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Optical networks satisfy high bandwidth and low latency requirements for telecommunication
networks and data center interconnection. To improve the network resource utilization, ma-
chine learning (ML) is used to accurately model optical amplifiers such as erbium-doped fiber
amplifiers (EDFAs) which impact end-to-end system performance such as quality of transmission
(QoT). However, a comprehensive measurement dataset is required for ML to accurately predict
an EDFA’s wavelength-dependent gain. We present an open dataset consisting of 202,752 gain
spectrum measurements collected from 16 commercial-grade ROADM booster and pre-amplifier
EDFAs under varying gain settings and diverse channel loading configurations over 2,785 hours
in total, with a total dataset size of 3.1 GB. With this EDFA dataset, we implemented component-
level deep neural network (DNN) based EDFA models and use transfer learning (TL) to transfer
the EDFA model among 16 ROADM EDFAs, which achieve less than 0.18/0.24 dB mean absolute
error for booster/pre-amplifier gain prediction using only 0.5% of the full target training set.
We also showed that TL reduces the EDFA data collection requirements on a new gain setting or

a different type of EDFA on the same ROADM. © 2023 Optica Publishing Group
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1. INTRODUCTION

Telecommunication networks and cloud infrastructure rely
on amplified optical networks to deliver high data rates over
metro and long-haul distances. Reconfigurable optical add-
drop multiplexers (ROADMs) are used to add and drop signals
within such networks, and erbium-doped fiber amplifiers (ED-
FAs), sometimes in tandem with Raman amplifiers, are used to
overcome node and link losses. The EDFA output power is typ-
ically the main determinant of the signal launch power and the
EDFA noise figure sets the accumulated amplifier noise levels,
which impact end-to-end system performance metrics such
as the optical signal-to-noise ratio (OSNR) and other quality
of transmission (QoT) measures [1]. However, characterizing
the gain spectrum of an EDFA is challenging as it depends
on many factors such as the internal hardware architecture,
gain setting, channel loading configuration, and input power
levels. For these reasons, vendors are motivated to treat the
wavelength dependent gain of EDFAs as a variable quantity
accounted for through margin allocations. Therefore, better
characterization of amplifier gain is of interest to achieving
low-margin systems.

Recent work has focused on developing accurate models
for the wavelength dependent gain profiles of optical ampli-
fiers like Raman amplifiers [2, 3] and EDFAs [4, 5], which
can be further used for effective prediction of the optical
power spectrum evolution [6] and QoT estimation [7, 8]. It
has been shown that machine learning (ML) models, such as
those based on deep neural networks (DNNs) can achieve
prediction accuracy primarily limited by the measurement
resolution if the model is trained on large EDFA gain spec-
trum measurement datasets. However, such prior work is
built on datasets collected from very few EDFAs and usually
only considers a limited set of channel loading configurations
and/or input power levels. Moreover, these datasets are not
publicly available, therefore making it challenging to com-
pare different EDFA models using the same baseline, as the
measurement resolutions and methods may differ from one
experiment to the next.

Although the DNN-based EDFA gain model can achieve
high gain spectrum prediction accuracy, it requires collecting
a comprehensive set of EDFA gain spectrum measurements for
each EDFA. For example, collecting such a dataset for a single
EDFA covering different gain settings and diverse channel
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loading configurations can consume up to 51 hours [9]. A
promising solution to overcome this challenge is to apply
transfer learning (TL) [10, 11], which is an ML technique that
allows for building a new target model based on a pre-trained
source model that shares similar model knowledge using very
few data samples collected from the target domain.

In this paper, we make two key contributions aiming to
address these challenges. First, we present an open dataset
of the gain spectrum measurements for 16 EDFAs within 8
commercial-grade Lumentum ROADM-20 units deployed in
the PAWR COSMOS testbed [12]. The dataset includes mea-
surements collected from 8 booster EDFAs, each with 3 gain
settings, and 8 pre-amplifier EDFAs, each with 5 gain settings.
For each EDFA at a given gain setting, 3,168 gain spectrum
measurements are collected with a set of diverse channel
loading configurations and varying input power levels. Im-
portantly, all data is collected using the built-in photodiodes
(PDs) and optical channel monitors (OCMs) of each ROADM
unit, without relying on any external measurement equipment,
therefore providing the equivalent of in-situ characterization
results. The full 202,752 EDFA gain spectrum measurement
dataset collected from 16 EDFAs over 2,785 hours is shared
publicly and available at [9]. This dataset can be potentially
integrated with emulators such as mininet-optical [13] and
planning tools such as GNPy [1]. The dataset serves as an
open resource for researchers to evaluate and compare differ-
ent ML-based EDFA models.

Second, we investigate the use of TL-based EDFA gain mod-
els and show that using only 0.5% of the new data collected
from the target EDFA (13 measurements), the transferred
target model can achieve similar gain prediction accuracy
compared to the source model with the full training set (2,732
measurements). We demonstrate three different scenarios
that can benefit from TL with a largely reduced EDFA data
collection process: (i) TL between EDFAs of the same type; (ii)
TL between different EDFA gain settings, and (iii) TL between
different EDFA types. For TL between EDFAs of the same type,
we achieve an average median absolute error of 0.08 dB for
booster amplifiers and 0.10 dB for pre-amplifiers. For TL be-
tween different EDFA gain settings, 0.16 dB MAE is achieved
averaged from two gain settings transferred to and tested on
another gain setting. For TL between different EDFA types,
0.16 dB MAE is achieved. Based on these evaluation results,
TL-based EDFA gain models can reduce data measurement
times by 200 x without sacrificing model prediction accuracy.

