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Performance optimization literature in optical networks predominantly consists of single objective opti-
mization studies while often in practice multiple performance goals are to be met. This study addresses this
issue with a generalized reinforcement learning (RL) model for parameter optimization in optical networks
in the presence of multiple performance goals. Using this generic model, two multi-objective variants
of a classical optimization problem in optical network operation, routing and wavelength assignment
(RWA) are derived and solved to near optimality. The allocated route and wavelength for each demand
are optimized with respect to the number of accepted services, the number of transmitters and network
availability. The resultant approximated Pareto front provides a set of solutions from which network
operators can make decisions based on their preferences for particular objectives. These results contribute
to the understanding into the relationships between different network parameters and performance metrics
which would be beneficial in future network design and growth. Moreover, benchmarking results against
the state-of-the-art RWA heuristics suggest the applicability of RL in dynamic settings under changing
traffic and generalizability for unseen traffic. © 2023 Optica Publishing Group
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1. INTRODUCTION

It is vital to understand the effects from network parameters in
order to improve the network performance given the flexibility
and costs associated with setting these parameters. Several stud-
ies have been conducted using exact [1–6] and stochastic [7–13]
methods considering different network parameters and perfor-
mance metrics. Most of these studies have considered a sin-
gle objective or performance goal, for example, maximizing
throughput, minimizing latency, minimizing cost or maximiz-
ing resilience, etc. However, optimizing a single objective may
negatively impact other metrics that are important in real world
applications [14]. While it is of research interest to understand
these performance goals individually, the simultaneous opti-
mization of multiple objectives is critical for the design and
operation of real-world optical networks.

As case studies, we consider two multi-objective variants of
the routing and wavelength assignment (RWA), a well known
optimization problem in optical network literature. RWA is
proven to be a NP−hard problem [15], meaning no exact ap-
proach exists that guarantees an optimal solution in polynomial

time. In the literature, several problem formulations have been
proposed to solve RWA in optical networks [16, 17].
Recently, in machine learning and operational research fields,
the potential of reinforcement learning (RL) in multi-objective
optimization has been investigated. In the context of RL, multi-
objective optimization can be realized as multi-policy optimiza-
tion, where the preference of multiple objectives are not known
in advance. Multi-policy methods have multiple policies repre-
senting different preference functions and has shown potential
in various applications in recent years [18–20].
This study presents a novel approach for solving the multi-
objective RWA problem in optical networks under dynamic
traffic conditions. To the best of our knowledge, this is the first
study to tackle this challenging problem, which involves opti-
mizing network throughput, cost, and resilience simultaneously.
Traditional meta-heuristic [21–23] and exact [24] multi-objective
optimization approaches are not practical in this setting due to
their high running times, which make them impractical for on-
line servicing of new traffic requests. In contrast, our approach
utilizes RL to rapidly provide optimal RWA solutions, making it
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a practical and efficient solution for this problem. To this end,
this study offers a significant contribution to the field of optical
network design and operation.

The results showcase the optimized solutions considering dif-
ferent preference functions with certain preference weights for
each objective. These can be useful in decision making processes
for network design and operation which consider multiple of-
ten conflicting goals. As shown in benchmarking results, RL
approach was able to learn offline and run online swiftly in the
same order of runtime and solution quality as industrially de-
ployed RWA heuristics such as k-shortest path first fit (kSP-FF).
Moreover, as shown in the results, RL agent trained on uniform
traffic was able to be generalized for unseen population based
traffic (Eq. 12). These results suggest the potential of RL to be
applied under dynamic settings with changing traffic.

The organization of the remainder of this paper is as follows.
Section 2 describes the optical network physical layer model and
the dynamic RWA problem underpinning the proposed frame-
work. In Section 3, we outline the proposed multi-objective RL
framework, followed by Section 4 describing the considered
simulation set up. Section 5 presents simulation results for the
bi-objective case, which is followed by Section 6 in which we
generalize the results for multi-objective optimization and con-
strained optimization. In Section 7, we provide interpretations
of the learned RL policies. Section 8 extends the simulations
for non-uniform traffic. Finally, in Section 9 we present our
concluding remarks.

2. PRELIMINARIES

A. Physical Layer of Optical Networks
We make the simplifying assumption of transmission at the
Shannon rate by assigning the point-to-point capacity between
a given source and a destination node per light-path as the the-
oretical upper-bound taken at the optimum launch power [11].
Thus, the capacity per light-path is defined as follows

Cpj = 2RS log2

(
1 + SNRpj

)
(1)

where RS is the symbol rate, and SNRpj stands for the signal-to-
noise ratio (SNR) at the end of the pj−light-path [25]. System
parameters are chosen as a carrier wavelength of 1550 nm, a
symbol rate (RS) of 100 GBd, a channel spacing of 100 GHz, the
number of channels as 100, a span length of 100 km1, the EDFA
noise figure as 4.5 dB and the attenuation coefficient (αdB) as
0.2 dB/km.

