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Despite the increased exploration of machine learning (ML) techniques for the realization of autonomous
optical networks, less attention has been paid to data quality, which is critical for ML performance. Failure
management in optical networks using ML is constrained by the fact that some failures may occur more
frequently than others, resulting in highly imbalanced datasets for the training of ML models. To address
this limitation, a variational-autoencoder-based data augmentation technique has been investigated in this
papet, which can be used during data preprocessing to improve data quality. The synthetic data generated
by the variational autoencoder has been utilized to reduce imbalance in an experimental dataset used for
training of neural networks (NNs) for failure management in optical networks. Firstly, it has been shown
that with a modified training dataset, training time of NNs can be reduced. A reduction of up to 37.1% and
60.6% was achieved for failure detection and cause identification, respectively. Secondly, it has been shown
that an improvement in the quality of the training dataset can reduce the computational complexity of NNs
during inference phase. As determined analytically, almost 68% reduction in computational complexity has
been achieved for the neural network used for failure cause identification. Finally, data augmentation has
been shown to achieve an improvement in classification accuracy. This work demonstrates an improvement

of up to 7.32%. © 2023 Optica Publishing Group
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1. INTRODUCTION

Machine learning (ML) is expected to offer great potential to op-
timize the management of optical networks [1-4]. Therefore, its
applications in optical networks are being extensively studied,
including optical network failure management (ONFM) as a key
use case [5, 6]. In [7], a ML technique based on neural network
(NN) and shape-based clustering was proposed to proactively
detect and locate faults along with their probable root causes.
Wang et al., in [8], proposed a ML-based performance monitor-
ing and failure prediction technique for optical networks that
uses support vector machine and double exponential smoothing.
A probabilistic ML algorithm based on Bayesian Networks was
investigated in [9] to localize and identify the most probable
cause of a failure. The research presented in [10-13] also focuses
on ML-based failure detection and/or cause identification. In
all of these works, numerous ML techniques have been inves-
tigated for ONFM to achieve improved performance; however,
the emphasis on data quality, which acts as a fuel for any ML
model, appears to be missing.

The good quality of the training data is indispensable for
achieving the optimal performance of a ML model [14, 15]. In
the case of neural networks (NNs), increasing their complexity
to some extent (i.e., adding more hidden layers and/or neurons)
improves performance [16], implying that poor data quality can
be compensated by increasing the complexity of a NN. However,
as data quality can be improved in software, the increased imple-
mentation complexity of NNs in hardware can be avoided. One
of the ways to improve data quality is to introduce class balance
in the dataset. In a balanced dataset, none of the class is under-
represented. But, when dealing with ONFM and, in particular,
with failure cause identification, some failures are more common
than others. This may result in an unequal distribution of failure
observations and, thus, in imbalanced datasets. Training ML
models with highly imbalanced datasets may result in a bias
toward the majority (more common failure) class [17], affecting
overall performance in terms of accuracy and/or training time.

There are two possible approaches to reduce imbalance in a
dataset: (i) under-sampling of the majority failure class(es) or (ii)
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over-sampling of the minority failure class(es). Under-sampling
of majority classes can result in information loss [18] and there-
fore, it may not necessarily be as effective as oversampling. On
the other hand, there are multiple ways to perform oversam-
pling of minority classes. Blind over-sampling (i.e., creating
duplicate samples) is one approach that can be utilized, but, as
no new information is added, this approach is more likely to
cause overfitting because, instead of generalizing the data, the
ML model may memorize it. Hence, this oversampling approach
is also not very effective. There are other methods, such as the
synthetic minority oversampling technique (SMOTE) [19] and
its variants [20-22] that generate new samples, but these over-
sampling approaches have limited performance when samples
from the minority class are in extremely small proportion [23].
This process of generating new synthetic samples of data from
existing data is commonly referred to as data augmentation. To
address the issue of class balance and/or insufficient data for
training of ML models employed for ONFM, few works utilizing
SMOTE [24] and generative and adversarial networks (GANs)
[25] for data augmentation already exist in the literature. The
training of GANs suffers from instability and modal collapse
due to its zero-sum game working principle [26] i.e., improve-
ment in performance of one component of model at the expense
of the other. On the contrary, data augmentation techniques
based on variational autoencoder (VAE) have been shown to
require comparatively less training time [27]. Moreover, VAE
generates synthetic samples after determining the underlying
patterns of minority classes, so it outperforms techniques like
SMOTE that rely on linear interpolation for new samples genera-
tion and suffers when there are very few minority class samples
in the dataset. In general, data augmentation applied to ONFM
still needs to be studied in depth.

