
Distributed Intelligence for Pervasive Optical Network
Telemetry

LUIS VELASCO*, POL GONZÁLEZ, AND MARC RUIZ
Universitat Politècnica de Catalunya, Barcelona, Spain
*Corresponding author: luis.velasco@upc.edu

Optical network automation and failure management require measuring the status and the performance of the different network

devices to anticipate any degradation and ensure the quality of the provided services, i.e., optical connectivity. Such pervasive

network telemetry entails collecting large amounts of measurements and events from different sources and with very fine

granularity, which given the amount and variety of telemetry sources and the size of each measurement and event, imposes

requirements that are hard to be achieved without large investments. In this paper, we analyze the main limitations of telemetry

architectures relying exclusively on centralized systems for data analysis and propose an architecture with distributed intelligence.

Data aggregation techniques, especially conceived for optical network telemetry, are presented with the objective of reducing

data dimensionality. Illustrative results from our experimental telemetry system reveal reduction of three orders of magnitude in

terms of total data volume, without introducing significant error and processing delay, and more importantly, helping network

automation algorithms to identify meaningful changes in the network status. © 2023 The Authors

1. INTRODUCTION

Telemetry is an important field of research and thus,

extensive work can be found on the topic [1] revealing their

benefits for optical networking, including network

automation and failure management ([2-5]). Note that

network digital twins largely rely on telemetry data for

accurate modelling and prediction. For instance, optical

spectra can be obtained from Optical Spectrum Analyzers

(OSA) installed in optical link and be used for the detection

of filter failures [6], whereas in-phase and quadrature (IQ)

constellations can be measured in the optical transponders and

used for anomaly detection [7] and to estimate the distance

traversed by the signal or its Bit Error Rate (BER) [8,9] just

to mention a few.

As Big Data, optical network telemetry data are a collection

of data from many different sources and can be described by

means of a number of characteristics [10], known as the 5 V’s,

standing the five V for volume, velocity, variety, veracity, and

value. Such characteristics can be seen as different tiers of a

pyramid: i) at the bottom of the pyramid, volume refers to the

size and amount of data that needs to be collected and

analyzed; ii) velocity refers to the speed at which data are

collected, stored and managed. Volume and velocity together

impose requirements that need to be carefully considered,

e.g., sometimes it is better to have limited data in real time

than lots of data at a low speed; iii) variety refers to the

diversity and range of different data types and data sources;

iv) veracity is related to the quality, accuracy, and

trustworthiness of data and data sources and it is the most

important factor of all the 5 V’s for business success; and v)

value, at the very top of the pyramid, refers to the ability to

transform data into useful insight.

Several telemetry architectures have been defined in the

literature [11]. In general, telemetry measurements are

collected from observation points in network devices and sent

to a central system running besides the Software Defined

Networking (SDN) controller. This defines a telemetry

pipeline with basically two elements: data collectors that

gather measurements from observation points in devices and

send them to a centralized telemetry system that stores and

processes the received data. That design is based on the

principle of collecting from the network and storing as much

data as possible, in the hope that they can feed network

automation systems, e.g., based on Machine Learning (ML)

[12]. For instance, the authors in [13] present use cases

showing the tight relation between network telemetry and

automation. Their approach is collecting as many

measurements as possible and store them in a centralized data

lake, where ML algorithms can extract insight from data. The

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. DOI 10.1364/JOCN.493347

 2

motivation of such centralized architecture comes from the

fact that the analysis of temporary events can be of great

importance to anticipate degradations and outages [14].

Other telemetry pipelines have been proposed, like

hierarchical ones for scalability purposes. See, e.g., the

tutorial in [15] which details the challenges and requirements

for optical telemetry and streaming. In addition, the authors in

[16] demonstrated a modular telemetry broker for the remote

collection and exchange of telemetry data.

In parallel, events generated by applications/platforms

(e.g., SDN controllers and management systems) can be used

to keep consistency among systems. In fact, an event

streaming mechanism is made available as an alternative to

traditional notifications. The streaming capability is distinct

from Transport API (TAPI) notifications [17] and is designed

to better deal with volume and to provide an improved

operational approach. In this context, any component of the

SDN control plane may act as a source of event telemetry,

which should be transported and distributed unaltered to other

systems in the control and management planes.