B. Dynamic Routing and Wavelength Assignment Problem
This study considers the dynamic RWA problem in which
lightpath requests arrive and expire over time. Dynamic RWA is
not commonly formulated as an integer linear programming
problem like the static RWA. Instead, dynamic RWA is solved
using online algorithms [13] and heuristics [26], which adapt
to the changing network conditions. A general outline of the
dynamic RWA problem using arrival and expiration events can
be described as follows:

Objective:
Maximize network throughput over time.

1the actual distances considered in this study are rounded to nearest 100 km to
be multiples of the span length
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Fig. 1. A diagram of the MDP that defines the interactions
between the RWA agent and the optical network

Events:
Arrival: A service request arrives at time ta with a source node s,
destination node d, holding time h and bit rate r. Its either accepted or
blocked. If accepted, its been allocated in a new or existing lightpath.
Expiration: If the expiring service (at time ta + h ) is the last
remaining service in the lighpath, that lightpath is released.

Constraints:
Routing constraint: For each intermediate node i in the network, the
flow conservation must be maintained.
Wavelength continuity constraint: If a lightpath is established
between nodes i and j using wavelength w, the same wavelength w
must be used on all the links along the path.
Wavelength clash constraint: A wavelength can be assigned to at
most one lightpath on a given link, to avoid interference.
Lightpath capacity constraint: A service request can be added into
a ligthpath if the available capacity Cavailable of the lightpath (the total
capacity in Eq 1 - capacity allocated for any existing services in the
lightpath) is greater than the service bit rate r.

3. MULTI-OBJECTIVE REINFORCEMENT LEARNING
FRAMEWORK FOR PARAMETER OPTIMIZATION

In RL, single objective optimization problems are commonly
represented as a finite Markov decision process (MDP) [27]. This
problem formulation is represented by the tuple S , A, R with
state-space S , action space A, scalar reward function R(S, A),
and consists of an agent interacting with its environment at a
series of time steps 1, 2, . . . , t − 1, t, t + 1, . . . . The agent’s goal is
to learn an optimal policy Π∗, a functional mapping from the
observed current state St ∈ S of the environment to the optimal
action A∗ (Π∗ : S → A∗). A numerical reward Rt+1 ∈ R ⊂ R is
provided for each action At ∈ A, providing numerical feedback
to the agent detailing how effective each action is. Fig. 1 depicts
the MDP for an RL agent solving RWA in an optical network.
The agent aims to maximize the cumulative future reward Gt
for time-step t, defined as follows

Gt =
T

∑
τ=t+1

κτ−t−1 Rτ , (2)

where T denotes the total number of time-steps, and κ ∈ [0, 1)
denotes the discount factor [27].

In general, a multi-objective optimization problem (MOP)
considers multiple objective functions simultaneously and the
Pareto-optimality of the solutions is defined as the set of non-
dominated solutions, where dominance relation is formulated as
follows [28]

Fi (x1) ≤ Fi (x2) ∀ i ∈ {1, . . . , M} ∧
∃ j ∈ {1, . . . , q} : Fj(x1) < Fj (x2) , (3)
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where x1 and x2 represent solutions in decision space and the
respective values in objective space are represented by M ob-
jective functions F1, ..., Fi, ..., FM. The first condition states that
the objective values of x1 are no worse than those of x2 in all
objectives. The second condition describes that the objective
values of solution x1 are strictly better than at least one of those
of solution x2. If any of the two conditions are violated, the so-
lution x1 does not dominate the solution x2. Otherwise, we can
claim x1 dominates x2

2. The set of non-dominated solutions at
the end of an optimization process form the Pareto front.

In an RL setting, a MOP is translated into a multi-objective
Markov decision process (MOMDP) [18]. A MOMDP can
be represented by S , A, R parameters, similarly to a single-
objective MDP as described above with the exception on R =
[R1, ..., Ri, ..., RM] being a vector reward representing rewards
for individual objectives F1, ..., Fi, ...FM, and with additional
parameters. Namely, these are the space of preference vec-
tors Z and the N preference functions fω(R), which each pro-
duces a scalar total reward Rk

tot for the respective preference
ωk = [ωk

1, ωk
2, ..., ωk

M] ∈ Z , k ∈ {1, · · · , N}. Each such prefer-
ence represents the relative importance of the M objectives as de-
cided by the advisory (i.e. network operators) [29]. For the class
of MOMDPs with linear preference functions, i.e., fω(R) = ω|R
(S, A) and ωk is fixed to a constant value, this MOMDP will
collapse into a standard MDP. On the other hand, if we consider
all possible returns from a MOMDP for N preferences, we will
have a Pareto front of rewards.