This paper is an extension of [28] and presents a comprehen-
sive analysis on exploiting a VAE-based data augmentation tech-
nique to reduce the imbalance in actual experimental datasets
(hereinafter referred to as real dataset) in the context of ONFM.
This work aims to provide a new perspective on how improv-
ing the quality of training data improves the performance of
ML models, specifically NNs for ONFM, in the form of higher
classification accuracy/F1-score and/or reduced computational
complexity of deployed NNs for inference and/or reduced train-
ing time. The benefits for both the training and inference phases
have been investigated, and depending on the requirements, any
of these benefits can be availed. For our analysis, we considered
two typical use-cases within ONFM i.e., soft-failure detection
and cause identification, and compared the performance of NNs
when trained with the real dataset or with modified dataset (i.e.,
fully or partially balanced dataset containing synthetic and real
data). During the training phase, the modified dataset results
show a significant performance improvement in terms of train-
ing time reduction (i.e., 37.13% for failure detection and 60.66%
for cause identification). For the scenarios where long offline
NN training is affordable and a reduction in training time is not
particularly desired, we demonstrated that for similar training
time, a modified dataset can enable a less complex NN (65.89%
fewer trainable parameters in the considered case) to achieve
similar performance to a complex NN trained with real dataset
for failure cause identification. If we deploy this less complex
NN for failure cause identification, we can reduce multiplica-
tion or bit operations by up to 68% for each inference. We also
showed for another scenario that improving training dataset
quality can provide a significant improvement in classification
accuracy (up to 7.32%) and Fl-scores (up to 18%).

The remainder of this paper is structured as follows. Section
2 covers the necessary details about the experimental setup and
the data acquired from it. Section 3 focuses on the approach we
proposed for data augmentation, followed by Section 4 which
presents an analysis of obtained results for soft-failure detection
and cause identification. In Section 5, analysis of how data
augmentation can reduce the computational complexity of NNs
is presented. Section 6 discusses another advantage of data
augmentation, which is improved classification accuracy, and
Section 7 assesses the performance of a balanced training dataset
under different sampling scenarios. Finally, our overall findings
are summarized in the conclusion.

2. EXPERIMENTAL SETUP AND DATA ACQUISITION

In our investigation, we considered using the experimental
testbed shown in Figure 1 for data collection. To realize the
transmitter (Tx) and receiver (Rx), commercial transponders
were used. The testbed consisted of four single mode fiber
spans, denoted by Sy, Sy, S3, and Sy, each 80 km long. Erbium
doped fiber amplifiers (EDFAs), marked as A1, Ap, A3, and Ay,
were used at the end of each span to compensate for power
attenuation along the fiber. A wavelength selective switch (WSS)
was placed at the end of S, to artificially produce different soft-
failures in the system.

Tx

Rx <
A,

Fig. 1. Experimental testbed setup

The considered soft-failures were filter tightening (i.e., re-
duction of filter bandwidth), filter shift (i.e., shift in the central
frequency of the filter), their combined effect (i.e., filter tight-
ening along with filter shift), unwanted attenuation, and its
combined effect with filter tightening. In case of no soft-failure
i.e., normal operation, the central frequency (f.) of the WSS was
set to 192.3 THz and the attenuation and bandwidth of the WSS
were set to 0 dB and 37.5 GHz, respectively. Table 1 summarizes
the configuration details for all five considered soft-failures.

Filter Central
Attenuation
Assigned Label Soft-Failure Bandwith @B) Frequency
(GHz) (THz)
Fy Filter Tightening 26 0 192.3
F Attenuation 37.5 6 192.3
123 Filter Tightening + Attenuation 26 6 192.3
F Filter Tightening + Filter Shift 26 0 192.32
Fy Filter Shift 37.5 0 192.32