The rest of the paper is organized as follows. We review
related work in Section 2. We present the EDFA gain spectrum
measurement setup and analysis of the collected dataset in
Sections 3 and 4. Using the collected dataset, we present the
DNN- and TL-based EDFA gain spectrum model in Sections 5
and 6, and conclude in Section 7.

2. RELATED WORK

Traditional EDFA Models. EDFAs in terrestrial wavelength
division multiplexed (WDM) systems with channel add-drop
multiplexing use automatic gain control (AGC) to maintain a
target gain, which controls the total power gain rather than
the gain of individual channels. For example, if the target
gain setting is 18dB, the actual gain spectrum can have a

fluctuation of +0.5dB across different wavelength channels.
Moreover, the channel gain deviates from the target gain
under different channel loading, input power level, and gain
settings, which can be characterized by a physical model
given by Eq. (1) [14]
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where Grc and Gy, are the target gain and mean gain, respec-
tively. gm(A;) is the original channel gain in the ith wavelength
channel at A;, before new input power P]- and the correspond-
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ing residual ripple 8j and the tilt tjis applied to the jth wave-
length channel at /\j. The noise includes five different factors:
the total input noise Nj, total amplifier input-referred noise
Npg, amplifier AGC noise compensation factor N, average
incident noise gain ripple g;, and input-referred noise gain
ripple gr. However, fully characterizing such factors is chal-
lenging due to many practical reasons.

In practice the gain variations described in Eq. (1) follow
a center of mass weighting of the channel powers by their
wavelength dependent gain functions. Based on this, another
well-known model is the center of mass (CM) model, which
uses simple measurements to predict the EDFA gain spectrum
and for equal channel powers is given by

1 n
gem(Ai) = gwam (Ai) + ). [gsingle()‘j) — gwam(A))|, ()
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where gwam(A;) and gsingle (A;) are the gain of the ith wave-
length channel under WDM and single channel loading config-
urations, respectively. Eq. (2) is usually accurate for the two
extreme cases of one channel and all channels turned on, it
approximates the gain spectral behavior for other loadings,
which can vary significantly for complex multi-stage amplifiers
and due to effects such as spectral hole burning [15].

ML -based EDFA Models. Recent research has also focused
on using ML to better characterize the wavelength dependent
gain spectrum of EDFAs. In particular, a DNN-based EDFA
gain model was proposed in [4], where individual sub-models
are used to predict the EDFA output power for random chan-
nel configurations under one single gain and one tilt setting.
The measurement is collected using built-in OCMs and PDs,
the first example of an in-situ monitor-based model. Another
DNN-based EDFA model with high accuracy to predict partial-
fill EDFA gain profile was proposed in [5], which was trained
using a dataset consisting of 50,000 measurements using an
optical spectrum analyzer (OSA) with high resolution. The
prediction was related to the WDM measurements as the
output of the model was the power difference between fully
loaded (WDM) and partially loaded (arbitrary) channel power.
[16] considers optical signal-to-noise ratio (OSNR) prediction
using EDFA models that use two different models to predict
gain profile and noise figure, separately, with an additional
OSA for data collection.

Although individual EDFA models were well investigated,
there are still limitations regarding the use of the ML-based
approach. First, training ML-based EDFA models requires
tremendous training data that is time-consuming to collect in
real-world scenarios, especially in already deployed networks.
Second, an EDFA model only applies to itself, and data rec-
ollection and model retraining are required for new EDFAs.
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Fig. 1. (Left) COSMOS optical data center with ROADM devices.
(Right) block diagram of the Lumentum ROADM-20 unit and the
measurement setup for the DUT booster/pre-amplifier EDFA.

[17] proposed a hybrid ML-based EDFA model that combines
an analytical model and an ML-based model to reduce the
training dataset size and training time. The results showed
that 46% training samples or 20% training time were reduced
when using the output from an analytical model feeding into
the ML model. This method reduced data collection time but
still train each EDFA model individually. In addition, [18]
showed that a pre-trained ML-based EDFA model can be di-
rectly extended to multiple physical devices of the same make
with small prediction error by training an EDFA model using
measurements collected from multiple EDFAs with a benchtop
OSA. However, this approach assumed EDFAs’ gain profiles of
the same make were highly similar as it used a single model
to predict multiple EDFA gain profiles.

ML-based EDFA models were also integrated with multi-
span optical transmission systems for QoT prediction. In [19],
a generalized EDFA model trained on separately collected
gain spectrum measurements using an OSA is used to predict
the OSNR across 8 channels in a 3-span link. In [20], OSNR
prediction in a 20-span link with 40 channels using character-
ized inline EDFAs is demonstrated, without considering the
model generalization to different topologies. In [6], individu-
ally characterized component-level EDFA models were applied
to 5-span ROADM systems with 95 channels and 10 EDFAs,
where each model is trained using measurements collected
using built-in OCMs and photodiodes of the ROADM units.