Let us consider a set of uniformly spread preference vectors
ω1, · · · , ωk, · · · , ωN , for example, [1, 0], [0.9, 0.1], · · · , [0, 1] for
a bi-objective problem, as shown in Fig 2. Thus, the original
MOP is converted into N scalar optimization sub-problems by
the weighted sum approach [20]. The objective function of the
kth sub-problem gk is shown as follows [30]:

min g
(

x
∣∣ ωk) = M

∑
i=1

ωk
i Fi(x) . (4)

Each of these subproblems gk can then be represented by a
standard MDP. In this work, the agent learns how to choose a
set of optical network operational parameters given the state of
the network on each timestep. The key components of our RL
model are as follows.

Episode An episode consists of a series of timesteps. In each
training episode we begin with an empty network and sequen-
tially receive non-expiring requests at a rate of one request per
timestep, which the agent aims to service.

State Representation In general, the state representation is a
subset of the complete state of the optical network environment
(consists of demand data, network utilization data, network
graph features, optical network physical layer status such as
noise to signal ratio (NSR) of the links etc.) depending on the
specific optimization problem. For the RWA problem considered
in this work, the state is described by the demand represented
by the source and destination node ids and link utilization rep-
resented by the provisioned number of services.

Action The action A of RL corresponds to the vector of deci-
sion variables X = [x1, x2, ..., xn] in the considered optimization
problem. Depending on the particular optimization problem

2This definition holds for a minimization problem, in the case of maximization
problem the inequalities should be reversed.
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Fig. 2. An example of an approximated Pareto front for a bi
objective optimization problem consisting the target solutions
for the N sub problems

within optical networks, the specific elements of the action vec-
tor varies. In this work, the action space is defined as the choice
of a route out of the k−shortest paths3 and a wavelength channel
used to service a given demand.

Reward Following the definition of MOMDP and Eq. (4), the
total reward at a timestep t corresponding to subproblem k can
be defined as follows, where Rt,i(St−1, At−1) is the individual
reward for objective i at timestep t :

Rk
tot(t)(St−1, At−1) = fωk (Rt) =

M

∑
i=1

ωk
i Rt,i(St−1, At−1) . (5)

Algorithm 1. Multi-objective parameter optimization process

1) Initialize to constant values: the number of episodes K, num-
ber of steps in episode T, learning rate α ≥ 0, policy parameter
θ ∈ Rd, preference functions fωk (R), ωk = [ωk

1, ωk
2, ..., ωk

M]
where k = 1, · · · , k, · · · , N, a differentiable parametric policy
π(A|S, θ)
for preference fωk (R), k = 1, 2, .., N do

for episode i = 1, 2, ..., K do
for each step t = 1, 2, ...T in episode do

2) Generate action At for state St based on the policy
π(St|At, θ)

3) Calculate Rk
tot(t) according to Eq. (5)

4) Calculate Gt corresponding to Rk
tot(t) using Eq. (2)

5) θt+1 := θt + αGt∇θ ln π(At|St, θ)

6) Run the trained RL agents to generate a population of RWA
solutions P = [x1, x2, ..., xn]
7) Pareto front PF := Pareto sorting of solutions P based on
Eq. (3)

Algorithm 1 outlines the steps in this approach. Firstly, ini-
tialization in Step 1) sets values to RL hyperparameters number

3k-shortest paths between all the source and destination nodes are calculated
using Dijkstra’s algorithm [31].
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Fig. 3. Real-world backbone network topology NSFNET. The edge
weights of the graph correspond to the distances given in km rounded
to nearest 100 km.

of episodes K steps in one episode T, policy parameter θ ∈ Rd

which consists of the weights of the neural network (NN) that
presents RL policy network, learning rate α which balances be-
tween the fast convergence and overshooting for the NN, and
the preference functions fωk (R) for N preferences. RL hyperpa-
rameters can be chosen based on the values from the literature
or through a parameter tuning process taken place prior to the
algorithm run. Preference functions are defined to cover the
entire range in the preference parameter space such that the
set of sub-problems can collectively describe the original multi-
objective problem (as shown in Fig. 2). Steps 2-5 describe the
training process for the RL agents. Algorithm 1 loops through
each preference function (the first For loop) for each episode (the
second For loop) and each time step within an episode (the third
For loop) by generating respective state (St) action (At) pairs
and receiving respective reward vector (R⊔ = [Rt(1), ..., Rt(M)])
for the M objectives from the network simulator in Step 2). In
Step 3) using this reward vector, the total scalar reward value
(Rtot(t)) is calculated according to Eq. (5). Then the correspond-
ing cumulative future rewards are calculated based on Eq. (2)
in Step 4). Using the calculated cumulative reward value Gt,
the vector of policy parameters θt+1 is updated using a gradi-
ent update process [32] in Step 5). After the training process,
in Step 6), the trained RL agents are run with unseen traffic to
generate a population P of RWA solutions xi. Then the Pareto
sorting operation is performed for this population of solutions
by removing the dominated solutions (Eq. (3) in Step 7), leaving
the Pareto front of the solutions.