Table 1. Considered Soft-Failures

Through the Kafka-based telemetry system [29], input-output
power levels at each amplifier, bit error rate (BER) and opti-
cal signal-to-noise ratio (OSNR) at Rx, were extracted from the
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Fig. 2. Proposed approach for data augmentation (variational autoencoder followed by a synthetic samples selector)

testbed. With a sampling interval of approximately 4 seconds,
we collected 10000 samples for normal operation and 5000 sam-
ples for each soft-failure, and duplicate samples were removed,
resulting in an unequal distribution of failure samples within
the dataset. The resultant real training dataset had 1232 samples
for normal operation and 954 samples for failure operation. The
next section provides more details about the distribution of fail-
ure samples among soft-failure classes in the training dataset.
This acquired dataset from testbed was used in two different sce-
narios: N = 3, in which we considered BER, OSNR, and the input
power at Aj as features for ML, and the other N = 2, in which we
relied only on coherent receiver parameters, namely BER and
OSNR. Thus, the N = 2 scenario assumes end-to-end monitoring
available only, whereas the N = 3 scenario also considers power
monitoring. The consideration of these scenarios allowed us to
demonstrate different benefits of using data augmentation.

3. PROPOSED APPROACH FOR DATA AUGMENTATION

For data augmentation, we used a VAE-based approach, illus-
trated in Figure 2. A VAE was followed by a synthetic samples
selector (SSS). The following two subsections will describe the
functioning mechanism of the two components of our proposed
technique and how they complement each other.

A. Variational Autoencoder (VAE)

A VAE, like a classical autoencoder (AE), contains an encoder
and a decoder (both of which are NNs), but a VAE can be consid-
ered as the generalization of an AE to a generative model. VAE
gets its generative capabilities because its encoder is designed
to enforce a normal probability distribution on the attributes of
the latent space [30] (i.e., the output of the encoder). During
training, VAE determines the optimal distribution parameters
(u> and o) for each latent space attribute by minimizing the
overall VAE loss (lyar), given by Eq. 1.

WaAE = lreconstruction + lKLfDivergence @
The Iysg has two components, (i) reconstruction loss
(Ureconstruction) and (ii) KL'DiVergenCe loss (ZKLfDivergence)- The

minimization of lyeconstruction Pushes the decoder to approximate
the inverse mapping of the encoder so that the reconstructed
input (£) can be very close to the actual input (x). The reconstruc-
tion loss is nothing but the mean squared error (MSE) between
x and . If both x and £ € RV, then

1 N-1 )
Lreconstruction = N 2 (xi - in) 2
i=0
On the other hand, minimization of Ik} pivergence enforces
a normal distribution N (0,Ik) on the latent space, where K
denotes the dimensions of the latent space. The Ix; Divergence 1S
basically the relative entropy (i.e., a measure of distance between
two distributions) between the standard normal distribution i.e.,
N (0,Tk) and Z, which is described by a Gaussian distribution
with mean (p;) and standard deviation (). The resultant en-
tropy can be expressed as in Eq. 3 and its detailed derivation
can be found in [31].

N =

K-1
lKL—Divergence = Z(:) (022/ -1- Zog[azzj] + V%) (&)
j=

The learned latent distribution of each attribute needs to be
sampled randomly to obtain a latent vector. However, if this
random sampling is performed within the NN, then backpropa-
gation of the error is not possible. This is because the relationship
of each parameter in the NN with respect to the final output
error cannot be determined because of this randomness, making
training of NN impractical. To overcome this limitation, a repa-
rameterization trick [30, 32] is used, given by Eq. 4, which lets
randomness be fed as input to the model i.e., using € ~ N(0,1),
making backpropagation of error possible during training.

zZ=p,+0;0€ 4)

Following latent space sampling, the VAE decoder takes the
sampled latent vector as input and produces an output that
should ideally match the encoder’s input. But, because of VAE’s
imperfect training, the decoder’s output differs slightly from the
real input; nevertheless, it retains the same underlying pattern
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Fig. 3. Distribution of considered soft-failures within (a) real training, (b) validation, (c) test and (d) modified training dataset

as the encoder’s input. Thus, the reconstructed input is a syn-
thetic sample generated by VAE, and by randomly sampling the
latent space multiple times, we can generate a large number of
synthetic samples, hence achieving data augmentation.

For our analysis, the encoder had the same number of inputs
as the number of considered features (i.e., N = 2 in one case and
3 in the other), the number of attributes in the latent space (i.e.,
K) was set to 2, and the encoder had one hidden layer with 4
neurons. The decoder had 2 neurons in its input layer, 4 in its
only hidden layer, and the same number of neurons in its output
layer as the encoder’s input. The sigmoid activation function
was used for the output layer of the VAE and where required,
ReLU was used as an activation function for the intermediate
layers. With Adam as the optimizer and a batch size of 8, the
learning rate for VAE training was 0.0079. It should be noted
that only VAE is the trainable component of this proposed data
augmentation approach, and its encoder and decoder are trained
together as a single entity. However, after training, we used it
in a block-wise manner, feeding all training data to the encoder,
which generated a different latent vector for each observation
in the dataset due to random sampling, and then these latent
vectors were fed to the decoder, which decoded them. This
process was repeated 10 times, increasing the available data by
a factor of 10. The synthetic samples selector (SSS) was then
used to select the required number of synthetic samples for each
soft-failure class in order to obtain a modified dataset.