As a result of volume, velocity, and variety characteristics

of telemetry data, efficient and flexible mechanisms need to

be considered to convey measurements and events from

network devices and other systems (producers) to consumers,

e.g., in a central location. In this regard, some works (see, e.g.,

[18]) have proposed telemetry architectures using the

generalized Remote Procedure Call (gRPC), a protocol

specifically devised for telemetry, which can reduce data

volume with efficient encodings that compress data.

However, scalability is an issue that needs to be carefully

considered. This is of special importance in disaggregated

scenarios [19], where measurements from several devices can

be collected although a single interface, e.g., gRPC, can be

used to convey all of them to the central location. In this

regard, the SONiC open source network operating system

[20] defines an architecture to decouple hardware of packet

switches from software through abstraction. The architecture

includes a Redis database (DB), which is used as high-

performance communication system for internal components.

SONiC is currently being considered to control packet-optical

nodes [21].

Even though gRPC is very efficient to deal with data

volume, its flexibility is very limited since exchanged

messages need to follow predefined schemas. In view of this,

the authors in [22] proposed and experimentally validated

Apache Kafka data streaming to exchange telemetry data as

simple text messages, which provides the required flexibility

to deal with data variety. In addition, Kafka facilitates the

integration of different data sources.

In this paper, we extend our previous initial work in [23,

24]. Specifically, the contribution of this paper is two-fold: i)

a telemetry architecture is proposed to support intelligent data

aggregation nearby data collection, thus extending the

telemetry pipeline. The main target is to provide a solution

that is able to deal with the 5 V’s of telemetry data, while

providing scalability, efficiency, flexibility, easy integration

of different data sources with a variety of measurements and

events, and facility for turning data into useful insight that can

be used for network automation; and ii) three techniques are

proposed for reducing the dimensionality of telemetry

measurements to deal with volume and velocity. The

techniques are specifically designed for the measurements of

larger size, i.e., optical spectrum and IQ constellations.

The rest of the paper is organized as follows. In Section 2,

we first illustrate with examples the limitation of centralized

telemetry architectures and highlight the requirements that

need to be considered when designing an optical network

telemetry system. Next, in Section 3, we propose our

telemetry architecture supporting intelligent data aggregation.

In Section 4, we propose three dimensionality reduction

techniques: i) supervised feature extraction (FeX); ii) data

compression; and iii) data summarization. Section 5 provides

illustrative results from an experimental setup of the proposed

telemetry architecture that extends [25]. The focus is on

demonstrating how the techniques in Section 4 effectively

reduce telemetry data dimensionality, while dealing with

variety and veracity and maximizing value. Finally, Section 6

draws the main conclusions of this work.

2. MOTIVATION

Let us illustrate each of the 5 V’s with an example of the

optical core network for a national telecom operator. Let us

assume a core mesh network with 50 optical nodes, with

average nodal degree of 3. Imagine that each node is

connected with any other node in the network through one

single optical connection (lightpath). Then, the network

supports 2,450 unidirectional lightpaths and needs the same

number of transmitters (Tx) and receivers (Rx). Finally, let us

assume that we can collect telemetry data from Tx, Rx,

Optical Amplifiers (OA) in the nodes that compensate for

filtering and fiber attenuation (i.e., 300 OAs in total), and

from OSAs installed in every optical link in the network (i.e.,

150 OSAs in total). For illustrative purposes, Table 1

summarizes the measurements that can be collected from

every device and its estimated size. See [13] for a more

exhaustive list of measurements that can be collected from

real equipment and [26], where the authors analyze metrics

for evaluating system performance and mechanisms of

various optical impairments.

Volume: Let us assume that the measurements in Table 1

are collected every second. Then, the network described

above generates 15.64 terabyte (TB) of data every day, i.e.,

5.58 petabytes (PB) every year, that need to be collected,

conveyed to the centralized telemetry system, stored in a data

lake, and analyzed.

