_3ch_01_1118.pdf
(2018).

26. Xilinx, “Interlaken 150G v1.6 LogiCORE IP Product Guide,” https:
//www.xilinx.com/support/documentation/ip_documentation/interlak
en_150g/v1_6/pg212-interlaken-150g.pdf (2017).

27. Xilinx, “UltraScale+ Devices Integrated 100G Ethernet Subsystem v2.4,”
https://www.xilinx.com/support/documentation/ip_documentation/cm
ac_usplus/v2_4/pg203-cmac-usplus.pdf (2018).

28. Fidus, “Sidewinder-100 Datasheet,” https://fidus.com/wp-content/uploa
ds/2019/01/Sidewinder_Data_Sheet.pdf (2018).

https://www.alpha-data.com/alpha-data-announces-12x100g-network-accelerator-board-featuring-samtec-twinax-flyover-systems-and-xilinx-ultrascale-fpga
https://www.alpha-data.com/alpha-data-announces-12x100g-network-accelerator-board-featuring-samtec-twinax-flyover-systems-and-xilinx-ultrascale-fpga
https://www.alpha-data.com/alpha-data-announces-12x100g-network-accelerator-board-featuring-samtec-twinax-flyover-systems-and-xilinx-ultrascale-fpga
http://interlakenalliance.com/wp-content/uploads/2019/12/Interlaken_Protocol_Definition_v1.2.pdf
http://interlakenalliance.com/wp-content/uploads/2019/12/Interlaken_Protocol_Definition_v1.2.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
https://www.infinibandta.org
https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
https://users.ece.cmu.edu/~koopman/crc/hd3.html
https://users.ece.cmu.edu/~koopman/crc/hd3.html
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug581-ultrascale-gtm-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug581-ultrascale-gtm-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug581-ultrascale-gtm-transceivers.pdf
https://github.com/QianfengClarkShen/RIFL
https://developer.arm.com/documentation/ihi0022/d
https://developer.arm.com/documentation/ihi0022/d
http://grouper.ieee.org/groups/802/3/ch/public/nov18/Pandey_3ch_01_1118.pdf
http://grouper.ieee.org/groups/802/3/ch/public/nov18/Pandey_3ch_01_1118.pdf
https://www.xilinx.com/support/documentation/ip_documentation/interlaken_150g/v1_6/pg212-interlaken-150g.pdf
https://www.xilinx.com/support/documentation/ip_documentation/interlaken_150g/v1_6/pg212-interlaken-150g.pdf
https://www.xilinx.com/support/documentation/ip_documentation/interlaken_150g/v1_6/pg212-interlaken-150g.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cmac_usplus/v2_4/pg203-cmac-usplus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cmac_usplus/v2_4/pg203-cmac-usplus.pdf
https://fidus.com/wp-content/uploads/2019/01/Sidewinder_Data_Sheet.pdf
https://fidus.com/wp-content/uploads/2019/01/Sidewinder_Data_Sheet.pdf

	Introduction
	Layer 1 - The Link Layer
	Forward Error Correction (FEC) vs Re-transmission
	Re-transmission Efficiency vs Round Trip Time (RTT)
	Leveraging Hop-by-Hop Link Layer Re-Transmission
	ACK vs NACK
	Summary

	Defining the RIFL Frames
	High-Level Exploration of the Data Frame Structure
	Header Fields
	Data Frame Size

	The Data Frame
	Syncword (SYN)
	Payload
	Meta Code
	Format Code
	Verification Code

	The Control Frame
	Summary

	Defining the RIFL Protocol
	The TX Protocol
	The RX protocol
	Re-transmission
	No error for both directions
	Errors are detected in one of the directions
	Errors are detected in both directions

	Flow Control
	Clock Compensation
	Channel Bonding
	Summary

	Implementation
	Top-Level Architecture
	Single-Lane Architecture

	Performance Evaluation
	Experimental setup
	RIFL vs Aurora vs Interlaken vs CMAC
	Reliability Test
	Cross-Vender Communication
	Summary

	Related Work
	Conclusion
	Acknowledgements