B. Synthetic Samples Selector (SSS)

We proposed SSS to select "good" synthetic samples from all
the samples generated by VAE. The SSS can be considered as a
module that selects synthetic samples of any particular under-
represented soft-failure class based on their Euclidean distance
from the mean of that same class in the real dataset. This selec-
tion criteria was used considering that synthetic samples that

Filter Shift

(b) Validation Dataset

Filter Tightening + Attenuation'
Filter Tightening + Filter Shift

Filter Tightening
Attenuation

(d) Modified Training Dataset

A

lie close to any particular under-represented soft-failure class in
a real dataset in N-dimensional space are likely to have similar
characteristics to that particular class.

To mathematically explain the working principle of SSS for
N = 3 scenario, let I', Q2 and I'y4j0rity to be the sets of all soft-
failure classes, non-majority soft-failure classes, and majority
soft-failure classes in the real dataset, respectively. As we con-
sidered five different soft-failures with labels ranging from
Fyto Fy, soT = {F,F,F,F,F} and in this case, majority
soft-failure class is F, , therefore T 4joriry = {F2}, resulting in
Q = {Fy, Fi, F3,Fy}. If s denotes each under-represented soft-
failure class in ), then Vs € ) :

(s) ( (s) (s)

— s (s)
¢reference - ref,Piy_an’ qoref,BER’ (Pref,OSNR)
(5)
(s)
| Ny =1 ¢,.(),(n) (8),(n)  (s),(n)
- N(f)l {Zn=0 (xreul,P,-n_Az’ xreul,BER’ xreul,OSNR)}
where 4152 erence T€PTEsents the reference/mean and N r(:zl de-

notes the number of samples of soft-failure class s in the real
dataset. The Euclidean distance of each synthetic sample be-

(s)

longing to class s is computed from the ¢ rz Ference / which can be

expressed as Vk where k =0,1,..., Ns(;,>1 —1, compute

N-1
(s),(k) _ (8),(k) _ (s) 2
d - Z (xsyn,(j) (Preference,(i)) ©®)

Once the Euclidean distances are computed for all the syn-

thetic samples of soft-failure class s, then first S(;Zl selected SAT"

ples corresponding to the ascending order of the computed dis-
tances are selected where
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Fig. 4. Soft-failure detection performance evaluation vs. training time (a) model accuracy, (b) model loss

(Tiajority )
real
m

m controls the number of synthetic samples that are required
to be added in the imbalanced dataset to achieve balance, with
m =1 corresponding to a perfect balance in all soft-failure classes
and m = 2 corresponding to oversampling of minority classes
to the point where they can have a sample count equal to 50%
of the samples in the majority class. m can have other values
as well, but for this work, we only considered m =1 and 2.
After selecting the required number of synthetic samples of

(s)

syn,selected

_ N(s)

real

(7)

soft-failure class s, selected synthetic samples (‘I’(s) ) are

syn,selected
(s)

real

combined with the real data samples (x,,’,) of that particular

class, resulting in

(s)

xmodified =

(s)

real

\II(S)

syn,selecte

(8)

The resultant modified dataset with equal representation of
all soft-failure classes can be represented as

de

(F) (Cmajority)

e o — o(F0) (F3) (Fg)
Xmodified = Xmodified ) Xmodificd Y ¥real - o

U X odified Y Xmodified

)

It should be noted that for our analysis, only the training
dataset was augmented. Throughout our analysis, performance
is compared between the real and modified training datasets on
the NNs employed for ONFM. The validation and test datasets
were kept the same for the evaluation of trained NNs. As the
validation dataset is used during training to tune the NN’s hy-
perparameters so that it can make accurate predictions in a real-
world setting, the use of synthetic data for validation may not
necessarily depict the actual performance of the NNs. The same
is true for the test dataset as well, because it is used to provide
an unbiased estimate of the final trained NN performance. The
split between the train and test datasets was 70-30%, and the
same split was used for the train and validation datasets.