Velocity: Collecting measurements every second imposes

additional requirements related to data collection from the

devices and its transport to the centralized telemetry system.

Starting with the optical devices, those generating

measurements of large size (i.e., OSAs and optical receivers)

 3

Table 1. Illustrative Optical Measurements

Device Measurements Size (bytes)

Tx • Laser params, e.g., temperature.

• Configuration, e.g., modulation

format and symbol rate.

20

20

Rx • Optical constellation (e.g., 10,000

IQ symbols).

• Receiver parameters, e.g., BER,

signal to noise ratio, etc.

80,000

40

OA • Input power, gain, etc. 20

OSA • Optical spectrum (4.8 THz C-

band, resolution 1 GHz).

19,200

need high-speed data interfaces. E.g., OSAs would require

150 kb/s interfaces, while Rx would require 640 kb/s

interfaces. These speeds are assuming that measurements are

generated as a stream of floating-point numbers, although

such measurements, once collected, are usually formatted,

e.g., as a JSON object, which increases its size. In the

example, every node agent collecting local telemetry data,

formatting data and sending them to the centralized telemetry

system, would generate around 40 Mb/s, so the centralized

system would receive 1.9 Gb/s of telemetry data in total.

Variety: Six structured measurements are defined in Table

1, which consist of tuples of individual magnitudes to vectors

of related values. Additionally, also events and other

unstructured data from different systems are collected, which

require totally different processing. All these different data

types need to be processed, analyzed and correlated in real

time. For instance, analysis of spectrum measurements from

nodes in the route of a lightpath, together with analysis of IQ

constellations in the Rx can be used to identify and localize

the cause of a sudden increase of the BER measured in the Rx.

Veracity: Right decisions are made with thorough and

correct information. Data can only help if it is clean, i.e., it is

accurate, error-free, reliable, consistent, bias-free, and

complete. Some factors that contaminate data are, among

others: i) meaningless information that distorts the data; ii)

outliers that make the dataset to deviate from the normal

behavior; iii) software vulnerabilities that could enable data

hijacking; and iv) statistical data that misrepresents a

particular network resource.

Value: Telemetry data can bring large benefits for network

automation but only if they are converted into useful insight.

Operators can capture value from telemetry data by: i)

reducing network margins; ii) automating service

provisioning; iii) improving resource utilization and reducing

operational costs; iv) extending the working life of network

equipment; v) detecting soft-failures before they become hard

failures; vi) simplifying maintenance by finding root cause of

failures and scheduling works; and many others.

Let us challenge some of the previous assumptions aiming

at bringing requirements to the telemetry architecture: 1)

Different measurements should have different collection

periodicity, which can be variable, or even being collected

asynchronously. For instance, Tx are configured at

connection setup time or upon some event, and the

temperature of the laser would not significantly change that

fast; 2) In general, it is not useful to store all the measurements

when no significant changes happen. However, to determine

whether a significant variation in a measurement has happen,

some analysis needs to be carried out, and that should be done

earlier in the telemetry pipeline, e.g., at the node level, to

reduce volume of data being conveyed to the centralized

telemetry system; 3) Compression techniques, which can be

either lossy or lossless, can be explored to reduce bandwidth

requirements; 4) From the two previous issues, telemetry

systems should be somehow decentralized. Some processing

and data analysis might be needed at the node level. However,

such analysis might be orchestrated by some entity running at

a centralized level, which can have global network vision; 5)

Data veracity should be checked along the telemetry pipeline

and it should be discarded from the main pipeline whenever

there is evidence that such data is somehow contaminated. For

instance, a sample that does not follow statistically last

measurements can be either an outlier or an anomaly.

However, the detection point can be local, e.g., if it refers to

the gain of an amplifier, or conversely, it needs to be in the

centralized system, e.g., if it requires correlation with other

measures, e.g., in the case of spectrum measurements in the

route of a lightpath; 6) Value should be extracted from data as

soon as possible in the telemetry pipeline. E.g., we should not

wait to detect degradations from the data collected from a

network node in the centralized telemetry system, if this can

be done directly in the node. However, sometimes, it is

necessary to perform correlation among data collected from

different network nodes to extract value from data.

