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Optical network automation and failure management require measuring the status and the performance of the different network 

devices to anticipate any degradation and ensure the quality of the provided services, i.e., optical connectivity. Such pervasive 

network telemetry entails collecting large amounts of measurements and events from different sources and with very fine 

granularity, which given the amount and variety of telemetry sources and the size of each measurement and event, imposes 

requirements that are hard to be achieved without large investments. In this paper, we analyze the main limitations of telemetry 

architectures relying exclusively on centralized systems for data analysis and propose an architecture with distributed intelligence. 

Data aggregation techniques, especially conceived for optical network telemetry, are presented with the objective of reducing 

data dimensionality. Illustrative results from our experimental telemetry system reveal reduction of three orders of magnitude in 

terms of total data volume, without introducing significant error and processing delay, and more importantly, helping network 

automation algorithms to identify meaningful changes in the network status. © 2023 The Authors

1. INTRODUCTION

Telemetry is an important field of research and thus, 

extensive work can be found on the topic [1] revealing their 

benefits for optical networking, including network 

automation and failure management ([2-5]). Note that 

network digital twins largely rely on telemetry data for 

accurate modelling and prediction. For instance, optical 

spectra can be obtained from Optical Spectrum Analyzers 

(OSA) installed in optical link and be used for the detection 

of filter failures [6], whereas in-phase and quadrature (IQ) 

constellations can be measured in the optical transponders and 

used for anomaly detection [7] and to estimate the distance 

traversed by the signal or its Bit Error Rate (BER) [8,9] just 

to mention a few. 

As Big Data, optical network telemetry data are a collection 

of data from many different sources and can be described by 

means of a number of characteristics [10], known as the 5 V’s, 

standing the five V for volume, velocity, variety, veracity, and 

value. Such characteristics can be seen as different tiers of a 

pyramid: i) at the bottom of the pyramid, volume refers to the 

size and amount of data that needs to be collected and 

analyzed; ii) velocity refers to the speed at which data are 

collected, stored and managed. Volume and velocity together 

impose requirements that need to be carefully considered, 

e.g., sometimes it is better to have limited data in real time

than lots of data at a low speed; iii) variety refers to the 

diversity and range of different data types and data sources; 

iv) veracity is related to the quality, accuracy, and

trustworthiness of data and data sources and it is the most 

important factor of all the 5 V’s for business success; and v) 

value, at the very top of the pyramid, refers to the ability to 

transform data into useful insight. 

Several telemetry architectures have been defined in the 

literature [11]. In general, telemetry measurements are 

collected from observation points in network devices and sent 

to a central system running besides the Software Defined 

Networking (SDN) controller. This defines a telemetry 

pipeline with basically two elements: data collectors that 

gather measurements from observation points in devices and 

send them to a centralized telemetry system that stores and 

processes the received data. That design is based on the 

principle of collecting from the network and storing as much 

data as possible, in the hope that they can feed network 

automation systems, e.g., based on Machine Learning (ML) 

[12]. For instance, the authors in [13] present use cases 

showing the tight relation between network telemetry and 

automation. Their approach is collecting as many 

measurements as possible and store them in a centralized data 

lake, where ML algorithms can extract insight from data. The 
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motivation of such centralized architecture comes from the 

fact that the analysis of temporary events can be of great 

importance to anticipate degradations and outages [14].  

Other telemetry pipelines have been proposed, like 

hierarchical ones for scalability purposes. See, e.g., the 

tutorial in [15] which details the challenges and requirements 

for optical telemetry and streaming. In addition, the authors in 

[16] demonstrated a modular telemetry broker for the remote 

collection and exchange of telemetry data. 

In parallel, events generated by applications/platforms 

(e.g., SDN controllers and management systems) can be used 

to keep consistency among systems. In fact, an event 

streaming mechanism is made available as an alternative to 

traditional notifications. The streaming capability is distinct 

from Transport API (TAPI) notifications [17] and is designed 

to better deal with volume and to provide an improved 

operational approach. In this context, any component of the 

SDN control plane may act as a source of event telemetry, 

which should be transported and distributed unaltered to other 

systems in the control and management planes. 

As a result of volume, velocity, and variety characteristics 

of telemetry data, efficient and flexible mechanisms need to 

be considered to convey measurements and events from 

network devices and other systems (producers) to consumers, 

e.g., in a central location. In this regard, some works (see, e.g., 

[18]) have proposed telemetry architectures using the 

generalized Remote Procedure Call (gRPC), a protocol 

specifically devised for telemetry, which can reduce data 

volume with efficient encodings that compress data. 

However, scalability is an issue that needs to be carefully 

considered. This is of special importance in disaggregated 

scenarios [19], where measurements from several devices can 

be collected although a single interface, e.g., gRPC, can be 

used to convey all of them to the central location. In this 

regard, the SONiC open source network operating system 

[20] defines an architecture to decouple hardware of packet 

switches from software through abstraction. The architecture 

includes a Redis database (DB), which is used as high-

performance communication system for internal components. 

SONiC is currently being considered to control packet-optical 

nodes [21]. 

Even though gRPC is very efficient to deal with data 

volume, its flexibility is very limited since exchanged 

messages need to follow predefined schemas. In view of this, 

the authors in [22] proposed and experimentally validated 

Apache Kafka data streaming to exchange telemetry data as 

simple text messages, which provides the required flexibility 

to deal with data variety. In addition, Kafka facilitates the 

integration of different data sources. 