Figure 3 illustrates how different soft-failures are represented
within (a) real training, (b) validation, (c) test, and (d) modified
(m = 1 scenario) training datasets. The unequal distribution of
soft-failure data samples in the test and validation datasets also
suggests that these datasets were not modified. Moreover, it is
worth-mentioning again that this particular distribution within
the real dataset was achieved after removing duplicates from the

data acquired from the testbed. The resulting dataset was appro-
priate for our analysis because different soft-failures were rep-
resented unequally, which is a typical case in optical networks
since some failures are more common than others. However, this
does not necessarily mean that the most-represented failures for
our analysis are common in large-scale optical networks as well.

4. RESULTS

Within ONFM, we compared the performance of real and mod-
ified training datasets on NNs for soft-failure detection and
cause identification. The metrics used for this performance com-
parison are loss and accuracy on training, validation, and test
datasets, as well as training time to achieve maximum accuracy
on validation dataset. In general, the loss value (determined by a
cost function) indicates how a model performs after each epoch
(i.e., one complete pass through the whole training dataset), and
the model’s performance improves by minimizing this loss. On
the other hand, accuracy is a more interpretable metric as it
provides the ratio of correct classifications to the total number
of classifications made by the ML model. The training time to
achieve specific validation accuracy has been preferred here as a
metric over the number of epochs because the time taken for an
epoch depends on the size of the training dataset. Since a mod-
ified dataset is achieved by oversampling, utilizing synthetic
samples generated by VAE, its size is greater than the size of the
real dataset. Hence, training time as a metric depicts actual per-
formance, which is not the case with only the number of epochs
as a performance metric. Furthermore, since ML training time is
arandom variable, we trained NNs for soft-failure detection and
cause identification 100 times (with each training iteration itself
comprised of 100 epochs) and considered their averaged /mean
results with 95% confidence interval. It should be noted that the
results presented in this section correspond to m =1 (i.e., perfect
class balance) and N = 3 (i.e., three input features: BER, OSNR,
and input power at A, for the NN) scenario.

A. Soft-Failure Detection

For failure detection, we used a NN (size: input layer (I) x hid-
den layer-1 (h;) x output layer (O) =3 x 2 X 1), hereinafter
referred to as NNj. Adam was the optimizer used for training,
with a learning rate of 0.0008 and a batch size of 8. The acti-
vation function for hidden layer neurons was ReLU, while the
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Fig. 5. Soft-failure cause identification performance evaluation vs. training time (a) model accuracy (b) model loss

activation function for output layer neurons was sigmoid. As
shown in Figure 4(a), NN achieved a training and validation
accuracy of 1.0 (i.e., 100%) with the real and modified train-
ing datasets. This is because our dataset was separable (i.e.,
non-overlapping) in the considered scenario, allowing NN to
accurately detect failures. However, it should be noted that with
the modified training dataset, on average 100% validation accu-
racy was achieved only in 26.78 seconds using our system Intel
Xeon W-2255 CPU @ 3.70GHz with NVIDIA RTX A5000 GPU.
But, with the real dataset, the same accuracy was achieved after
42.60 seconds, implying a 37.13% reduction in training time with
the modified dataset. This reduction in training time is related to
the degree of imbalance between normal observations (1232) and
failure observations (954), and in this case, the imbalance was
removed by adding the required number of randomly selected
synthetic failure samples picked by SSS. As shown, the use of a
balanced training dataset significantly improved performance.

If we evaluate the loss performance, we can observe that with
modified dataset, the decrease in loss was sharper as compared
to the real dataset, as showed in Figure 4(b) which again sug-
gests the superior performance of modified dataset. It should
be noted that no regularization was applied to NNy, which al-
lowed us to observe that the modified dataset did not result in
any overfitting of NN, as indicated by Figure 4 as well. More-
overt, all the hyperparameters were kept the same for the NNj.
The only difference was in the training dataset. Following this
training, both cases attained 100% accuracy on the same test
dataset, indicating that the model was perfectly trained using
both datasets but this training was achieved in a shorter time
with a modified dataset.

B. Soft-Failure Cause Identification

After the failure detection, the next step is to identify the cause
of that failure which is a more complex problem than failure
detection. This multi-class classification was accomplished using
a NN (hereinafter referred to as NN;) with two hidden layers
(one with 10 neurons and the other with 8 neurons), both of
which used tanh as a non-linear activation function. There were 5
neurons in the output layer because we considered five different
soft-failures. Softmax was used as an activation function for
output layer neurons, which provides the probability of each
considered soft-failure corresponding to the given input. The

optimizer used for the training was Adam with learning rate of
0.0005 and batch size of 8.