In conclusion, to reduce the impact of the 5 V’s,

intelligence can be applied along the telemetry pipeline,

which needs to be extended with new elements where

telemetry measurements can be processed.

3. PROPOSED TELEMETRY ARCHITECTURE

In this section, we introduce our proposed unified telemetry

architecture supporting both telemetry events, as well as

distributed intelligence along the telemetry pipeline for

telemetry measurements.

Fig. 1 presents the reference network scenario, where an

SDN architecture controls a number of optical nodes,

specifically optical transponders (TP) and reconfigurable

optical add-drop multiplexers (ROADM) in the data plane.

Note that the SDN architecture might include a hierarchy of

controllers, including optical line systems and parent SDN

controllers [27]. A centralized telemetry manager is in charge

of receiving, processing, and storing telemetry data in a

telemetry DB, which includes two repositories: i) the

measurements DB is a time-series (TS) DB that stores

measurements; and ii) the events DB is a free-text search (FT)

engine. In addition, telemetry data can be exported to other

external systems, e.g., through Kafka. Some data exchange

between the SDN control and the telemetry manager is

needed, e.g., the telemetry manager needs to access the

 4

Telemetry Manager

TP

Node
agent

SDN control
Architecture

Node
agent

Node
agent

TP

Node
agent

M M M M
Optical Network

E

DeviceDevice
Optical
Node

M

Telemetry
agent

AdapterData Source
Adapter

Data
Storage

SDN
agent

Node agent

AI

Measurements
DB

Events DB

Telemetry DB

Pub/sub DB

Interface

Telemetry
Agent

Telemetry
Adaptor

Data Source

Node Agent
Agent

Manager
Interface

eInterface

AlgorithmProcessing
Algorithm

Data
Source

Security
Manager

Fig. 1. Overall network and proposed telemetry architecture. Fig. 2. Telemetry agent architecture

Data
ProcessingRedis

gRPC
Interface

Telemetry
Agent

gRPC
Interface

Telemetry Manager

Data
Processing

DB
Interface

Telemetry
DB

Telemetry
Adaptor

Other
Telemetry
InterfacesSDN

Control

2
4

6
7

Data
Source

Node Agent

gRPC

10

5

9

3

1

8

Fig. 3. Illustrative workflow.

topology DB describing the optical network topology, as well

as the label-switched path (LSP) DB describing the optical

connections (these DBs are not shown in Fig. 1 for the sake

of simplicity).

Every node in the data plane is locally managed by a node

agent (see some internal details in Fig. 1). The node agent

translates the control messages received from the related SDN

controller into operations in the local node. In addition, the

node agent includes data source adaptors that collect

measurements from observation points (labeled M) enabled in

the optical nodes or in specific optical devices, like OSAs, as

well as a telemetry agent that processes and exports telemetry

data to the telemetry manager. In addition, events can be

collected from applications and controllers (labeled E).

The internal architecture of telemetry agents inside node

agents is presented in Fig. 2, which consists of five main

components: i) a manager module configuring and

supervising the operation of the rest of the modules; ii) a

security manager in charge of security aspects, like key

management; iii) a number of algorithms for data processing

that include dimensionality reduction and data veracity

checking; iv) a number of interfaces, e.g., gRPC, to

communicate with other systems. Additionally, interfaces

take care of the security of telemetry data, e.g., to ensure data

privacy, authentication, and integrity; and v) a Redis DB that

is used in publish-subscribe mode to communicate the

different modules among them, i.e., no direct communication

is allowed. This facilitates the definition of specific

workflows for telemetry data and provides an agile, reliable,

and secure environment that simplifies communication, as

well as integration of new modules.

Data sources can be integrated in two different ways: i)

internal data sources, i.e., those that are deployed inside the

node agent, can access the Redis DB directly to publish new

telemetry data (measurements or events); ii) external data

sources are connected to the telemetry agent through a

dedicated interface (e.g., based on gRPC). Only trusted peers

are allowed to connect externally to the telemetry agent. A

gRPC interface is used for the telemetry agents to export

telemetry to the telemetry manager, as well for the telemetry

manager to tune the behavior of algorithms in the agents.