4. SIMULATION SET-UP

A. Network Topology
We consider three real-world core network topologies com-
monly referred in literature [1, 7, 12] for benchmarking, namely
NSFNET depicted in Figure 3, DTAG in Figure 4, and GB in
Figure 5.

B. Traffic Simulation
We consider a traffic model with non-expiring requests similar
to Vincent et al. [26]. Bidirectional symmetric traffic is assumed
and we consider the uniform-all-to-all model [1]. For a network
graph G = (V , E) with a set of nodes V ≜ {v1, v2, . . . , vN} and
a set of edges E , source nodes vi ∈ V and destination nodes
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vj ∈ V (i ̸= j); the uniform traffic matrix T̂unif is defined as [1]

T̂unif : ∀
{

vi, vj

}
∈ V : Tij =

1
N (N − 1)

, (6)

where N ≜ |V| is the total number of nodes in a given network.

C. Computational Set-Up
C.1. Network Simulator Set-up

The network simulation is developed on the open source Optical
RL Gym library [33]. We use a fixed bit rate of 100 Gbps for each
service request. Following the dynamic RWA model described
in Section 2 B, lightpaths are modeled as having a given capac-
ity (Eq. (1)), meaning that an existing lightpath can be used to
service multiple requests between the same two nodes as long
as there is sufficient spare capacity and other RWA constraints
are obeyed. Accordingly, the Step 2 in Algorithm 1 can be elabo-
rated. The network simulator decides whether to accept or reject
a chosen action describing a route and a wavelength for a new
lightpath or an existing one. If the chosen action represents a
new lightpath request and satisfies the constraints of dynamic
RWA problem (Section 2 B), a new lightpath is set up and the
service is accepted. Similarly, in the case of the request is with
respect to an existing lighpath, the service is accepted as long as
the constraints described in Section 2 B are satisfied. Otherwise,
the service request is blocked. We consider the holding time
h to be extremely large such that the services are not expired
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during the simulation. We adhere this model following from
the sequential loading technique employed in the optical net-
work literature [13, 26]. We consider k = 5 meaning that up to
the 5th−shortest path can be chosen. Additional settings for bi-
objective RWA and multi objective RWA are described in details
in Section 5 and 6 respectively.

C.2. RL Agent Set-Up

RL agents are trained using an implementation of PPO provided
by the Stable Baselines 3 library [34]. The hyperparameters
considered in the training of the models for the three bench-
mark topologies are : discount factor κ = 0.99, learning rate of
1.57 × 10−5, batch size equals to 16 and a network architecture
of 2 layers of 128 neurons. 10 million timesteps in total are con-
sidered corresponding to 5000 episodes. Each episode consists
of 2000 timesteps following the computationally efficient scaling
approach proposed in Nevin et al. [12]. The scaled down episode
sizes during the training process is observed to be effective for
a larger episode sizes in running the RL agents. Hence, the
computational cost of the training process can be considered as
the cost to run 10 million timespteps multiplied by the number
of preference functions considered in the specific multi objec-
tive optimization problem. For validation, 30 episodes with the
episode size of 10000 timesteps are considered. 10000 timesteps
are chosen as the upper limit for the serviceable requests based
on the simulation results for the benchmark topologies. All other
parameters are equal to the defaults in Stable Baselines 3.

5. SIMULATION RESULTS FOR RWA WITH OBJECTIVES
ACCEPTED SERVICES AND TRANSMITTERS

Section 3 described the action space and state representation for
RWA problem in general. In this section, we consider a specific
reward function to solve the RWA problem with respect to the bi-
objective version of maximizing the number of accepted services
and minimizing the number of transmitters. These objectives are
motivated by the performance and cost goals of the network. In a
network, controlling the number of transmitters can be a viable
method for reducing financial costs. Moreover, this strategy
remains relevant in situations where the budget is flexible, as
it enables the trade-off between the performance gains and the
additional costs incurred.