Figure 5 shows a comparison of the results obtained for soft-
failure cause identification using the real and modified train-
ing datasets. Similar performance as for failure detection was
achieved for soft-failure cause identification, but this time mod-
ified dataset led to a further improvement: a reduction of the
training time by 60.6% when compared to using the real dataset.
This is due to a greater class imbalance in this case than in the
failure detection case. This improvement in performance with
modified training dataset is intuitive because to achieve 100%
accuracy, a NN must see enough samples from each soft-failure
class during training to determine the underlying pattern of
that class. But, with an imbalanced training dataset, NN sees
an unequal number of samples in each epoch, requiring more
epochs/time to see enough samples from the under-represented
soft-failure classes. A balanced training dataset, on the other
hand, provides the NN with enough samples of all soft-failure
classes in fewer epochs, allowing it to attain 100% accuracy on
unaugmented and imbalanced validation dataset.

5. ANALYSIS OF NEURAL NETWORK COMPLEXITY RE-
DUCTION DUE TO DATA AUGMENTATION

We extended our investigation to explore how an improvement
in training data quality can provide some gains in terms of NN
computational complexity reduction during inference phase.
Since failure cause identification is a relatively complex problem
than failure detection, we considered failure cause identification
case only. We compared the performance of a NN (NN; with
sizel X hy X hp x O =3 x 10 x 8 x 5, the one used in Section
4B) trained with real dataset and a lower-complexity NN (NNp,
with size I x i x O =3 x 6 x 5) trained with modified dataset.
Except for the number of hidden layers and neurons in each
layer, NN, had the same set of hyperparameters (i.e., learning
rate of 0.0005 with Adam as an optimizer and batch size of
8) as NNj. In NN; and NNj, there were 173 and 59 trainable
parameters, respectively.

As can be seen in Figure 6, NN took 12.53 seconds whereas
NN took 12.44 seconds to achieve 100% accuracy on validation
dataset. Although the training time is similar, the gain is
achieved in terms of complexity reduction since NN, has
65.89% less parameters as compared to NN;. To translate
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this complexity reduction in terms of computational cost on
hardware for each inference of trained NN, we considered
following two metrics.

(i) Number of real multiplications (NRM)
(ii) Number of bit-operations (NBOP)

NRM estimates the computational complexity in terms of the
number of multipliers required, while neglecting adders. It is
because the addition is low-cost in terms of hardware resource
utilization, while the multiplier is typically the slowest element
in the system [33] and consumes a significant chip area [34].
NBOP metric, on the other hand, is more comprehensive as it
takes into account multiplication and addition operations while
estimating computational complexity. It also tells us how chang-
ing bitwidth (i.e., precision/number of bits required to represent
a number) impacts the computational complexity of NNs.

For estimating NRM and NBOP, consider that the output (y)
of a dense (i.e., fully-connected) layer containing 7, number of
neurons, each with n; inputs, can be given as

y=0(Wx+Db) (10)

where W is the weight matrix with dimensions R *™, x is
input vector of length n;, b is a bias vector of length 1, and o (.)
denotes the non-linear activation function. For this analysis, it
has been assumed that the non-linear operation is performed
using a look-up table (LUT), which is a common practice [35].
Regarding multipliers, from Eq. 10, it can be inferred that total
ny X n; number of multiplications are performed within each
dense layer, hence

NRM = nyn; (11

As all layers in NN and NN are dense, so using Eq. 11 we
can estimate NRM for the whole NN; and NNj. Note that the
input layer (I) simply passes the given input to the intermediate
layers for further processing, so no multiplication is performed.
Thus, NN requires a total of 150 (i.e., 30 at /11, 80 at 1i; and 40 at
O) multiplications for a given input. On the other hand, NN re-
quires 48 multiplications in total, i.e., 18 at 1; and 30 at O. These
numbers suggest that 68% lesser multiplication operations need

to be performed on hardware, which is a huge gain considering
that training data quality has been improved in software.

To analytically evaluate the computational complexity reduc-
tion in terms of other considered metric, i.e., NBOP, we used Eq.
12, proposed in [36] which is adapted from [37] to estimate the
number of bit operations required to be performed in a single
dense layer of a NN.