The internal architecture of the telemetry manager is the

same that the one for the agents. The difference between them

is on the algorithms and the interfaces that they run. E.g., the

telemetry manager includes interfaces to the telemetry DBs

and to export data to external systems.

Let us describe now a typical telemetry workflow that fits

for a wide range of use cases by means of the illustrative

example presented in Fig. 3. Data sources gather

measurements from the optical devices; the collected raw data

is received by the telemetry adaptor (labeled 1 in Fig. 3) that

generates a structured JSON object, which is then published

in the local Redis DB (2). The periodicity for data collection

can be configured within a defined range of values. A number

of algorithms can be subscribed to the collected

measurements (3). Note that in the case of events, workflows

do not include data processing algorithms. In this example, let

us assume that only one algorithm is subscribed, which

processes the measurements locally. Such processing might

include doing: i) some sort of data aggregation, FeX or data

compression; or ii) some inference (e.g., for degradation

detection) with no data transformation. The output data

(transformed or not) are sent to a gRPC interface module

through the Redis DB (not shown in the figure) (4), which

applies some sort of data security, like encryption or digital

signature using keys provided by the security manager, and

then, the data are sent to the telemetry manager. Because

gRPC requires a previous definition of the data to be

conveyed, our implementation defines a unique message of

type bytes, which allows generalization of the telemetry data

to be conveyed. Note that, although such encoding could

largely increase the volume of data to be transported,

intelligent data aggregation performed by telemetry agents

 5

I

Q

3i

1i

-1i

-3i

-3 -1 1 3

X=[<xI,xQ>]

fc_sig f2_sig

µ, σ

N
o

is
e

Si
gn

al

f1_slot fc_slot

f1_sig

f1_dB f2_dB

f1_nσ f2_nσ

fc_dB

fc_kσ

fc Δf

f2_slot

S=[<f,p>]

(a)

I

Q

3i

1i

-1i

-3i

-3 -1 1 3

(b)

ΦS

ΦX

Fig. 4. Optical spectrum (a) and IQ constellation (b) samples and FeX.

could reduce such volume to a minimum.

In the telemetry manager, the data are received by a gRPC

interface module. Any message received by an interface

module in the telemetry agent/manager is first checked to

validate that the source is a trusted peer and then, the data are

decrypted or the sender is authenticated and verified data

integrity. Next, a set of rules are applied to decide the

workflow(s) that that message will follow. Rules play an

important role for dynamically modifying workflows while

affecting the related modules to that workflow only. Received

messages are published to a specific topic in the Redis DB

depending on the rule they matched, so subscribed modules

can receive them. The data is afterward received by a data

processing algorithm (5). Such algorithms in the telemetry

manager can implement functions related to data aggregation,

inference, etc. Once processed, the output data (6) can be

stored in the telemetry DB (7) (measurements are stored in the

Measurements DB and events in the Events DB) and/or be

exported to external systems (8). Interestingly, algorithms in

the telemetry manager can communicate with those in the

telemetry agents using the gRPC interface (9, 10), e.g., for

parameter tuning.

4. INTELLIGENT DATA AGGREGATION FOR
DIMENSIONALITY REDUCTION

In this section, we introduce techniques to greatly reduce

the impact of both volume and velocity of telemetry data. In

particular, we analyze: i) supervised FeX; ii) data

compression using autoencoders (AE); and iii) data

summarization using the arithmetic mean of a number of

observations obtained when variation is stable. We focus on

two examples of telemetry measurements, optical spectrum

and IQ constellations from a m-QAM signal, which are by far

the cases where collected samples are larger.