In this paper, we extend our previous initial work in [23, 

24]. Specifically, the contribution of this paper is two-fold: i) 

a telemetry architecture is proposed to support intelligent data 

aggregation nearby data collection, thus extending the 

telemetry pipeline. The main target is to provide a solution 

that is able to deal with the 5 V’s of telemetry data, while 

providing scalability, efficiency, flexibility, easy integration 

of different data sources with a variety of measurements and 

events, and facility for turning data into useful insight that can 

be used for network automation; and ii) three techniques are 

proposed for reducing the dimensionality of telemetry 

measurements to deal with volume and velocity. The 

techniques are specifically designed for the measurements of 

larger size, i.e., optical spectrum and IQ constellations.  

The rest of the paper is organized as follows. In Section 2, 

we first illustrate with examples the limitation of centralized 

telemetry architectures and highlight the requirements that 

need to be considered when designing an optical network 

telemetry system. Next, in Section 3, we propose our 

telemetry architecture supporting intelligent data aggregation. 

In Section 4, we propose three dimensionality reduction 

techniques: i) supervised feature extraction (FeX); ii) data 

compression; and iii) data summarization. Section 5 provides 

illustrative results from an experimental setup of the proposed 

telemetry architecture that extends [25]. The focus is on 

demonstrating how the techniques in Section 4 effectively 

reduce telemetry data dimensionality, while dealing with 

variety and veracity and maximizing value. Finally, Section 6 

draws the main conclusions of this work. 

2. MOTIVATION 

Let us illustrate each of the 5 V’s with an example of the 

optical core network for a national telecom operator. Let us 

assume a core mesh network with 50 optical nodes, with 

average nodal degree of 3. Imagine that each node is 

connected with any other node in the network through one 

single optical connection (lightpath). Then, the network 

supports 2,450 unidirectional lightpaths and needs the same 

number of transmitters (Tx) and receivers (Rx). Finally, let us 

assume that we can collect telemetry data from Tx, Rx, 

Optical Amplifiers (OA) in the nodes that compensate for 

filtering and fiber attenuation (i.e., 300 OAs in total), and 

from OSAs installed in every optical link in the network (i.e., 

150 OSAs in total). For illustrative purposes, Table 1 

summarizes the measurements that can be collected from 

every device and its estimated size. See [13] for a more 

exhaustive list of measurements that can be collected from 

real equipment and [26], where the authors analyze metrics 

for evaluating system performance and mechanisms of 

various optical impairments. 

Volume: Let us assume that the measurements in Table 1 

are collected every second. Then, the network described 

above generates 15.64 terabyte (TB) of data every day, i.e., 

5.58 petabytes (PB) every year, that need to be collected, 

conveyed to the centralized telemetry system, stored in a data 

lake, and analyzed. 

Velocity: Collecting measurements every second imposes 

additional requirements related to data collection from the 

devices and its transport to the centralized telemetry system. 

Starting with the optical devices, those generating 

measurements of large size (i.e., OSAs and optical receivers)  
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Table 1. Illustrative Optical Measurements 

Device Measurements Size (bytes) 

Tx • Laser params, e.g., temperature. 

• Configuration, e.g., modulation 

format and symbol rate. 

20 
 

20 

Rx • Optical constellation (e.g., 10,000 

IQ symbols). 

• Receiver parameters, e.g., BER, 

signal to noise ratio, etc. 

80,000 
 

40 
 

OA • Input power, gain, etc. 20 

OSA • Optical spectrum (4.8 THz C-

band, resolution 1 GHz). 

19,200 

 

need high-speed data interfaces. E.g., OSAs would require 

150 kb/s interfaces, while Rx would require 640 kb/s 

interfaces. These speeds are assuming that measurements are 

generated as a stream of floating-point numbers, although 

such measurements, once collected, are usually formatted, 

e.g., as a JSON object, which increases its size. In the 

example, every node agent collecting local telemetry data, 

formatting data and sending them to the centralized telemetry 

system, would generate around 40 Mb/s, so the centralized 

system would receive 1.9 Gb/s of telemetry data in total. 

Variety: Six structured measurements are defined in Table 

1, which consist of tuples of individual magnitudes to vectors 

of related values. Additionally, also events and other 

unstructured data from different systems are collected, which 

require totally different processing. All these different data 

types need to be processed, analyzed and correlated in real 

time. For instance, analysis of spectrum measurements from 

nodes in the route of a lightpath, together with analysis of IQ 

constellations in the Rx can be used to identify and localize 

the cause of a sudden increase of the BER measured in the Rx. 

Veracity: Right decisions are made with thorough and 

correct information. Data can only help if it is clean, i.e., it is 

accurate, error-free, reliable, consistent, bias-free, and 

complete. Some factors that contaminate data are, among 

others: i) meaningless information that distorts the data; ii) 

outliers that make the dataset to deviate from the normal 

behavior; iii) software vulnerabilities that could enable data 

hijacking; and iv) statistical data that misrepresents a 

particular network resource. 

Value: Telemetry data can bring large benefits for network 

automation but only if they are converted into useful insight. 

Operators can capture value from telemetry data by: i) 

reducing network margins; ii) automating service 

provisioning; iii) improving resource utilization and reducing 

operational costs; iv) extending the working life of network 

equipment; v) detecting soft-failures before they become hard 

failures; vi) simplifying maintenance by finding root cause of 

failures and scheduling works; and many others. 

Let us challenge some of the previous assumptions aiming 

at bringing requirements to the telemetry architecture: 1) 

Different measurements should have different collection 

periodicity, which can be variable, or even being collected 

asynchronously. For instance, Tx are configured at 

connection setup time or upon some event, and the 

temperature of the laser would not significantly change that 

fast; 2) In general, it is not useful to store all the measurements 

when no significant changes happen. However, to determine 

whether a significant variation in a measurement has happen, 

some analysis needs to be carried out, and that should be done 

earlier in the telemetry pipeline, e.g., at the node level, to 

reduce volume of data being conveyed to the centralized 

telemetry system; 3) Compression techniques, which can be 

either lossy or lossless, can be explored to reduce bandwidth 

requirements; 4) From the two previous issues, telemetry 

systems should be somehow decentralized. Some processing 

and data analysis might be needed at the node level. However, 

such analysis might be orchestrated by some entity running at 

a centralized level, which can have global network vision; 5) 

Data veracity should be checked along the telemetry pipeline 

and it should be discarded from the main pipeline whenever 

there is evidence that such data is somehow contaminated. For 

instance, a sample that does not follow statistically last 

measurements can be either an outlier or an anomaly. 