NBOP = nyn;[byb; + by + b; 4 loga (n;)] (12)

where b, denotes the bitwidth of weights (W) and b; denotes
the bitwidth of input (x). If we fix by, and b; = 8, then NNj needs
to perform around 12434 (i.e., 2448 at 1y, 6666 at hp and 3320 at O)
bit operations per inference. On the other hand, for NN, around
3947 (i.e., 1469 at 11 and 2478 at O) bit operations are required to
be performed for a given input, suggesting 68.2% reduction in
total number of bit operations. For by, = b; = 16, NN needs to
perform around 43634 (i.e., 8688 at /11, 23306 at hp and 11640 at O)
bit operations, while NN needs to perform 13931 (i.e., 5213 at 11
and 8718 at O) bit operations. In this case, 68.07% reduction in bit
operations can be achieved for each inference. Similarly, for by,
= b; = 32, it can be shown using Eq. 12 that complexity reduction
of NN achieved using data augmentation corresponds to 68.02%
less bit operations. Therefore, it is clear that improving the
quality of training data can reduce the computational complexity
of NNs during inference phase.

6. DATA AUGMENTATION FOR THE IMPROVEMENT OF
CLASSIFICATION ACCURACY

In order to further investigate the advantages of data augmenta-
tion in ONFM, we considered N = 2 scenario where we relied
only on coherent receiver parameters i.e., BER and OSNR. Fig-
ure 7 shows the resultant dataset, and as can be seen that filter
tightening (Fy), attenuation (F;), and filter tightening + filter shift
(F3) all have OSNR and BER values in the similar range, making
the dataset inseparable. It should be noted that only one feature
(i.e., input power at A;) from the previously considered dataset
was removed, which had no effect on the number of samples for
each soft-failure class.

This inseparable dataset was processed in the same way as
the separable dataset discussed in previous sections of this paper.
Only the training dataset was augmented with VAE, and the
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required number of synthetic samples were selected with SSS to
create a modified dataset. The VAE encoder had 2 neurons in the
input layer, 4 in the only hidden layer, and 2 latent dimensions;
the decoder was a mirror copy of the encoder. With Adam as
the optimizer, the learning rate for VAE was 10~* and batch size
was 8. To compare the performance of these inseparable real
and modified training datasets, we only considered a soft-failure
cause identification case, since for failure detection (being a
binary classification), dataset is usually separable because OSNR
and BER values are considerably different during failure and
normal operation. In this case, the NN used for soft-failure cause
identification (hereinafter referred to as NN3) had the size I x Iy
X hy x O=2x 20 x 10 x 5 with Adam as the optimizer during
training, a learning rate of 10~%, and a batch size of 8. Figure
8(a) and 8(c) show the averaged results from 100 iterations with
each of 100 epochs. Some observations that can be made from
the obtained results are as follows:

i) With the modified training dataset, as suggested by Figure
8(a), the NN can be trained better to provide higher accuracy
(89.27% in this case) on the validation dataset as compared to
when trained with the real dataset (81.95%). Considering that
the classification accuracy in this case is not 100% and that it
is a multi-class classification problem, F1-Score (i.e., harmonic
mean of precision and recall) is also an appropriate metric for
determining whether or not the modified training dataset pro-
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vided any gains. Figure 8(b) evaluates the performance of NNj3
when trained with real and modified training datasets in terms
of weighted-average F1-Score, which is calculated by taking the
mean of all per-class F1-Scores while accounting for each class’s
support, and the macro-average F1-Score, which is calculated
by taking the arithmetic mean of all per-class F1-Scores. These
F1-Scores show how well trained NNs with real and modified
training datasets performed on an unseen and unmodified test
dataset. And, as indicated by the obtained results in Figure
8(a) and (b), classification performance has been improved us-
ing data augmentation. NN3 when trained with the modified
dataset attained the macro-average F1-score of 0.75, and when
it was trained with the real dataset, the Fl-score of 0.57 was
achieved on test dataset. Similarly, a significant improvement
in the weighted-average F1-score can be seen, indicating that
data augmentation has the potential to improve classification
accuracy for soft-failure cause identification.

ii) The highest accuracy on validation dataset that was
achieved in the case of real training dataset i.e., 81.95% in 55.1
seconds was achieved in a much shorter time (29.3 seconds) with
the modified training dataset (indicating 46.82% reduction in
this case): which supports the claim made in Section 4 that re-
ducing class imbalance can reduce the training time for attaining
same accuracy on validation dataset.