A. Supervised feature extraction

A simple but effective dimensionality reduction technique

x1
I

x1
Q

…
xn

I

xn
Q

x*1
I

…
x*n

I

x*n
Q

x*1
Q

Encoder Decoder

Telemetry Agent Telemetry Manager

X Z X*

x1
I

x1
Q

…
xk

I

xk
Q

AE

Encoder

X

Decoder

x*1
I

…
x*n

I

x*n
Q

x*1
Q

X*Z
Map

&
Count

Telemetry Agent

y1

…
y2

yp

Re-
Sample

y*1

…
y*2

y*p

Telemetry Manager

AE

(b) Grid Input

(a) Raw Input

Fig. 5. IQ constellation sample compression using autoencoders.

is supervised FeX. This technique is intended to generate the

set of features Φ(M) that characterize a measurement sample

M. As an example of Φ, in our previous work in [4], we

proposed a module to pre-process the optical spectrum of a

signal, i.e., an ordered list S of frequency-power pairs, i.e.,

S=[<f, p>] (see Fig. 4a). After equalizing power, the module

characterizes the mean (μ) and the standard deviation (σ) of

the power around the central frequency (fc Δf), as well as a

set of primary features computed as cut-off points of the

signal with the following power levels: i) equalized noise

level, denoted sig (e.g., -60dB + equalization level); ii) a

family of power levels computed with respect to μ minus nσ,

denoted nσ (e.g., 3 and 5σ); and iii) a family of power levels

computed with respect to μ minus a number of dB (e.g., -3 and

-6 dB), denoted dB. Each of these power levels generates a

couple of cut-off points denoted f1(·) and f2(·). In addition, the

assigned frequency slot is denoted f1slot, f2slot. Then, the input

list with 75 <f,p> pairs representing the spectrum of a 75GHz

channel is processed to generate a set ΦS with 13 features that

can be easily transformed into value, e.g., for failure detection

and identification, in the telemetry agent or the manager.

Another example is for IQ constellations, where we assume

that the observation point is in a TP that gathers the received

optical symbols of a m-QAM signal. The related data source

periodically retrieves a constellation sample X (a sequence of

k IQ symbols as represented in Fig. 4b for a 16-QAM signal)

and publish it in the local Redis DB. In our previous work in

[28], we applied Gaussian Mixture Models (GMM) [29] to

characterize each constellation point of an optical

constellation sample as a bivariate Gaussian distribution.

Therefore, each constellation point i is characterized by 5

features, the mean position in I and Q axes [µI,µQ], as well as

the I and Q variance and symmetric covariance terms that the

symbols belonging to the constellation point i experience

around the mean [σI,σQ,σIQ]. Therefore, for a m-QAM signal,

a set ΦX with m*5 features need to be propagated from the

telemetry agent to the manager.

B. Data compression

Let us now focus on intelligent telemetry data compression

performed at telemetry agents before data are sent to the

 6

telemetry manager through the gRPC interface. In this

subsection, we target the compression of IQ constellations,

since every sample X might include a large number of

symbols, i.e., complex numbers. Note that the proposed

compression method is compatible with any data serialization

and compression engine [30] built on the gRPC interface,

which applies additional compression to any data being sent,

including raw samples and features.

In our previous work [28], we proposed using AEs for

intelligent IQ constellations compression. An AE is a type of

neural network with two components: the encoder, which

maps input data into a lower-dimensional latent space, and the

decoder, which gets data from the latent space and

reconstructs the original data back. Once trained, the AE

proposed in [28] takes as input k IQ symbols from the received

constellation sample X, i.e., [x1
I, x1

Q,… xk
I, xk

Q] and generates

latent space Z=[z1, …, zL], where the size of Z is significantly

lower than that of X (see Fig. 5a). Although such approach

(hereafter, referred to as raw input) shows remarkable

performance in terms of compression rate and average

reconstruction error, it requires IQ constellations to contain a

fixed number of symbols and the same proportion of symbols

per constellation point. In addition, the size of both input and

output layers and consequently, the complexity of the AE,

depend on the number of symbols. This lack of flexibility

reduces noticeably the applicability of this approach.

In order to overcome the aforementioned issues, in this

paper we propose an alternative AE-based IQ constellation

compression method (hereafter referred to as grid input),

which is sketched in Fig. 5b. Firstly, the whole IQ

constellation is split into p regular grid cells, where each cell

covers a small quadrant of the IQ constellation. Then, the

input sample X is processed to generate vector Y=[y1, y2,…,

yp] containing the count of symbols that fall into each grid

cell. Note that the length of Y only depends on p, which

represents the resolution of IQ constellation pre-processing.