However, the detection point can be local, e.g., if it refers to 

the gain of an amplifier, or conversely, it needs to be in the 

centralized system, e.g., if it requires correlation with other 

measures, e.g., in the case of spectrum measurements in the 

route of a lightpath; 6) Value should be extracted from data as 

soon as possible in the telemetry pipeline. E.g., we should not 

wait to detect degradations from the data collected from a 

network node in the centralized telemetry system, if this can 

be done directly in the node. However, sometimes, it is 

necessary to perform correlation among data collected from 

different network nodes to extract value from data. 

In conclusion, to reduce the impact of the 5 V’s, 

intelligence can be applied along the telemetry pipeline, 

which needs to be extended with new elements where 

telemetry measurements can be processed. 

3. PROPOSED TELEMETRY ARCHITECTURE 

In this section, we introduce our proposed unified telemetry 

architecture supporting both telemetry events, as well as 

distributed intelligence along the telemetry pipeline for 

telemetry measurements. 

Fig. 1 presents the reference network scenario, where an 

SDN architecture controls a number of optical nodes, 

specifically optical transponders (TP) and reconfigurable 

optical add-drop multiplexers (ROADM) in the data plane. 

Note that the SDN architecture might include a hierarchy of 

controllers, including optical line systems and parent SDN 

controllers [27]. A centralized telemetry manager is in charge 

of receiving, processing, and storing telemetry data in a 

telemetry DB, which includes two repositories: i) the 

measurements DB is a time-series (TS) DB that stores 

measurements; and ii) the events DB is a free-text search (FT) 

engine. In addition, telemetry data can be exported to other 

external systems, e.g., through Kafka. Some data exchange 

between the SDN control and the telemetry manager is 

needed, e.g., the telemetry manager needs to access the  
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Fig. 1. Overall network and proposed telemetry architecture.  Fig. 2. Telemetry agent architecture 
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Fig. 3. Illustrative workflow. 

topology DB describing the optical network topology, as well 

as the label-switched path (LSP) DB describing the optical 

connections (these DBs are not shown in Fig. 1 for the sake 

of simplicity). 

Every node in the data plane is locally managed by a node 

agent (see some internal details in Fig. 1). The node agent 

translates the control messages received from the related SDN 

controller into operations in the local node. In addition, the 

node agent includes data source adaptors that collect 

measurements from observation points (labeled M) enabled in 

the optical nodes or in specific optical devices, like OSAs, as 

well as a telemetry agent that processes and exports telemetry 

data to the telemetry manager. In addition, events can be 

collected from applications and controllers (labeled E). 

The internal architecture of telemetry agents inside node 

agents is presented in Fig. 2, which consists of five main 

components: i) a manager module configuring and 

supervising the operation of the rest of the modules; ii) a 

security manager in charge of security aspects, like key 

management; iii) a number of algorithms for data processing 

that include dimensionality reduction and data veracity 

checking; iv) a number of interfaces, e.g., gRPC, to 

communicate with other systems. Additionally, interfaces 

take care of the security of telemetry data, e.g., to ensure data 

privacy, authentication, and integrity; and v) a Redis DB that 

is used in publish-subscribe mode to communicate the 

different modules among them, i.e., no direct communication 

is allowed. This facilitates the definition of specific 

workflows for telemetry data and provides an agile, reliable, 

and secure environment that simplifies communication, as 

well as integration of new modules. 

Data sources can be integrated in two different ways: i) 

internal data sources, i.e., those that are deployed inside the 

node agent, can access the Redis DB directly to publish new 

telemetry data (measurements or events); ii) external data 

sources are connected to the telemetry agent through a 

dedicated interface (e.g., based on gRPC). Only trusted peers 

are allowed to connect externally to the telemetry agent. A 

gRPC interface is used for the telemetry agents to export 

telemetry to the telemetry manager, as well for the telemetry 

manager to tune the behavior of algorithms in the agents.  

The internal architecture of the telemetry manager is the 

same that the one for the agents. The difference between them 

is on the algorithms and the interfaces that they run. E.g., the 

telemetry manager includes interfaces to the telemetry DBs 

and to export data to external systems. 

Let us describe now a typical telemetry workflow that fits 

for a wide range of use cases by means of the illustrative 

example presented in Fig. 3. Data sources gather 

measurements from the optical devices; the collected raw data 

is received by the telemetry adaptor (labeled 1 in Fig. 3) that 

generates a structured JSON object, which is then published 

in the local Redis DB (2). The periodicity for data collection 

can be configured within a defined range of values. A number 

of algorithms can be subscribed to the collected 

measurements (3). Note that in the case of events, workflows 

do not include data processing algorithms. In this example, let 

us assume that only one algorithm is subscribed, which 

processes the measurements locally. Such processing might 

include doing: i) some sort of data aggregation, FeX or data 

compression; or ii) some inference (e.g., for degradation 

detection) with no data transformation. The output data 

(transformed or not) are sent to a gRPC interface module 

through the Redis DB (not shown in the figure) (4), which 

applies some sort of data security, like encryption or digital 

signature using keys provided by the security manager, and 

then, the data are sent to the telemetry manager. Because 

gRPC requires a previous definition of the data to be 

conveyed, our implementation defines a unique message of 

type bytes, which allows generalization of the telemetry data 

to be conveyed. Note that, although such encoding could 

largely increase the volume of data to be transported, 

intelligent data aggregation performed by telemetry agents  
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Fig. 4. Optical spectrum (a) and IQ constellation (b) samples and FeX. 

could reduce such volume to a minimum. 