Compared to this prior art, our work focuses on creating
an EDFA open dataset and component-level EDFA modeling.
We collected gain profile measurements on 16 commercial-
grade Lumentum EDFA devices with different channel loading
configurations, input power levels, and gain settings. We
report the gain profile difference for EDFAs of the same make
and show gain profile variations across a long time period.
In addition to the EDFA dataset, we also show measurement
time can be largely reduced with TL for EDFAs of the same
make. In particular, TL can be used between different EDFA
devices of the same type, different gain settings on the same
EDFA device, and different EDFA types on the same ROADM.
A portion of this paper is an expansion of our recent work [21].

3. EDFA GAIN SPECTRUM MEASUREMENT SETUP
AND DATA COLLECTION

We now describe the EDFA gain spectrum measurement setup
using the COSMOS testbed and the data collection pipeline.

A. The PAWR COSMOS Testbed

The PAWR COSMOS testbed is a city-scale optical-wireless
programmable testbed being deployed in Manhattan, New
York City, to support advanced optical and wireless exper-
iments [22]. A more detailed description about COSMOS’
programmable optical network and the supported applica-
tions can be found in [12]. In particular, the testbed consists
of one Calient S320 320x 320 space switch, one Dicon 16x16
space switch, 8 commercial-grade Lumentum ROADM units,
one customized comb source, various lengths of fiber spools,
and a dark fiber network between Columbia University, the
colocation facility at 32 Avenue of the Americas (32 AoA), and
the City College of New York (CCNY), some of which is shown
in Fig. 1. Using the space switching and WDM switching capa-
bilities, different topologies in the optical physical layer that
emulate varying metro networks can be constructed [6, 23].

B. EDFA Gain Spectrum Measurement Setup

We characterize the gain spectrum of 16 EDFAs of two types:
booster (B) and pre-amplifier (P), as part of 8 commercial-
grade Lumentum ROADM-20 units. Fig. 1 shows the block
diagram of the Lumentum ROADM-20 unit and the measure-
ment setup of a device under test (DUT) EDFA. Each ROADM
unit consists of one MUX wavelength selective switch (WSS),
one DEMUX WSS, one booster EDFA (at line out), and one pre-
amplifier EDFA (at line in). Each ROADM is also equipped with
total power and channel power monitoring capabilities using
the built-in PDs and OCMs with a power measurement resolu-
tion of 0.01 dB and 0.1 dB, respectively. We use a comb source
to generate a set of 95x50 GHz WDM channels in the C-band
following the ITU DWDM 50 GHz grid specification [24].

Fig. 1 shows the booster and pre-amplifier EDFA measure-
ment topology. With a DUT booster EDFA, the output of the
comb source is connected to an add port of the MUX WSS,
which applies the channel loading configuration, adjusts the
power level in each loaded channel, and generates a flat input
power spectrum to the DUT EDFA. The output of the DUT
booster is terminated. Similarly, with a DUT pre-amplifier
EDFA, the output of the comb source is first connected to the
pre-amplifier EDFA and DEMUX WSS of an auxiliary ROADM,
whose DEMUX WSS applies the channel loading configuration,
adjusts the power level in each loaded channel, and generates
a flat output power spectrum at the input of the DUT pre-
amplifier EDFA. The output of the DUT pre-amplifier EDFA
is terminated by the following DEMUX WSS. The wavelength
dependent gain spectrum of each EDFA, denoted by g(A;), can
be characterized by its input power spectrum, Si,(A;), and
output power spectrum, Seut(A;), i.e.,

g(A;) = Sout(A;) — Sin(A;),Vi=1,2,...,95, 3)
with Ay = 1,529.16 nm (196.050THz) and Ags = 1,566.72nm
(191.350 THz).

We use the Network Configuration Protocol (NETCONF)
with Yet Another Next Generation (YANG) data modeling
language to control and collect data from each Lumentum
ROADM unit. For example, we use the add-connection com-
mand to apply the channel loading configuration, whose input
parameters include the MUX/DEMUX WSS module, connec-
tion index, start/end frequencies, attenuation, input/output
ports, and channel block status. After waiting for a certain
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Fig. 2. The collected EDFA gain spectrum measurements based on
diverse channel loading configurations.
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amount of time for the optical system to stabilize, we use
the monitored-channels and monitored-connections com-
mands to obtain the input and output channel power spectrum
measurements. EDFA-related information, such as the gain
setting and gain tilt, can be retrieved via the edfas command.
The collected EDFA input/output power spectrum together
with other system information is stored in machine-actionable
json files, which we describe in Section 3-D.

C. Channel Loading Configurations

One main challenge associated with the data collection pro-
cess is the large number of channel loading configurations,
which can affect the wavelength dependent gain, ¢(A;), of
each EDFA. However, it is impossible to measure all 2%° con-
figurations with 95x 50 GHz channels where each channel can
be switched ON/OFF and all different input channel power
levels. To address these challenges, we carefully design 5 sets
of diverse channel loading configurations (see Fig. 2) with

different numbers of channels n:

(i) Fixed Baseline includes the fully loaded (WDM) (with
n = 95), 4 half loaded (lower/upper/even/odd with n €
{47,48}), and 7 selected single/double (adjacent) loaded
(with n € {1,2}) channel configurations;

(ii) Fixed Goalpost focuses on two sets of consecutive chan-
nels located in 3 channel groups (with short/medium/-
long wavelength), and includes 15 balanced and 12
imbalanced goalpost channel configurations with n €
{2,4,8,16,32} and n € {9,18}, respectively;

(iii) Fixed Extra includes the complete set of 95 single and
94 double (adjacent) channel loading configurations;

(iv) Random Baseline includes 100, 50, 20 random channel
loading configurations for each value of n € {1,2,...,5},
{6,8,...,20},{21,24,...,48}, respectively;

(v) Random Extra expands Random Baseline and includes
10 random channel loading configurations for each value
ofne{1,2,...,94,95}.