Reward Based on the weighted sum approach discussed in
Section 3, the original problem is converted into scalar sub
problems (Eq. (4)). Accordingly, the respective preference
vectors corresponding to the reward functions for each sub-
problem (Eq. (5)) are chosen to be spread linearly across the
preference space Z . The preference vectors considering the ob-
jectives of throughput for the m light-paths pj (Eq. (7)) and the
number of transmitters across l nodes Ni (Eq. (8)) are [0.1, 0.9],
[0.2, 0.8], [0.3, 0.7], [0.4, 0.6], [0.5, 0.5], [0.6, 0.4], [0.7, 0.3], [0.8, 0.2],
[0.9, 0.1]. Objective throughput maximization is further simpli-
fied as the maximization of the number of accepted services as
all the services in the considered simulation correspond to a
fixed bit rate of 100 Gbps.

Find: X = [x1, x2, . . . , xn]

Maximize: FT (X) =
m

∑
j=0

Tpj ,
(7)

Fig. 6. Approximated Pareto front (consisting non-dominated
points in blue) and dominated points (orange) at the end of
the optimization process for bi objective RWA for NSFNET
topology. Additionally, the results for RWA heuristics kSP-FF,
FF-kSP, kSP-MU and CA-MU are presented for benchmarking
purposes.

Fig. 7. Approximated Pareto front (consisting non-dominated
points in blue) and dominated points (orange) at the end of the
optimization process for bi objective RWA for DTAG topology.
Additionally, the results for RWA heuristics kSP-FF, FF-kSP,
kSP-MU and CA-MU are presented for benchmarking pur-
poses.

Find: X = [x1, x2, . . . , xn]

Minimize: FTransmitters (X) =
l

∑
i=0

Ni .
(8)

Figures 6, 7 and, 8 present the results of objectives repre-
senting the minimization of the number of transmitters and
maximization of accepted services for NSFNET, DTAG and GB
topologies respectively. Results for all three benchmark topolo-
gies show a strong positive correlation of the number of transmit-
ters and services accepted within the considered region. Pear-
son’s correlation coefficient of 0.997 is observed for NSFNET
while DTAG and GB correspond to values of 0.998 and 0.989.
Since our objectives are to maximize the number of services ac-
cepted (Eq. (7)) and minimize the number of transmitters (Eq. (8))
this reads as a negative correlation. On a network with a given
load, the financial cost can be reduced by limiting the number of
transmitters up to a number which corresponds to a specified
number services accepted, fulfilling the respective load require-
ment. Furthermore, when the budget is flexible this knowledge
can be still useful to trade-off the performance gain against ad-
ditional incurred cost. On average, an addition of a transmitter
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Fig. 8. Approximated Pareto front (consisting non-dominated
points in blue) and dominated points (orange) at the end of
the optimization process for bi objective RWA for GB topology.
Additionally, the results for RWA heuristics kSP-FF, FF-kSP,
kSP-MU and CA-MU are presented for benchmarking pur-
poses.

corresponds to a gain of 10, 17.5, and 7.5 accepted services for
NSFNET, DTAG and GB, respectively. Moreover, we benchmark
the performance of the RL solutions against four state-of-the-
art RWA heuristics: k−shortest path first fit (kSP-FF), first fit
k−shortest path (FF-kSP), k-shortest path most-used (kSP-MU)
and congestion aware most used (CA-MU) [26]. 4 For the three
benchmark networks FF-kSP lies on the Pareto front and kSP-FF
lies for NSFNET and DTAG while kSP-MU and CA-MU are
being dominated. Results suggest that RL has found the opti-
mal solutions in the same range as the state-of-the-art heuristics
while in addition being able to provide a range of optimal solu-
tions instead of a single solution.

6. SIMULATION RESULTS FOR RWA OPTIMIZATION FOR
ACCEPTED SERVICES, AVAILABILITY AND TRANS-
MITTERS

In this section, we present results for the simultaneous maxi-
mization of the number of accepted services, the availability
and the minimization of the number of transmitters. Based on
the literature, network availability can be calculated using the
failures of all the elements in the network, meaning all fiber
links, transmitters, receivers and amplifiers etc. Availability is
conventionally modeled using a Markov availability model [35]
where the availability is represented by available and failure
states and the time to repair parameter. We consider a more sim-
plistic model referred in Archi et al. [36] where link availability
is modeled with a fixed failure rate β which is time indepen-
dent and nodes are modeled as utterly reliable components (i.e
failure probability of a node is zero). According to this model,
the event of path failure is resultant entirely from a failure of
any of the links the path traverses. Hence, the probability of
path availability can be obtained by the probability of the in-