In the telemetry manager, the data are received by a gRPC 

interface module. Any message received by an interface 

module in the telemetry agent/manager is first checked to 

validate that the source is a trusted peer and then, the data are 

decrypted or the sender is authenticated and verified data 

integrity. Next, a set of rules are applied to decide the 

workflow(s) that that message will follow. Rules play an 

important role for dynamically modifying workflows while 

affecting the related modules to that workflow only. Received 

messages are published to a specific topic in the Redis DB 

depending on the rule they matched, so subscribed modules 

can receive them. The data is afterward received by a data 

processing algorithm (5). Such algorithms in the telemetry 

manager can implement functions related to data aggregation, 

inference, etc. Once processed, the output data (6) can be 

stored in the telemetry DB (7) (measurements are stored in the 

Measurements DB and events in the Events DB) and/or be 

exported to external systems (8). Interestingly, algorithms in 

the telemetry manager can communicate with those in the 

telemetry agents using the gRPC interface (9, 10), e.g., for 

parameter tuning. 

4. INTELLIGENT DATA AGGREGATION FOR 
DIMENSIONALITY REDUCTION 

In this section, we introduce techniques to greatly reduce 

the impact of both volume and velocity of telemetry data. In 

particular, we analyze: i) supervised FeX; ii) data 

compression using autoencoders (AE); and iii) data 

summarization using the arithmetic mean of a number of 

observations obtained when variation is stable. We focus on 

two examples of telemetry measurements, optical spectrum 

and IQ constellations from a m-QAM signal, which are by far 

the cases where collected samples are larger. 

A. Supervised feature extraction 

A simple but effective dimensionality reduction technique  
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Fig. 5. IQ constellation sample compression using autoencoders. 

is supervised FeX. This technique is intended to generate the 

set of features Φ(M) that characterize a measurement sample 

M. As an example of Φ, in our previous work in [4], we 

proposed a module to pre-process the optical spectrum of a 

signal, i.e., an ordered list S of frequency-power pairs, i.e., 

S=[<f, p>] (see Fig. 4a). After equalizing power, the module 

characterizes the mean (μ) and the standard deviation (σ) of 

the power around the central frequency (fc Δf), as well as a 

set of primary features computed as cut-off points of the 

signal with the following power levels: i) equalized noise 

level, denoted sig (e.g., -60dB + equalization level); ii) a 

family of power levels computed with respect to μ minus nσ, 

denoted nσ (e.g., 3 and 5σ); and iii) a family of power levels 

computed with respect to μ minus a number of dB (e.g., -3 and 

-6 dB), denoted dB. Each of these power levels generates a 

couple of cut-off points denoted f1(·) and f2(·). In addition, the 

assigned frequency slot is denoted f1slot, f2slot. Then, the input 

list with 75 <f,p> pairs representing the spectrum of a 75GHz 

channel is processed to generate a set ΦS with 13 features that 

can be easily transformed into value, e.g., for failure detection 

and identification, in the telemetry agent or the manager. 

Another example is for IQ constellations, where we assume 

that the observation point is in a TP that gathers the received 

optical symbols of a m-QAM signal. The related data source 

periodically retrieves a constellation sample X (a sequence of 

k IQ symbols as represented in Fig. 4b for a 16-QAM signal) 

and publish it in the local Redis DB. In our previous work in 

[28], we applied Gaussian Mixture Models (GMM) [29] to 

characterize each constellation point of an optical 

constellation sample as a bivariate Gaussian distribution. 

Therefore, each constellation point i is characterized by 5 

features, the mean position in I and Q axes [µI,µQ], as well as 

the I and Q variance and symmetric covariance terms that the 

symbols belonging to the constellation point i experience 

around the mean [σI,σQ,σIQ]. Therefore, for a m-QAM signal, 

a set ΦX with m*5 features need to be propagated from the 

telemetry agent to the manager. 

B. Data compression 

Let us now focus on intelligent telemetry data compression 

performed at telemetry agents before data are sent to the 
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telemetry manager through the gRPC interface. In this 

subsection, we target the compression of IQ constellations, 

since every sample X might include a large number of 

symbols, i.e., complex numbers. Note that the proposed 

compression method is compatible with any data serialization 

and compression engine [30] built on the gRPC interface, 

which applies additional compression to any data being sent, 

including raw samples and features. 

In our previous work [28], we proposed using AEs for 

intelligent IQ constellations compression. An AE is a type of 

neural network with two components: the encoder, which 

maps input data into a lower-dimensional latent space, and the 

decoder, which gets data from the latent space and 

reconstructs the original data back. Once trained, the AE 

proposed in [28] takes as input k IQ symbols from the received 

constellation sample X, i.e., [x1
I, x1

Q,… xk
I, xk

Q] and generates 

latent space Z=[z1, …, zL], where the size of Z is significantly 

lower than that of X (see Fig. 5a). Although such approach 

(hereafter, referred to as raw input) shows remarkable 

performance in terms of compression rate and average 

reconstruction error, it requires IQ constellations to contain a 

fixed number of symbols and the same proportion of symbols 

per constellation point. In addition, the size of both input and 

output layers and consequently, the complexity of the AE, 

depend on the number of symbols. This lack of flexibility 

reduces noticeably the applicability of this approach. 

In order to overcome the aforementioned issues, in this 

paper we propose an alternative AE-based IQ constellation 

compression method (hereafter referred to as grid input), 

which is sketched in Fig. 5b. Firstly, the whole IQ 

constellation is split into p regular grid cells, where each cell 

covers a small quadrant of the IQ constellation. Then, the 

input sample X is processed to generate vector Y=[y1, y2,…, 

yp] containing the count of symbols that fall into each grid 

cell. Note that the length of Y only depends on p, which 

represents the resolution of IQ constellation pre-processing. 