Therefore, once p is fixed, the AE is trained to compress and

reconstruct Y, which enables the AE to compress samples with

different number of symbols and variable proportion of

symbols per constellation point.

In consequence, the algorithm module in the telemetry

agent runs both the map and count and the encoder, and

exchanges Z for every input sample X with the decoder

running in the telemetry manager through the gRPC interface.

The algorithm in the telemetry manager uses the decoder to

reconstruct the count of symbols in each grid cell (Y*) and

then, generates X* by re-sampling Y*, i.e., the number of

symbols in each grid cell is generated by randomly choosing

I and Q components within the range of the grid cell. Once

generated, the sample X* is stored in the telemetry DB to be

subsequently analyzed. Note that reconstruction can be

performed also in the telemetry agent, e.g., for veracity

checking purposes, like detecting outliers and/or anomalies.

Algorithm 1. Data Summarization
INPUT: Φ

OUTPUT: send, Φ’

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

out ← False

for each φ ∈ Φ do

if φ.value < R[φ.id].low OR φ.value > R[φ.id].high then

out ← True

H[φ.id].update(φ.value)

Φavg[φ.id] ← avg(H[φ.id])

R[φ.id].low ← Φavg [φ.id] - α· std(H[φ.id])

R[φ.id].high ← Φavg [φ.id] + α· std(H[φ.id])

if out = True then

count ← 0

return True, Φ

count ← count + 1

if count = maxcount then

count ← 0

return True, Φavg

return False, -

Algorithm 2. Main Procedure
INPUT: sample

OUTPUT: res

1:

2:

3:

4:

5:

6:

7:

Φ ← FeX(sample)

send, Φ’ ← summarization(Φ) (Algorithm 1)

if send = False then return ∅

if isIQ(sample) = True then

Z ← compression(sample)

return {Φ’, Z}

return {Φ’, sample}

C. Data Summarization

In the two previous techniques, telemetry data are

propagated from the observation point to the telemetry

manager with the same frequency, i.e., every time a new

sample M is collected from the observation point, a subset of

data representing it is generated and conveyed to the telemetry

manager. Assuming a high collection frequency, this policy

entails large volume of data being conveyed. However, this is

not needed in general in normal conditions. Hence, we could

measure variations in the computed features to decide whether

a new sample M or a representation of it needs to be sent to

the telemetry manager. In case of no significant variations are

found, the telemetry agent can send averaged values of the

features with a much lower frequency, thus reducing the

volume of telemetry data being conveyed.

Algorithm 1 presents the proposed data summarization

procedure. The algorithm receives the set of computed

features Φ and returns whether features need to be sent

(Boolean variable send) and if needed, the set of features Φ’

that can be either those received as input or averaged ones. To

that end, the algorithm maintains and updates the following

internal data, which are assumed to be initialized beforehand:

i) H is a time series database containing the last w values of

each feature; ii) Φavg, with the average value of the features

stored in H; iii) R, with the range of variation of each feature,

computed as Φ’ (+/-) α times the standard deviation of values

in H; and iv) count, with the number of consecutive telemetry

periods where all features remain within the range R. Besides,

maxcount defines the interval to convey averaged features.

 7

Before starting with feature analysis, we assume that all

features will stay within the range defined in R, by setting

auxiliary variable out equal to False (line 1 in Algorithm 1).

Then, input set Φ is firstly processed to find any feature that

is out of the range R. If so, out is set to True (lines 2-4). After

this, H, average features Φavg, and range R are updated

accordingly (lines 5-8). Once all features have been

processed, the output of the algorithm is prepared, which leads

to three different cases. In case that at least one feature is out

of range, count is reset and the input features Φ are returned

(lines 9-11). Otherwise, count is increased and, if maxcount is

reached, it means that a period of low frequency collection has

been achieved, so count needs to be reset to 0 and averaged

features Φavg are returned (lines 13-15). Note that in both

previous cases, send is True in order to indicate that features

must be conveyed. However, if all features are within the

range and maxcount is not reached, then there is no need to

convey any feature from agent to manager (line 16).