4kSP-FF searches for a lightpath that can support the current request, start-
ing with the shortest path and searching each channel sequentially until a valid
lightpath is found. If a lightpath is not found for the shortest channel, the second-
shortest path is searched and so on. In contrast, FF-kSP starts with the first channel
slot and searches each of the shortest paths in order of length to find a lightpath
that can support the current request. kSP-MU searches each channel in order of
length, allocating the request to the most-used wavelength in the network at the
current time. Similarly, CA-MU extends kSP routing by searching routes in an
order determined not only by path length but network congestion [26].

tersection of the events corresponding to the availability of the
links through which the path traverses. Accordingly, the link
availability Lj and path availability Api for this metric can be
described by Eq. (9) and Eq. (10) [37], respectively, with β being
the failure probability per 1 km and l the number of links the
path pi traverses. It yields:

Link availability: Lj ≜ 1 −
(

β × link lengthj

)
(9)

Path availability: Api ≜
l⋂

j=1
Lj . (10)

Subsequently, we can define the objective of maximizing avail-
ability score A for the network taken as the average across the
availability scores for all the occupied light-paths as follows:

Find: X = [x1, x2, . . . , xn]

Maximize: FA (X) =
1
m

m

∑
i=0

Api ,
(11)

where m denotes the total number of occupied light-paths in the
network Eq. (1).

The state and action spaces for this study are the same as
the work presented in Section 5, while, the reward function is
extended to consider the additional objective of network avail-
ability.

Reward Similar to the approach in Section 5 the prefer-
ence vectors are sampled to be spread across the preference
space Z . The values for preference vectors, considering
the objectives of maximization of accepted services (Eq. (7)),
maximization of availability (Eq. (11)) and minimization
of the number of transmitters (Eq. (8)), are [0.1, 0.1, 0.8],
[0.1, 0.8, 0.1], [0.8, 0.1, 0.1], [0.2, 0.2, 0.6], [0.2, 0.6, 0.2], [0.6, 0.2, 0.2],
[0.45, 0.45, 0.1], [0.45, 0.1, 0.45], [0.1, 0.45, 0.45], [0.33, 0.33, 0.33],
respectively. The unit failure probability (per 1 km) for the fiber
links β is set to 10−7.

We have performed constrained optimization with a lower
bound on accepted services and objectives representing the min-
imization of the number of transmitters and maximization of
availability for NSFNET, DTAG and GB topologies5. Specifically,
the constraints applied are a minimum number of accepted ser-
vices of 5000, 7000 and 3500 for the NSFNET, DTAG and GB
topologies, respectively. The respective rounded values are cho-
sen heuristically to consider the range of choices lie between
the states of a network that operates on 80% to 100% of its total
capacity. Depending on the specific throughput/number of ac-
cepted services requirement for the considered optical network
this constraint can be modified to contain a different range of op-
tions (for example, for a often under-loaded network operates on
50% of its total capacity, a smaller throughput constraint will be
more suitable as it will provide choices to downsize the network
to 50% while reducing the costs and increasing the availability,
etc.).

These results can be useful in the case where network op-
erators need to decide the use of additional transmitters to in-
crease availability and throughput (i.e., accepted services=5942,
availability = 99.9969, transmitters = 816 in Fig. 9) or consider-
ing downsizing of an under-loaded network down to a certain
throughput level to reduce the number of transmitters while

5We include Figure 9 for NSFNET in the manuscript and due to space limitations
we only present statistical results for DTAG and GB here.
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Fig. 9. Approximated Pareto front (consisting the non-dominated points in blue) and the dominated points (orange) at the end
of the optimization process for NSFNET topology for objectives considering availability Eq. (11) and the number of transmit-
ters Eq. (8) and a constraint of number of accepted services > 5000. The respective number of services accepted are annotated above
the scatter points.

increasing availability (i.e., accepted services = 5087, availabil-
ity = 99.9966, transmitters = 720 in Fig. 9). For the considered
topologies, a strong positive correlation is observed between the
number of transmitters and availability (hence, a strong negative
correlation between the minimization of transmitters). Pearson’s
correlation coefficient of 0.991 is reported for NSFNET, while for
DTAG and GB values of 0.989 and 0.871 are reported respectively.
These are quite similar to the correlation reported in previous
section between the transmitters and the services accepted. This
further implies a strong positive correlation between the objec-
tives of maximization of the number of accepted services and
availability. In next section, we will investigate this further to
observe any similarities between the learned policies.