Therefore, once p is fixed, the AE is trained to compress and 

reconstruct Y, which enables the AE to compress samples with 

different number of symbols and variable proportion of 

symbols per constellation point. 

In consequence, the algorithm module in the telemetry 

agent runs both the map and count and the encoder, and 

exchanges Z for every input sample X with the decoder 

running in the telemetry manager through the gRPC interface. 

The algorithm in the telemetry manager uses the decoder to 

reconstruct the count of symbols in each grid cell (Y*) and 

then, generates X* by re-sampling Y*, i.e., the number of 

symbols in each grid cell is generated by randomly choosing 

I and Q components within the range of the grid cell. Once 

generated, the sample X* is stored in the telemetry DB to be 

subsequently analyzed. Note that reconstruction can be 

performed also in the telemetry agent, e.g., for veracity 

checking purposes, like detecting outliers and/or anomalies. 

Algorithm 1. Data Summarization 
INPUT: Φ  

OUTPUT: send, Φ’ 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

out ← False 

for each φ ∈ Φ do 

if φ.value < R[φ.id].low OR φ.value > R[φ.id].high then  

out ← True 

H[φ.id].update(φ.value) 

Φavg[φ.id] ← avg(H[φ.id]) 

R[φ.id].low ← Φavg [φ.id] - α· std(H[φ.id]) 

R[φ.id].high ← Φavg [φ.id] + α· std(H[φ.id]) 

if out = True then 

count ← 0 

return True, Φ 

count ← count + 1 

if count = maxcount then 

count ← 0 

return True, Φavg 

return False, - 

Algorithm 2. Main Procedure 
INPUT: sample  

OUTPUT: res 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

Φ ← FeX(sample)  

send, Φ’ ← summarization(Φ) (Algorithm 1) 

if send = False then return ∅ 

if isIQ(sample) = True then 

Z ← compression(sample) 

return {Φ’, Z} 

return {Φ’, sample} 

C. Data Summarization 

In the two previous techniques, telemetry data are 

propagated from the observation point to the telemetry 

manager with the same frequency, i.e., every time a new 

sample M is collected from the observation point, a subset of 

data representing it is generated and conveyed to the telemetry 

manager. Assuming a high collection frequency, this policy 

entails large volume of data being conveyed. However, this is 

not needed in general in normal conditions. Hence, we could 

measure variations in the computed features to decide whether 

a new sample M or a representation of it needs to be sent to 

the telemetry manager. In case of no significant variations are 

found, the telemetry agent can send averaged values of the 

features with a much lower frequency, thus reducing the 

volume of telemetry data being conveyed. 

Algorithm 1 presents the proposed data summarization 

procedure. The algorithm receives the set of computed 

features Φ and returns whether features need to be sent 

(Boolean variable send) and if needed, the set of features Φ’ 

that can be either those received as input or averaged ones. To 

that end, the algorithm maintains and updates the following 

internal data, which are assumed to be initialized beforehand: 

i) H is a time series database containing the last w values of 

each feature; ii) Φavg, with the average value of the features 

stored in H; iii) R, with the range of variation of each feature, 

computed as Φ’ (+/-) α times the standard deviation of values 

in H; and iv) count, with the number of consecutive telemetry 

periods where all features remain within the range R. Besides, 

maxcount defines the interval to convey averaged features. 
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Before starting with feature analysis, we assume that all 

features will stay within the range defined in R, by setting 

auxiliary variable out equal to False (line 1 in Algorithm 1). 

Then, input set Φ is firstly processed to find any feature that 

is out of the range R. If so, out is set to True (lines 2-4). After 

this, H, average features Φavg, and range R are updated 

accordingly (lines 5-8). Once all features have been 

processed, the output of the algorithm is prepared, which leads 

to three different cases. In case that at least one feature is out 

of range, count is reset and the input features Φ are returned 

(lines 9-11). Otherwise, count is increased and, if maxcount is 

reached, it means that a period of low frequency collection has 

been achieved, so count needs to be reset to 0 and averaged 

features Φavg are returned (lines 13-15). Note that in both 

previous cases, send is True in order to indicate that features 

must be conveyed. However, if all features are within the 

range and maxcount is not reached, then there is no need to 

convey any feature from agent to manager (line 16). 

Algorithm 2 shows the main process that needs to be 

performed every time a new measurement becomes available 

at the telemetry agent. The output of this algorithm is the data 

that needs to be conveyed through the gRPC interface to the 

telemetry manager. Note that the result can be empty, i.e., no 

data need to be conveyed. The first step is to compute features 

Φ(·) from the input sample (see Section 4.A) (line 1 in 

Algorithm 2). Then, the data summarization procedure 

(Algorithm 1) is executed and, in case that there is no need to 

send data, empty set is returned (lines 2-3). Otherwise, if the 

sample is an IQ constellation, the AE-based compression 

detailed in Section 4.B is applied, and both the features after 

data summarization (Φ’) and latent space (Z) are returned 

(lines 4-6). On the contrary, i.e., if no compression is needed, 

e.g., the sample is an optical spectrum, features Φ’ and 

original sample are sent (line 7). 

5. ILLUSTRATIVE RESULTS 

In this section, we first present the telemetry scenario used 

to obtain the results and the data sources that generate 

telemetry measurements. Next, we focus on FeX and data 

compression, determine the size of the telemetry 

measurements at the different stages and find the compression 

ratios obtained with the different techniques. The 

performance of data summarization is then analyzed and 

illustrative examples are eventually presented. 