D. Collected Dataset

We consider a target gain of ¢gg € {15,18,21}dB and gp €
{15,18,21,24,27} dB for each booster and pre-amplifier EDFA,
respectively, in the high gain mode with 0dB gain tilt. For
each of the 16 EDFAs at a given gain setting, a total num-
ber of 3,168 measurements are collected, where for each
channel loading configuration, we also collected repeated
measurements with varying EDFA input power levels for com-
prehensiveness, as summarized in Table 1. In particular, each
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Fig. 3. Input-output power of the collected EDFA gain spectrum
measurements overlaid on the EDFA gain masks (high gain mode).

measurement is stored in the machine-actionable json COS-
MOS EDFA format (see Listing 1 for the structure of the
captured measurement data), which includes:

(i) The input and output power spectrum of the EDFA mea-
sured by the OCM, Si, (A;) and Sout(A;), from which g(A;)
can be derived;

(ii) The total input and output power of the EDFA measured
by the PD, P, and Poyt;

(iii) Auxiliary information such as the EDFA gain setting, chan-
nel loading configuration, and WSS attenuation setting.
The EDFA gain profile measurement can be time-consuming,
mainly due to the time it takes to set the WSS attenuation
values (0.85 seconds) and channel loading configuration (3
seconds), and to fetch the OCM/PD readings (6 seconds). To
guarantee that the OCM power readings are reliable, extra
waiting time is applied depending on channel loading condi-
tions. On average, each measurement lasts ~41 seconds and
~58 seconds for the booster and pre-amplifier EDFA, respec-
tively. Overall, the collected dataset with a size of 3.1 GB
includes a total number of 202,752 gain spectrum mea-
surements across 16 EDFAs collected over 2,785 hours.

4. EDFA GAIN SPECTRUM MEASUREMENT RESULTS

We now provide a quantitative overview of the collected EDFA
gain profile measurement dataset. For each EDFA with a
given channel loading configuration, we focus on:
(i) The total input-output power relationship, (P, Pout);
(ii) The gain ripple as a function of the wavelength, given by
3(A;) = g(Ai) — go, Vi, where g is the EDFA gain setting,
i.e., we consider gain ripple normalized to the target gain
instead of with zero mean;
(ili) The peak-to-peak gain ripple, given by max;{g(A;)} —
min;{g(A;)} across the loaded wavelength channels.
Fig. 3 shows the total input-output power relationship,
(Pin, Pout), of the collected EDFA gain spectrum measurement
dataset obtained using the built-in PDs (see Fig. 1). The input-
output power measurements are also overlaid on the EDFA
gain mask (in the high-gain mode) with the corresponding
operation/alarm range of each EDFA specified by the vendor
(Lumentum). In particular, different curves represent the mea-
sured (Pp, Pout) values under different gain settings across
all EDFAs of the same type. It can be seen that the collected
dataset covers a significant portion of the high gain range
for both the booster EDFA (13.4-23.4 dB) and pre-amplifier
EDFA (14.8-29.8 dB). Overall, most of the measurement re-
sults exhibit a linear input-output power relationship, except
for scenarios where the EDFA output power is close to the



Research Article

5
Table 1. Summary of the measurements for each EDFA (booster or pre-amplifier) under a given gain setting.

Channel loading (# of loaded channels, n) x # of different input channel power # of repeated meas. for Total #
configurations (# of channel loading config. with the same 1) levels each channel loading config. of meas.
Fixed Baseline 20 % 1 (WDM), 48 x 2 (lower/odd), 47 x 2 (upper/even), 5 (WDM), 2 (single/double), 20 (WDM), 5 (single/double), 280

1 x 7 (single), 2 x 7 (double) 2 (lower/upper/odd/even) 5 (lower/upper/odd/even)
Fixed Goalpost [2,4,8,16,32] x 3 (balanced), [9,18] x 6 (imbalanced) 2 (balanced), 2 (imbalanced) 5 (balanced), 5 (imbalanced) 270
Fixed Extra 1 x 95 (single), 2 x 94 (double) 2 (single), 2 (double) 2 (single), 1 (double) 568

Random Baseline [1,2,...,5] x 100, [6,8,...,20] x 50, [21,24,...,48] x 20 1 1 1,100
Random Extra [1,2,...,94,95] x 10 1 1 950

ROADM 1 ROADM 2 ROADM 3 ROADM 4 ROADM 5 ROADM 6 ROADM 7 ROADM 8
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Fig. 4. Measured gain ripple of 16 EDFAs at 18 dB gain setting, under WDM/single channel loading configurations.
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Fig. 5. Measured gain ripple of 4 EDFAs at different gain settings, under WDM/single channel loading configurations.

lower limit of the operation range, e.g., P, < —20dBm. These
measurements are important since the built-in OCMs can be
ensured to maintain the 0.1 dB measurement resolution when
the EDFA operates within the operation range, and may pro-
vide alarming and fault detection when the EDFA operates
outside the operation range but inside the alarm range.