7. INTERPRETATION OF THE LEARNED RL POLICY

It is important to consider how the learned policy can be inter-
preted, to improve operator confidence in the proposed solu-
tions. Thus, we performed further simulations motivated by
understanding what the RL agent has learned. Different policies
could represent the preference criteria determined by the advi-
sory (i.e, network operators, routing policy designers, etc.) in the
network design and operation processes for different networks
and times/modes of operation. For example, on a network re-
ceiving a large load requiring to operate on the full capacity,
operators might give priority to operation on the maximum
network capacity over reducing the cost while on a network
which often is under-loaded it might be of higher priority to
reduce the cost (i.e. minimize the number of transmitters) than
operating on the maximum capacity. On the other hand, on
a network which is built on a infrastructure which is severely
prone to link failures, it would be of the highest importance to
maintain the availability. To reflect these different scenarios, we
consider following 3 preferences as depicted in Table 1 represent-
ing three different choices the advisory can make considering
the priority to one objective over the other two. Preference A
(ωA = [ωA

1 = 0.1, ωA
2 = 0.1, ωA

3 = 0.8]) has higher prior-
ity for objective of minimization of the number of transmitters
(ω3 = 0.8) and lower priorities to maximization of accepted
services (ω1 = 0.1) and maximization of availability (ω2 = 0.1).
Similarly, preference B and C corresponds to higher priority to
objective maximization of availability and maximization of the
accepted services respectively (Table 1).

Fig. 10 depicts the serviced requests distribution over the
links for the NSFNET topology. The top sub-figure corresponds
to preference A which has a preference weight of 0.1 for the
objective of maximization of the number of services Eq. (7), 0.1

Table 1. Preferences A, B and C

id/preference accepted services ω1 availability ω2 transmitters ω3

preference A ωA
1 = 0.1 ωA

2 = 0.1 ωA
3 = 0.8

preference B ωB
1 = 0.1 ωB

2 = 0.8 ωB
3 = 0.1

preference C ωC
1 = 0.8 ωC

2 = 0.1 ωC
3 = 0.1

Table 2. Statistics for the learned policies for NSFNET for pref-
erences A, B, and C

statistic/preference A B C

per link services

mean 580.0 610.5 614.7

SD 45.3 85.6 85.2

max 662.1 (link 1) 714.7 (link 3) 723.4 (link 3)

min 467.3 (link 16) 396.6 (link 16) 402.4 (link 16)

per wavelength services

mean 121.8 128.2 129.1

SD 13.0 16.5 15.8

max 150.2 (WL 99) 157.4 (WL 65) 157.4 (WL 43)

min 88.4 (WL 92) 89.5 (WL 14) 94.1 (WL 27)

for the objective of maximization of availability Eq. (11) and
0.8 for the objective of minimization of the number of transmit-
ters Eq. (8). The higher preference weight for minimization of
transmitters resulted in considerably fewer services provisioned
using fewer transmitters with a per link average of 580.0 and
standard deviation of 45.3. Still, it did not reach 0 due to the
non-zero preference weight for the other objectives Eq. (7) and
Eq. (11).

Respectively, the middle sub-figure of Fig. 10 has preference
weights of 0.1, 0.8, and 0.1 for the number of services, availabil-
ity and transmitters respectively, representing preference B. As
shown in Table 2, both these figures have significantly higher
number of services across the links (with averages of 610.5, 614.7
and standard deviations of 85.6, 85.2 for the middle and bottom
sub-figures, respectively) compared to the top sub-figure while
the bottom sub-figure has the highest. This further suggests the
similarities of the two objectives service maximization Eq. (7)
and availability maximization Eq. (11) observed in Section 6.
Moreover, the maximum (link 3) and minimum (link 16) utilized
links are observed to be the same for the two cases. The availabil-
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Fig. 10. Service distribution across links in for different preference functions for NSFNET depicting services accepted, availability
and transmitters with preference A: ωA = [ωA

1 = 0.1, ωA
2 = 0.1, ωA

3 = 0.8](top), preference B: ωB = [ωB
1 = 0.1, ωB

2 = 0.8, ωB
3 =

0.1] (middle), and preference C: ωC = [ωC
1 = 0.8, ωC

2 = 0.1, ωC
3 = 0.1] (bottom). Link ids are as described in the NSFNET topology

in Figure 3 and the color-bar describes the number of accepted services.

ity metric Eq. (11) considers the length of the fiber links as the
basis for failure probability calculation, while the path capacity
is also a function of the lengths of the links, as the link length
affects SNR Eq. (1). Similar patterns are observed for DTAG and
GB networks. For DTAG, link 19 and link 17 were the maximum
and minimum utilized for both preference B and C. For GB,
only the minimum utilized link (link 3) is shared between these
preferences. Moreover, for both topologies, the average number
of accepted services per link were similar for preference B and
C (948.0 and 945.6 respectively for DTAG and 375.6 and 379.8
respectively for GB).