A. Scenario 

The telemetry system runs in 4 virtual machines (VM) 

deployed in an infrastructure using OpenStack as virtual 

infrastructure manager and Ubuntu Server 22.04 LTS as 

operating system (see Fig. 6). All the software, including the 

manager, algorithms, interfaces and the telemetry adaptor, 

have been implemented in Python and are executed using 

Python 3.10.4. Every telemetry agent and the manager with 

their respective Redis DB instances run inside Docker 

containers and are deployed using Docker Compose.  

Constellations
Data Source

Telemetry 

Agent-1

VM-01

Spectrum
Data Source

Events Data
Source

Telemetry 

Agent-2

VM-02

Telemetry 

Manager

VM-03 VM-04

M EM

 

Fig. 6. Experimental deployment. 

{

"X": [[-3.08519822419515, 2.98467451952321],

:

[2.96258763128303, 2.97984558299648]]

}

{

"Z": [2.732774257,

:

0.172829926]

}

4c

2b

{

"Φx": [[-2.971842458,2.971601309,0.004633636,...0.004507746],

:

[-2.941472597,2.931215828,0.113045212,...0.121031438]]

}

4b

{

"S": [[195626, -33.45],

:

[195675, -34.01]]

}

2a

{

"fc": 195650, "f1": 195626, "f2": 195675,

"mu": 0, "stdev": 0.3,

...

}

4a

 

Fig. 7. JSON representations of received (2) and processed (4) samples. 

Containerized versions of Influx DB 2.4.0 as measurements 

DB and of Elasticsearch 8.3.3 as Events DB, are deployed. To 

visualize data, Grafana 9.1.1 and Kibana 7.14 both running in 

Docker containers are used for telemetry measurements and 

events, respectively. In addition, a Web UI that offers a 

general view of telemetry system has been implemented in 

Python using Django 4.1. 

Three data sources have been developed. Representation of 

the JSON objects are shown in Fig. 7 identified with the same 

label as the related message in Fig. 3 for the sake of clarity. 

The spectrum data source emulates spectrum samples 

collection from an OSA. The OSA measures the whole C band 

(4.8 THz) and an algorithm processes the measurement and 

selects the spectrum for each channel separately. Therefore, 

each measurement S for the spectrum of a 75GHz channel 

consists of a list of 75 <f,p> pairs, i.e., 600 bytes assuming 32-

bit scalars. The telemetry adaptor in the data source publishes 

samples S encoded as JSON objects of size 1,207 bytes (2a in 

Fig. 7). 

The constellations data source emulates IQ constellation 

samples collection from an observation point in a TP. The 

openly available dataset in [31] have been used to get 

constellation samples of lighpaths with length ranging from 

80km to 2000 km. Specifically, two sizes of constellation 

samples X are considered, containing k=2,048 and k=10,000 

symbols, respectively from a 16-QAM optical signal. The size 

of each raw sample X in a scalar representation is 2×k×4, i.e., 

16,384 bytes and 80,000 bytes, assuming that every symbol is 

represented with two scalars (I and Q). The telemetry adaptor 

publishes raw samples X encoded as JSON objects (2b in Fig. 

7) of size 75,783 and 370,007 bytes, respectively. 
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Fig. 8. Resolution Evaluation 

Table 2. AE parameters and performance 

AE 

Approach 

Input 

Neurons 

Hidden 

Neurons Z MSE Accuracy 

# Type 

Raw Input 20,000 500 ReLu 32 2e-2 86% 

Grid Input 36,864 500 ReLu 32 4e-5 95% 
 

Finally, the events data source reproduces TAPI entities, 

i.e., YANG sub-trees, generated by an SDN controller 

reporting asynchronous events that happen in the network. 

Each event has different size, being 40,000 bytes long on 

average. 

The implemented gRPC interface removes spaces and 

serializes JSON objects into byte streams using the Python’s 

pickle module, which can be deserialized to obtain the same 

object. Additionally, the gRPC interface implements security 

using Transport Layer Security (TLS), which encrypts the 

end-to-end communication between telemetry agents and the 

manager. On top of that, the gRPC interface applies the Gzip 

compression algorithm to each received message aiming at 

reducing even more the amount of data being transmitted. 

B. Feature extraction and data compression 

Intelligent data aggregation algorithms have been 

implemented in Python and deployed in the telemetry agent 

and manager for the techniques detailed in Section 4.  

In the case of supervised FeX from the optical spectrum of 

a lightpath, the algorithm in the telemetry agent generates 

features ΦS in a JSON object with 184 characters (4a in Fig. 

7), which is then serialized before being conveyed through the 

gRPC interface. As for IQ constellations, the algorithm in the 

telemetry agent applies GMM fitting to every constellation 

sample X received and generates features ΦX encoded as a 

JSON object with 1,000 characters (4b in Fig. 7). 

Regarding data compression using AEs, the raw input 

approach in Fig. 5a was numerically evaluated in [28] using 

IQ constellation samples of reduced size (2,048 symbols). It 

was shown that the maximum compression that produces 

negligible reconstruction error results in vectors Z of size 32. 

Then, we now focus on comparing raw input and grid input 

approaches for IQ constellation samples of larger size (10,000 

symbols), which provide much accurate information of the 

optical signal. 

Table 3. Size of telemetry measurements (bytes) 

Measurement Scalar 
JSON 

(Fig. 7) 
Serialized & 

Gzip  
Gzip compr. 

ratio 

S (75 GHz) 600 1,207 403 3.0 

S (4.8 THz) 38,400 76,807 19,773 3.9 

X (2,048 symb.) 16,384 75,783 35,485 2.1 

X (10k symb.) 80,000 370,007 168,677 2.2 

Φs (13 featu.) 52 184 105 1.8 

Φx (5x16 featu.) 320 1000 519 1.9 

Z (32 values) 128 391 248 1.6 

Table 4. Compression ratios from collection to gRPC 

Measurement w/o process FeX AE 

S (75 GHz) 1.5 5.7 - 

X (2,048 symb.) 0.5 31.6 66.1 

X (10,000 symb.) 0.5 154.1 322.6 
 

In the case of grid input approach, we need to firstly 

determine the resolution p that allows an accurate 

representation of the original constellation (see Section 4.B). 