iii) Higher validation accuracy than the training accuracy,
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WEE With real training dataset 0.88
0.81 0.75 0.78
o
Q
5]
n
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MEE With real training dataset 0.88
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Fig. 8. Performance comparison (m = 1 scenario): For train-test-validation split corresponding to seed = 1 (a and b) and 42 (c and d)
—(a and c) training and validation accuracy with real and modified training datasets, (b and d) macro- and weighted-averaged-F1-
Scores on test dataset achieved by NNj3 trained with real and modified datatsets
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which is usually observed when complications are added dur-
ing training phase enabling NN (ML model in general) to obtain
a better generalization of the dataset. This is typically accom-
plished in two ways: (1) (Dropout) Regularization, which is
commonly used and thus discussed in the literature, and (2)
Data Augmentation, which is rarely used and thus rarely dis-
cussed. In this work, we added samples (that are not exactly
same as the real dataset but they have the same underlying
pattern) to modify the experimental training dataset with data
augmentation. As a result, during training, the NN also sees
samples that are relatively new and different from those in the
validation dataset. However, during validation, it finds simple
and easy-to-classify samples, resulting in higher accuracy than
on the training dataset. We believe that having higher accuracy
on the validation dataset than on the training dataset has no
negative effect on the performance of the NN (ML model in
general) because it demonstrates that the NN is more robust and
has good generalizability, and thus performs well on validation
and test (i.e., unmodified /real experimental) datasets.

To ascertain the consistency of these results, we also consid-
ered a different seed for train-test-validation split. Figure 8(c)
and (d) depicts the results for seed = 42, and as can be seen, the
obtained results are consistent with the previous results (Figure
8(a) and (b)). In this case, the corresponding macro-average
Fl-score on test dataset increased from 0.51 to 0.74, and the
weighted-average F1-score increased from 0.74 to 0.88, indicat-
ing again a significant improvement.

7. ANALYSIS UNDER DIFFERENT SAMPLING SCENAR-
10S

Until this point, the results presented assumed a complete bal-
ance (i.e., m = 1 in Eq. 7) among all soft-failure classes in the
modified training dataset, which may or may not always be
required. In order to investigate this, we considered m = 2 sce-
nario as well in which under-represented soft-failure classes
were over-sampled to the point where each of them had half of
(Cinajority)
the total number of majority class samples i.e., %ﬂi Figure
9(a) shows the obtained results in comparison with m=1 scenario,
and as can be seen, even with m=2, the similar accuracy on the
validation dataset can be achieved, suggesting that perfect bal-

ance among the soft-failure classes is not always required. It also

implies that, depending on the scenario and dataset, an optimal
oversampling threshold for each class needs to be determined,
which remains as a topic of our future research.

We also investigated how undersampling to achieve complete
class balance compares to the m=1 scenario of oversampling, and
the results are shown in Figure 9(b). As evident from the figure,
in the case of soft-failure cause identification, undersampling
was unable to achieve any gains in validation accuracy, possibly
due to information loss during the undersampling. However,
this does not necerssarily mean that undersampling is always
ineffective. It may perform well in combination with oversam-
pling, which we intend to investigate in the future.

8. CONCLUSION

We investigated a variational-autoencoder-based data augmen-
tation technique to optimize the training and inference phases
of neural networks (NNs) for failure management in optical
networks. We analyzed the training time, computational com-
plexity, and the classification accuracy of NNs when exploiting
augmented data in comparison with real dataset. First, our anal-
ysis has shown that the training time for NNs can be significantly
reduced using modified datasets (i.e., real plus augmented data).
We obtained a 37.13% and a 60.6% reduction in the training
time of NNs used for failure detection and cause identifica-
tion, respectively. Then, our analysis suggests that good quality
training dataset obtained using data augmentation can save
computational resources during inference phase. In particular,
for the soft-failure cause identification, similar performance in
terms of training time and accuracy has been achieved using
a lower-complexity NN trained with a modified dataset and a
more complex NN trained with a real dataset. The difference
in terms of computational complexity on hardware amounts to
68% fewer multiplication or bit operations, implying a signif-
icant complexity reduction that can be achieved if we deploy
less complex NN for soft-failure cause identification. Finally,
we showed that improving training dataset quality using our
proposed approach can provide gains in terms of classification
accuracy as we achieved up to 7.32% improvement.
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