Through analysis of the gain ripple spectrum of individ-
ual EDFAs under different gain settings and channel loading
configurations, a better understanding of the wavelength de-
pendent gain spectrum among all tested EDFAs can be derived.
Fig. 4 shows examples of the measured gain ripple spectrum,
3(A;), for all 16 EDFAs at 18dB gain setting, under the full
(WDM) and single channel loading configurations. The gain
ripple is normalized to the target gain (instead of with zero
mean) and the different gain profiles across EDFAs can be
clearly visualized. The solid lines represent the mean gain
ripple averaged across all measurements, while the shaded
areas represent the full range of the measured gain ripple,
including the minimum and maximum values. It can be seen
that different types of EDFA (booster or pre-amplifier), or
different EDFA devices of the same type (e.g., booster EDFA
of two ROADM units), have different gain ripple spectra and
that the gain ripple spectrum of each EDFA also depends on
the channel loading configurations (WDM or single channels).

In addition, Fig. 5 shows the measured gain ripple spectra
of the EDFAs in ROADM 1 and ROADM 5, across all considered
gain settings and under the full (WDM) and single channel
loading configurations. It can be seen that with the full (WDM)
channel loading configuration, the gain ripple spectrum for
the booster EDFA is similar across the 15/18/21 dB gain set-
tings, but are different from that of the pre-amplifier EDFA
across the same gain settings, especially in channels with
longer wavelengths. Similarly, the gain ripple spectrum for
the pre-amplifier EDFA is similar across the 15/18/21/24/27 dB
gain settings. Overall, it can be observed that the gain ripple
profile for each EDFA depends on many factors including the
gain setting, channel loading configurations, and input power
level. To obtain overall statistics of the gain ripple spectrum
for different EDFA devices, types, and gain settings, Fig. 6
shows the mean peak-to-peak gain ripple averaged across
all channel loading configurations for each EDFA at a given
gain setting. In particular, each entry represents the mean
peak-to-peak gain ripple for one EDFA at a given gain setting,
averaged across 3,168 gain spectrum measurements. The
results show that the mean peak-to-peak gain ripple is within
a range of 0.5-0.9 dB but varies by different EDFA types, de-
vices, and gain settings.

We also evaluate the variation of the EDFA gain spectrum
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Fig. 6. Mean peak-to-peak gain ripple across 8 booster EDFAs and
8 pre-amplifier EDFAs with different gain settings.
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Fig. 7. Example gain ripple spectrum measurements of the booster
and pre-amplifier EDFAs at 18 dB gain setting and under WDM
channel loading configurations, spanning 10 months.

across a long time period, which is important due to factors
such as the potential aging of the hardware. In particular,
after 10 months since the completion of the initial dataset col-
lection, we re-collect the gain spectrum measurements for all
16 EDFAs at 18 dB gain settings and under the same channel
loading configurations (see Table 1). Fig. 7 shows the gain
ripple spectrum for the EDFAs in ROADMs 1 and 5 under the
WDM (full) channel loading configurations from the first and
second measurement round using solid and dashed lines, re-
spectively. It can be seen that the difference in the gain ripple
spectrum across the measurements spanning 10 months is
minimum, i.e., the difference in the mean gain ripple is only
<0.2dB. We also analyze the mean/95'-percentile/maximum
absolute difference in the gain spectrum measurements span-
ning 10 months for individual booster and pre-amplifier ED-
FAs, and the results are shown in Fig. 8. Note that the 95t-
percentile and maximum absolute difference has a resolution
of 0.1dB, due to the 0.1 dB measurement resolution of the
built-in OCMs. Overall, the mean difference in the gain spec-
trum measurements spanning 10 months is less than 0.1 dB,
while the 95" percentile difference is within 0.3 dB. We would
like to note that more measurements are ongoing, with the
aim to provide a comprehensive characterization of the EDFA
gain spectrum across different devices and time spans.

5. DNN-BASED EDFA GAIN SPECTRUM MODEL

In this section, we present a DNN-based EDFA model for
characterizing the wavelength dependent gain spectrum using
the collected dataset, and compare it against the CM model.

A. Architecture of the DNN-based EDFA Model

Fig. 9 shows the DNN model architecture, which consists of an
input layer, four hidden layers with 256/128/128/128 neurons,

0.7 Booster 0.7 Pre-amplifier
Bos) 7 1 /| Bos L G
%O's H—H mean Z %0'5 H—H mean %//
EOA @0.4 7 / /
503 , 71503, 7 e “
W Ab AN
A AN AN NG
= ot T I N MR R, B A

: 1 2 3 4 5 6 7 8 : 1 2 3 4 5 6 7 8

ROADM Index ROADM Index

Fig. 8. Mean, 95™-percentile, and maximum values of the absolute
difference in the two rounds of EDFA gain ripple spectrum measure-
ments spanning 10 months.

n =256
n=193

ch1 input power —> X

ch§5 input power—.>
K) = ch95 gain
ch1 status (on/off) —> O

: N Output
ch95 status (on/off) —> O La;:er
Input
Layer

4 Hidden Layers

Fig. 9. Architecture of the deep neural network (DNN) model used
for EDFA gain prediction. Transfer learning reinitializes the orange
output layer before retraining.

and an output layer, where the neurons are initialized by the
Kaiming normalization. The input features to the DNN model
include the EDFA gain setting (gp), total input and output
power (P, and Poyt), input power spectrum (Si,(A;)), and a
binary vector indicating the channel loading configuration,
denoted by ¢ = [¢;]?>, with

_ 1, ifthe ith wavelength channel is switched on,
' 0, otherwise.