To this aim, we executed the map and count and resample 

blocks in Fig. 5b (without AE) and compared the supervised 

features described in Section 4.A of both original and 

reconstructed constellations as fair measurement of fidelity. 

Fig. 8 shows the relative error of the extracted features as a 

function of parameter p. We observe negligible error (~1%) 

for p > 35,000. In view of this, we selected p = 36,864, which 

entails splitting the IQ constellation in a 192x192 grid i.e., 

each of the 16 constellation points is mapped on a 48x48 grid 

(see the inner graph in Fig. 8). 

Table 2 shows the configuration and performance of raw 

input and grid input approaches after training AEs with 2,000 

samples from lightpaths ranging from 80km to 2,000km 

during 1,000 epochs. The two selected evaluation metrics are: 

i) the loss in terms of mean squared error (MSE) computed 

with a validation dataset containing 500 samples not used 

during training; and ii) the reconstruction accuracy. For the 

sake of a fair comparison, the latter has been computed by 

applying the map and count block to both original and 

reconstructed constellations (regardless of the AE approach) 

and computing the accuracy on reconstructing the count in 

each grid quadrant. In light of the noticeable results, we 

conclude that the proposed grid input approach allows not 

only a better reconstruction than the raw input one, but also it 

achieves negligible reconstruction error when compressing 

10,000 symbols into 32 latent space features. Such vectors Z 

of size 32 are output as JSON objects (4c in Fig. 7), resulting 

in 391 characters in total for the JSON object. 

C. Size and data rate analysis 

Let us now study the size and data rate of the different 

telemetry measurements. Table 3 shows the size of every 

telemetry measurement at their different stages: i) scalar 

representation, i.e., using float, integer and string data types; 

ii) JSON object using text; and iii) JSON object serialization 

and gzip compression. The compression ratio achieved by 

gzip is also presented as reference, where we observe that gzip  
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Fig. 9. Collection rate vs telemetry period. Fig. 10. gRPC data rate after serialization and gzip w/o processing (a) and using FeX/AEs (b).  
 

Table 5. Processing times in telemetry agents (ms) 

Measurement w/o process FeX AE 

S (75 GHz) 3 4 - 

X (2,048 symb.) 4 24 12 (raw) 

X (10,000 symb.) 16 243 162 (grid) 
 

reduces the size of the JSON objects in the order of 2-3 times. 

Table 4 shows the achieved compression ratio from the size 

of the collected measurement (scalar) to the size of the 

serialized and compressed byte stream being conveyed 

through the gRPC interface, when: i) the measurement is sent 

unprocessed; ii) when features are extracted and sent; and iii) 

when the AE is used to generate the latent space to be sent 

(only in the case of optical constellations). In general, the 

reduction of the size when processing is carried out is higher 

when the size of the collected measurement is high, ranging 

between 5.7 and 322 times. In addition, we observe larger size 

reduction when AEs are used as compared to FeX. Finally, we 

observe that if no processing is performed, using compressed 

JSON objects for the gRPC interface results in increased size 

of telemetry measurements. In this case, binary serialization 

of the scalar measurement would be a much better option. 

Let us analyze the requirements of the data interface of the 

optical devices and their relation to the telemetry period. Fig. 

9 presents the telemetry collection data rate when the 

telemetry period ranges from 1s to 1min for samples using 

scalar values. Assuming a maximum data rate for telemetry 

collection of 9600 b/s (e.g., for a typical serial interface), the 

minimum telemetry period for optical constellations with 

2,048 symbols would be around 14 sec (Fig. 9a). That period 

increases to over 32 sec in the case of the spectrum for the 

whole C band, and over 1 minute in the case of optical 

constellations with 10,000 symbols. A reduced collection 

period increases the speed of the interface, e.g., 21.3 Kb/s are 

needed to collect 10,000 symbols every 30 sec. To reduce the 

telemetry collection period, higher speed interfaces are 

needed. E.g., with a 115200 b/s serial interface (Fig. 9b), the 

telemetry period reduces to 2.75 sec in the case of the 

spectrum for the whole C band, and to 6 sec for optical 

constellations with 10,000 symbols. 

Once the samples are collected, let us analyze the data rates 

generated through the gRPC interface when the serialized and 

gzip compressed measurements are conveyed (Fig. 10). In 

Fig. 10a, we observe that sending unprocessed samples results 

in large data rates. E.g., assuming a telemetry period of 30 sec  
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Fig. 11. Data summarization performance 

results in data rates as high as 45 kb/s in the case of optical 

constellations with 10,000 symbols, which reduces to 9.5 kb/s 

when the constellations have 2,048 symbols only. In the case 

of the optical spectrum of a single channel, the generated data 

rate is low because of the coarse resolution of the OSA. In Fig. 

10b, the generated data rate when FeX or AEs are used to 

reduce the dimensionality of the telemetry measurements is 

shown. In this case, data rates as low as 138 / 66 b/s are 

generated when FeX / AEs are used to process the received 

constellation samples. 

In the example in Section 2 for a network with 50 nodes 

and considering constellation and spectrum measurements 

only, the network would generate 541 GB of data every day 

when samples are sent to the centralized repository every 30 

sec in their scalar format, i.e., 192.89 TB per year. This 

reduces to 3.74 GB per day, 1.33 TB per year, when telemetry 

measurements are processed by the algorithms in the 

telemetry agents. 