Moreover, Figure 11 presents the service distribution across
the links for NSFNET for the three RL policies A, B and C com-
parative to k-shortest path (kSP) and congestion aware (CA)
heuristic routing policies [26]. Strong similarities were observed
between routing policies with respect to preference functions B
and C (RL_B and RL_C) and with both heuristic policies. This is
further evident by Pearson’s correlation coefficient values being
closer to 1 for RL_B, RL_C and kSP policy (0.89 for RL_B and
kSP and 0.88 for RL_C and kSP ) while the coefficients for RL

and CA routing policy is slightly higher (0.94 for RL_B and CA
and 0.95 for RL_C and CA). By maximizing the number services
(throughput) and network availability, RL seems to learn to route
being aware on the congestion levels as well as finding shortest
paths. Moreover, RL_C also has shown positive correlations
with heuristic routing policies (0.74 and 0.79 correlation with
kSP and CA respectively). However, this is a weaker correlation
than for the other two RL policies.

Similarly, Figure 12 presents the service distribution across
the wavelengths for NSFNET for the three RL policies A, B
and C comparative to the heuristic policies first-fit (FF) and
most used (MU) [26]. There were no observable similarities
between the complex RL policies and simple heuristic policies
in terms of wavelength assignment. This was further evident by
values close to 0 for both Pearson’s correlation coefficient and
Spearman’s correlation coefficient. 6

6Due to space limitations only the results for NSFNET is included. Similar
results were observed for the other networks.
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Fig. 11. Services distribution across links for NSFNET topol-
ogy for A, B and C RL policies and shortest path (kSP) and
congestion aware (CA) heuristic routing policies.

Fig. 12. Services distribution across wavelengths for NSFNET
topology for A,B and C RL policies and first fit (FF) and most
used (MU) heuristic wavelength policies.

8. GENERALIZATION TO NON-UNIFORM TRAFFIC

In order to investigate the generalizability of this RL model, we
evaluate the RL agent trained on uniform traffic matrix (Eq. (6))
on a realistic non-uniform population based traffic distribution
not seen during training. Let S and D be the discrete random
variables denoting the source and the destination, respectively.
Possible values each can take are 1, 2, . . . , i, . . . , k with k being
the number of nodes. If ri is the number of residents for the
ith−node, then we assume the probability of selecting the source
is the population of the source as a fraction of the total popula-
tion. The population based traffic matrix Tij = Tji [12] is defined
as follows:

Tij =
1
2

 ri

∑
k

rk

rj

∑
k ̸=i

rk
+

rj

∑
k

rk

ri

∑
k ̸=j

rk

 . (12)

As shown in Figure 13, the RL agent is able to learn a gen-
eralizable policy from the uniform traffic distribution during
training, allowing it to perform well for a different, non-uniform
traffic distribution without retraining. Therefore, the RL agent
affords the operator a flexibility advantage over the heuristics,
which need to be hand-tuned for each problem. This flexibility
is one of the major advantages of RL-driven solutions.

Fig. 13. Approximated Pareto front (consisting non-dominated
points in blue) and dominated points (orange) for bi objec-
tive RWA for NSFNET topology for population based traf-
fic (Eq. (12)). Additionally, the results for RWA heuristics kSP-
FF, FF-kSP, kSP-MU and CA-MU are presented for benchmark-
ing purposes.

9. CONCLUSIONS

A generalized reinforcement learning framework for multi-
objective parameter optimization in optical networks is pro-
posed. The proposed framework is applied to two multi-
objective variants of the classical routing and wavelength assign-
ment problem and its efficacy is demonstrated using a simulated
network environment. Pareto frontiers of optimal solutions with
respect to three objectives, namely the maximization of the num-
ber of accepted services, minimization of the number of trans-
mitters, and the maximization of availability are constructed
for three benchmark network topologies of varying scales, from
country to continental to global-scale networks. These results
provide insights for network designers and operators in decision
making on network design, configuration and operation. Specif-
ically, by providing network operators with a set of optimal
solutions generated by multi objective optimization, defined by
the Pareto front, operators can pick a solution based on their cur-
rent priority. Benchmark results over the state-of-the-art RWA
heuristics further suggest the ability of RL in finding the optimal
solutions in the same range that of the heuristics with the signif-
icant added value owing the multiple optimal values. Compu-
tational cost in machine learning model training is significantly
reduced using an effective scaling approach to reduce the RL
episode size required for simulation during training. Additional
investigation to interpret the policies learned by the RL agents
suggests the similarities between the services accepted and the
availability objectives and the dependency of these objectives on
topological structure. This motivates further research into un-
derstanding the inter-dependencies among network parameters
and performance metrics. Moreover, the generalizability of the
learned policies to unseen non-uniform traffic is shown.
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