The output layer predicts the EDFA gain spectrum, g(A;), cor-
responding to the input parameters. For the input and hidden
layers, we apply batch normalization and use the exponential
linear unit (ELU) activation function. We consider the follow-
ing loss function based on the mean squared error (MSE) of
the predicted and ground truth gain spectrum profile across
the loaded channels, i.e.

MSE = % ) Z [gprea(Ai) — gmeas(/\i)]2 ’ @
L2160 ot

where gpred(Ai) and gmeas(A;) denote the predicted and mea-

sured gain in the it" wavelength channel, respectively. A

component-level DNN model is trained for each EDFA with

the same setting: a gradient clipping threshold of 3.0 and a

learning rate of 0.001 over 600 epochs.

We use all the EDFA gain spectrum measurements under
three gain settings of 15/18/21dB to train and test the per-
formance of the DNN-based EDFA gain model. Note that
although there are two additional gain settings for the pre-
amplifier (24/27 dB), we only choose the dataset correspond-
ing to the 15/18/21 dB gain setting to keep a consistent size
of the dataset used for the DNN model training and testing
across the booster and pre-amplifier EDFA types. For each
gain setting, we split the EDFA gain measurement dataset
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Table 2. Dataset split for training (including both the DNN- and
TL-based EDFA gain models) and test at each EDFA gain setting.

Training Test set Test set Training set
set (baseline) (goalpost) for TL
# of meas. 2,732 220 216 13
Ratio 86% 7% 7% 0.5%
0.8 Booster, Random 0.8 Booster, Goalpost
0:7 mEE DNN 0:7 = DNN
0.6 cMm 0.6 cM
%0.5 %0.5
g 0.4 g 0.4
S03 $03
0.2 0.2
01 ] ] ] 0.1 ] I ]
0.0 1 23 456 78 0.0 1 23 456 78
ROADM Index ROADM Index
0.8 Pre-amplifier, Random 0.8 Pre-amplifier, Goalpost
0.7) == DNN 0.7 == DN
0.6 cm 0.6 cM
50.5 50.5
u{J 0.4 u<J 0.4
S03 S03
0.2 ] ] ] ] ] 0.2 ] ] ]
0.1 0.1 i
1 23 456 78 1 23 456 78
ROADM Index ROADM Index

Fig. 10. Mean absolute error (MAE) of component DNN and CM
EDFA model across 8 boosters and 8 pre-amplifiers on two test sets.

into the training/test sets with a split ratio of 0.86/0.14: 2,732
gain spectrum measurements are used as the training set,
and the remaining 436 gain spectrum measurements are used
as the test set. Specifically, the test set includes 20% of the
Fixed Goalpost (216 measurements) and 20% of the Random
Baseline (220 measurements) gain spectrum measurements,
which represent a diverse set of channel loading configura-
tions with randomly selected channels and groups of close-by
channels (see Table 2).

B. Performance of the DNN-based EDFA Gain Model

We now show the performance of the developed DNN-based
model and compare it with the CM model (Eq. (2)). Fig. 10
shows the mean absolute error (MAE) and standard deviation
of the EDFA gain spectrum predicted by the component-level
DNN and CM models, across 8 booster and pre-amplifier
EDFAs using test sets with different channel loading config-
urations (random and goalpost). Specifically, across the 8
booster EDFAs, the DNN model achieves an average MAE of
0.05dB and 0.06 dB under the random and goalpost test set,
respectively, outperforming that achieved by the CM model
(0.21dB and 0.21 dB, respectively). Similarly, across the 8
pre-amplifier EDFAs, the DNN model achieves an average
MAE of 0.06dB and 0.07 dB under the random and goalpost
test set, respectively, again outperforming that achieved by
the CM model (0.19dB and 0.20dB, respectively). The DNN-
based model also achieves a smaller variance compared to
the CM model. This demonstrates that the DNN model is
able to improve the EDFA gain spectrum prediction accuracy
via learning from a large measurement dataset. Overall, the
DNN-based model suffers from slightly larger prediction er-
rors for the goalpost test set compared to the random test

Booster

peus el o

'/-/7—-— DNN, Random
DNN, Goalpost
—— TL, Random
-+-- TL, Goalpost
—— CM, Random
CM, Goalpost

0'%.0 0.2 0.4 0.6 0.8 1.0
Absolute Error (dB)

Pre-amplifier

¥ ——
ETarb L o

0.8 —s=— DNN, Random
DNN, Goalpost
5 0.6 —— TL, Random

-+-- TL, Goalpost
—— CM, Random

CM, Goalpost
0'%.0 0.2 0.4 0.6 0.8 1.0
Absolute Error (dB)

Fig. 11. CDF of absolute errors on component DNN and CM EDFA
models across 8 booster EDFAs and 8 pre-amplifier EDFAs.

Table 3. Maximum absolute error for EDFA gain spectrum predic-
tion achieved by the CM and DNN models.