Table 5 presents the processing times in the telemetry agent 

for each sample as a function of the type of processing, 

including when only the format of the sample is changed, 

when features are extracted and when the encoder is used for 

data compression. Note that in the case of AE, additional time 

is needed for the decoder to reconstruct the samples, which 

takes the same time as the encoder. We observe relatively 

short processing times, which increases with the size of the 

input sample. This indicates the low complexity of the 

proposed algorithms. In fact, in our tests, two cores of an Intel  
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Fig. 12. Example of data summarization for constellation samples. Visualization in Grafana. 
 

 

Fig. 13. Event visualization in Kibana 

i7 processor were able to extract features of 5 constellations 

samples with 10,000 symbols per second. Note that although 

such computing resources need to be available in every 

network location, their cost is more than compensated by the 

reduction in the volume of data that would otherwise require 

to be sent to the central processing system. 

Finally, when messages arrive at the telemetry manager 

through the gRPC interface, they follow specific processing. 

In the specific case of the latent space Z, it is used as input to 

the decoder that generates samples X*. To compare the results 

of FeX to those from the AE, the algorithm in the telemetry 

manager, samples each distribution to obtain IQ constellations 

samples with k symbols and stores them in the DB. 

D. Data summarization 

Telemetry data rate can be further reduced by 

implementing data summarization on the extracted features 

(Algorithm 1), which can be sent with a larger period in case 

no significant changes occur. Algorithm 1 has been evaluated 

for both IQ constellation using samples with 10,000 symbols 

and 75 GHz optical spectrum samples from a lightpath of 

1,000 km operating under normal conditions. Fig. 11a shows 

the data volume sent by the telemetry agent to the manager as 

a function of parameter α. Data volume is normalized to the 

no summarization case, i.e., data is sent every collection 

period (30 sec). We observe that configuring α=4 allows 

achieving remarkable summarization (<10% of total 

telemetry measurements) for both IQ constellations and 

optical spectrum samples. In addition, Fig. 11b shows the 

impact of the aggregation interval after fixing α=4. As a result, 

we conclude that an aggregation interval of 10 min, i.e., w=20  
 

Table 6. Processing time and telemetry measurements volume 

 
Scalar 

(30 sec) 

FeX + AE 

(30 sec) 

Summarization 

(30 sec / 10 min) 

E2e processing 

time (S) 
6 ms 6 ms 1 ms (+ FeX + AE) 

E2e processing 

time (X) 
32 ms 583 ms 7 ms (+ FeX + AE) 

Measurements 

(day) 
541 GB 3.74 GB 0.21 GB 

Measurements 

(year) 
192.89 TB 1.33 TB 78 GB 

 

telemetry measurements collected every 30 seconds, achieves 

the largest data summarization observed in Fig. 11a. Note that 

10 min is an enough short period to adapt to smooth variations 

without the need of sending finer telemetry data. 

Fig. 12 shows the measurements that are finally stored in 

the Measurements DB for a lightpath of 80 km. The plots are 

extracted from visualization panels in Grafana. For illustrative 

purposes, we synthetically induced a gradual degradation of 

the lightpath (length increase) that causes variation (large 

dispersion) on the received IQ constellations. Fig. 12a plots 

the evolution of σI and σQ features for constellation point (-

3+3i); before and after constellations stored in the Telemetry 

DB are also shown. Data summarization reduces the telemetry 

period to 10 min until the value of the features increases 

significantly due to the induced degradation, when it increases 

the telemetry period to equal the collection period. This 

behavior facilitates algorithms in the telemetry manager to 

detect the degradation as fast as possible. Once the value of 

the features stabilizes again, the telemetry period is 

automatically increased back. Next, the reference lightpath 

suffers a filter shift of 1 GHz in some ROADM along its route, 

which causes variation on the measured spectrum. Fig. 12b 

plots the evolution of f13dB and f16dB features. Data 

summarization adapts the telemetry period as needed to 

follow the variations in the features, while reducing the 

volume of measurements that are sent.  

Finally, to assess the support of variety of telemetry data on 

the proposed telemetry architecture, Fig. 13 shows a capture 

of Kibana with some TAPI events generated by an SDN 

controller and injected through telemetry agent 2 (see Fig. 6). 
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6. CONCLUDING REMARKS 

The 5 V’s of telemetry data have been examined and 

illustrated and the variety of measurements, e.g., from optical 

devices, as well as events, e.g., from control systems, that are 

part of telemetry data in the context of optical networking, 

were reviewed. We concluded that having fine grain (velocity) 

and true (veracity) telemetry for network data analysis (value) 

at a centralized location only results in a large amount of data 

to be conveyed from the devices (volume). A way to deal with 

such characteristics is by extending the telemetry pipeline and 

adding intelligence as close as possible to the observation 

points, where measurements are collected. In view of that, a 

distributed architecture has been proposed, where intelligence 

is not only located in the centralized system, but also in the 

telemetry agents, which receive and process telemetry 

measurements before sending them to the central location. 

Intelligent data aggregation for dimensionality reduction 

(volume and velocity) has been proposed for those 

measurements with larger size, i.e., optical spectrum and IQ 

constellations. In particular, three techniques have been 

proposed: i) supervised FeX; ii) data compression using AE; 

and iii) data summarization. 

Synthetically-generated events and measurements of 

optical spectrum and IQ constellations are injected into the 

telemetry system to experimentally obtain illustrative results. 

It was shown that the proposed intelligent data aggregation 

techniques introduce negligible error and relatively low 

processing delay, while reducing the dimensionality of the 

telemetry measurements several orders of magnitude. Table 6 

summarizes processing times and amount of data from 

measurements collected for a network with 50 nodes 

(described in Section 2) in one single day and along one year. 

The benefits of the proposed telemetry system architecture 

and the proposed intelligence techniques are absolutely clear 

in the view of the results. 
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