Booster Random Goalpost Pre-amplifier Random Goalpost
CM 1.13dB 1.09dB CM 1.14dB 1.08dB
DNN 0.81dB 0.50dB DNN 0.89dB 0.57dB
set.

Fig. 11 shows the cumulative distribution function (CDF)
of the absolution error of gain spectrum prediction across all
EDFAs of the same type, under both the DNN and CM model.
The results show that for booster EDFAs, the DNN model is
able to achieve a median gain prediction error of 0.05/0.06 dB
for the random/goalpost test set, which is significantly smaller
than that achieved by the CM model (0.21/0.21 dB for the ran-
dom/goalpost test set). In terms of the tail performance, the
DNN model is able to achieve a 95™-percentile gain prediction
error of 0.13/0.15dB for the random/goalpost test set, which
is again much smaller than that achieved by the CM model
(0.58/0.58 dB for the random/goalpost test set). The results
for the pre-amplifiers show similar trends when comparing
the performance achieved by the DNN and CM models. In
addition, Table 3 shows the maximum absolute errors of the
gain spectrum prediction achieved by the DNN and CM mod-
els. For both test sets, the max absolute errors of DNN are
smaller than those achieved by the CM models.

6. TL-BASED EDFA GAIN SPECTRUM MODEL

Transfer learning (TL) is an ML method that uses domain
knowledge from a pre-trained model to apply to a new but
similar problem. In this section, we show that TL can be
applied for modeling the gain spectrum modeling across dif-
ferent EDFAs with minimum data collection.

A. TL Model and Target Dataset Selection

We apply the following TL procedure to transfer a DNN-based
source model to a target model. First, the input layer and all
four hidden layers of the DNN (see Fig. 9) are frozen, which
are treated as the feature extractor of the DNN model, and the
weights of the output layer using the Kaiming normalization
are reinitialized. Then, the DNN model is re-trained using
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model, how much new data is needed from a target EDFA.
We consider all cases where each booster/pre-amplifier EDFA
serves as the source model, which is then transferred to each
of the 7 other booster/pre-amplifier EDFAs using different
sizes of target EDFA datasets. Let Nigt and Ng denote the
number of gain spectrum measurements at each gain setting
used to train the source model and to construct the target
model for TL, respectively. We consider Ny = 2,732 gain
spectrum measurements from the source EDFA and different
numbers of measurements from the target EDFA:
(i) Nigt = 5 gain spectra under fully loaded channel configu-
rations, with Nigt/ Nsre = 0.2%;
(ii) Nigt = 13 gain spectra under fully loaded and half loaded
channel configurations, with Nigt / Nsre = 0.5%;
(iii) Nigt = 41 gain spectra unsder fully/half/single/double
loaded channel configurations, with Nigt/ Nsrc = 1.5%.
Fig. 12 shows the MAE and standard deviation of the EDFA
gain spectrum prediction accuracy averaged across all pos-
sible source-target model pairs for the random and goal-
post test sets, with varying ratios of Nigt/Nsrc. The re-
sults show that the average EDFA gain prediction accuracy
achieved by the target model with a target-source data size
ratio of Nigt/Nsrc = 0.5% outperforms that achieved with
Ntgt/Nsre = 0.2%, but is comparable to that achieved with
tht/ Nsrc = 1.5%. Therefore, we empirically select Nigt = 13
with Nigt/Nsre = 0.5% in the rest of the evaluations, which
largely reduces the target data size by 200 x while achieving
an MAE of <0.2dB across all EDFAs. Below, we evaluate the
performance of TL-based EDFA models in three scenarios.

B. TL between EDFAs of the Same Type

Fig. 13 shows the MAE matrices (in dB) across 8 EDFAs of
the same type (booster or pre-amplifier) under the random
and goalpost test sets, with three gain settings (15/18/21 dB)
and a target data size of Nigt = 13 (Nigt/Nsrc = 0.5%). In
each MAE matrix, (i) entry (i,i),i = 1,...,8, corresponds to
the component-level DNN-based EDFA model (i.e., without
TL), and (ii) entry (i,f),j # i, corresponds to the transferred
EDFA model with the i*" and j® EDFA being the source and
target model, respectively. For the i® row in the MAE matrix,
each entry (7,1) is always smaller than (i, j), Vj # i. This shows
that the TL-based model always achieves a slightly larger gain

0.05 dB

1 2 3 456 7 8
Target Pre-amplifier Index

1 2 3 45 6 7 8
Target Pre-amplifier Index

Fig. 13. MAE matrix (in dB) of ML-based EDFA gain spectrum pre-
diction averaged across the random and goalpost test sets, where
entry (i,i) corresponds to the DNN-based EDFA model (without TL),
and entry (i,j),i # j represents TL-based model trained on the ith
source EDFA and transferred j* target EDFA.

spectrum prediction error than the DNN-based model without
TL, which is as expected given the limited number of new
measurements used for deriving the target model.

To compare the TL on two test sets, it can be observed
that for booster EDFAs, the TL-based model achieves an MAE
between 0.06-0.12dB and 0.08-0.18dB on the random and
goalpost test set, respectively. Similarly, for pre-amplifier
EDFAs, the TL-based model achieves an MAE between 0.09-
0.18dB and 0.12-0.24dB on the random and goalpost test
set, respectively. In particular, TL achieves better average
gain prediction accuracy for booster EDFAs compared to the
pre-amplifier EDFAs, and suffers from lower accuracy under
goalpost channel loading configurations, exhibiting a similar
trend as the performance of the component-level DNN model
presented in Section 5. We expect that the performance of the
target model can be further improved by including (a small
number of) gain measurements under the random/goalpost
channel loading configurations in the target data. Overall, the
MAE achieved by the target booster/pre-amplifier model is
within 0.18/0.24 dB across all the test sets.

In addition, Fig. 11 shows the CDF of the absolute pre-
diction error achieved by the TL-based models compared to
the DNN-based models. The results show that for booster
EDFAs, the TL-based model achieves a median absolute er-
ror of 0.06/0.09dB on random/goalpost test sets, which is
(slightly) worse than that achieved by the DNN-based model
but outperforms the CM models. Similar trends have been
observed for pre-amplifiers EDFAs. In terms of the tail perfor-
mance, the 95™ absolute errors for booster/pre-amplifier ED-
FAs achieved by TL-based model prediction are 0.22/0.28 dB
and 0.32/0.50dB for random and goalpost test sets (see
Fig. 11). However, TL does not perform well in terms of
the maximum absolute error (which can be a few dB) due to
the limited new data collected from the target EDFA. Improv-
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Fig. 14. MAE of the EDFA gain spectrum prediction accuracy using
TL from one source gain setting (left) or two source gain settings
(right) to another target gain setting on the same booster EDFA.
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Fig. 15. TL between different EDFA types (B: booster, P: pre-
amplifier) on the same ROADM.

ing the prediction accuracy for TL-based EDFA gain models,
especially with goalpost channel loading configurations, is
considered as a subject of our future research.

C. TL between Gain Settings of the Same EDFA

Fig. 14 shows the MAE and standard deviation of the booster
EDFA gain spectrum prediction accuracy achieved by the TL-
based model trained using one or two source gain settings,
and then transferred to the target model using additional
measurements from a new target gain setting. For example,
“15 & 18 — 21” means that the source model is trained using
EDFA gain spectrum measurements with 15dB and 18 dB gain
settings, and then transferred to the target model using mea-
surements with 21 dB gain setting. The results show that the
TL approach using a single source gain setting can result in an
MAE of up to 0.8 dB and 1.0 dB under the random and goalpost
test set, respectively. These MAE values under the random
and goalpost test set can be further reduced to 0.21 dB and
0.19dB with the additional domain knowledge from the mea-
surements under a second gain setting of 15dB. In addition,
the standard deviation of the gain spectrum prediction er-
ror is also reduced with the additional domain knowledge.
Overall, the MAE across all source/target gain combinations
achieved by the TL-based models with two gain settings is
0.16 dB. Similar MAE performance is observed for TL-based
models constructed for the pre-amplifier EDFAs.

D. TL between EDFA Types

So far we consider TL between the same EDFA type (booster
or pre-amplifier), another way that can benefit the target
EDFA data collection process is to apply TL across different
EDFA types. Fig. 15 shows the MAE and standard deviation
averaged across 8 ROADMs of the EDFA gain spectrum predic-
tion accuracy when transferred from a source booster model
with three gain settings to a target pre-amplifier model (B—P)
or vice versa (P—B) on the same ROADM, compared to the
DNN-based model without TL (B—B and P—P). The MAE
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achieved by the target model is all within 0.21 dB with an
average MAE of 0.16dB, and TL introduces an MAE degrada-
tion of only 0.06/0.10dB and 0.10/0.13 dB for the booster/pre-
amplifier EDFA compared to that achieved by the source
model under the random and goalpost test set, respectively.

7. CONCLUSIONS

We measured and provided an open EDFA gain spectrum
dataset collected from 16 commercial-grade ROADM booster
and pre-amplifier EDFAs under different gain settings and
channel loading configurations. The dataset includes 202,752
gain spectrum measurements collected over 2,785 hours, with
a total dataset size of 3.1 GB. Using this dataset, we investi-
gated TL-based EDFA gain models that can achieve an MAE
of less than 0.24 dB using only 0.5% of the full dataset of the
new EDFA device. We showed that the EDFA gain models
can be transferred between different EDFAs of the same type,
different gain settings on the same EDFA, and different EDFA
types with varying accuracy.

APPENDIX A: EXAMPLE EDFA GAIN SPECTRUM MEA-
SUREMENT DATASET IN JSON FORMAT

Listing 1. Structure outline for JSON-based dataset files.

{"measurement data": [
{"open channel type": "fully loaded channel wdm",
"attenuation setting": 2,
"calient_input power comb source": 5.83,
"calient input power roadm dut edfa": 6.02,
"roadm dut edfa info":
{"input power": —1.88,
"output power": 16.14,
"target_gain": 18.0,
"target gain tilt": 0.0,
R
"roadm_dut line port info": {...},
"roadm_dut wss port _info": {...},
"roadm_dut wss num active channel": 95,
"roadm _dut wss_active channel index": [1,2,...,95],
"roadm dut wss attenuation":
{"1": 0.0,
t95": 1.5},
"roadm dut wss input power spectra":
{"1": —21.8,
ey =ilisa e,
"roadm dut wss output power spectra":
{"1": —26.3,
"95": —21.7},
"roadm dut booster output":
{"1": -8.2,
"95": —3.8},},
5]
}
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