Algorithm 2 shows the main process that needs to be

performed every time a new measurement becomes available

at the telemetry agent. The output of this algorithm is the data

that needs to be conveyed through the gRPC interface to the

telemetry manager. Note that the result can be empty, i.e., no

data need to be conveyed. The first step is to compute features

Φ(·) from the input sample (see Section 4.A) (line 1 in

Algorithm 2). Then, the data summarization procedure

(Algorithm 1) is executed and, in case that there is no need to

send data, empty set is returned (lines 2-3). Otherwise, if the

sample is an IQ constellation, the AE-based compression

detailed in Section 4.B is applied, and both the features after

data summarization (Φ’) and latent space (Z) are returned

(lines 4-6). On the contrary, i.e., if no compression is needed,

e.g., the sample is an optical spectrum, features Φ’ and

original sample are sent (line 7).

5. ILLUSTRATIVE RESULTS

In this section, we first present the telemetry scenario used

to obtain the results and the data sources that generate

telemetry measurements. Next, we focus on FeX and data

compression, determine the size of the telemetry

measurements at the different stages and find the compression

ratios obtained with the different techniques. The

performance of data summarization is then analyzed and

illustrative examples are eventually presented.

A. Scenario

The telemetry system runs in 4 virtual machines (VM)

deployed in an infrastructure using OpenStack as virtual

infrastructure manager and Ubuntu Server 22.04 LTS as

operating system (see Fig. 6). All the software, including the

manager, algorithms, interfaces and the telemetry adaptor,

have been implemented in Python and are executed using

Python 3.10.4. Every telemetry agent and the manager with

their respective Redis DB instances run inside Docker

containers and are deployed using Docker Compose.

Constellations
Data Source

Telemetry

Agent-1

VM-01

Spectrum
Data Source

Events Data
Source

Telemetry

Agent-2

VM-02

Telemetry

Manager

VM-03 VM-04

M EM

Fig. 6. Experimental deployment.

{

"X": [[-3.08519822419515, 2.98467451952321],

:

[2.96258763128303, 2.97984558299648]]

}

{

"Z": [2.732774257,

:

0.172829926]

}

4c

2b

{

"Φx": [[-2.971842458,2.971601309,0.004633636,...0.004507746],

:

[-2.941472597,2.931215828,0.113045212,...0.121031438]]

}

4b

{

"S": [[195626, -33.45],

:

[195675, -34.01]]

}

2a

{

"fc": 195650, "f1": 195626, "f2": 195675,

"mu": 0, "stdev": 0.3,

...

}

4a

Fig. 7. JSON representations of received (2) and processed (4) samples.

Containerized versions of Influx DB 2.4.0 as measurements

DB and of Elasticsearch 8.3.3 as Events DB, are deployed. To

visualize data, Grafana 9.1.1 and Kibana 7.14 both running in

Docker containers are used for telemetry measurements and

events, respectively. In addition, a Web UI that offers a

general view of telemetry system has been implemented in

Python using Django 4.1.

Three data sources have been developed. Representation of

the JSON objects are shown in Fig. 7 identified with the same

label as the related message in Fig. 3 for the sake of clarity.

The spectrum data source emulates spectrum samples

collection from an OSA. The OSA measures the whole C band

(4.8 THz) and an algorithm processes the measurement and

selects the spectrum for each channel separately. Therefore,

each measurement S for the spectrum of a 75GHz channel

consists of a list of 75 <f,p> pairs, i.e., 600 bytes assuming 32-

bit scalars. The telemetry adaptor in the data source publishes

samples S encoded as JSON objects of size 1,207 bytes (2a in

Fig. 7).

The constellations data source emulates IQ constellation

samples collection from an observation point in a TP. The

openly available dataset in [31] have been used to get

constellation samples of lighpaths with length ranging from

80km to 2000 km. Specifically, two sizes of constellation

samples X are considered, containing k=2,048 and k=10,000

symbols, respectively from a 16-QAM optical signal. The size

of each raw sample X in a scalar representation is 2×k×4, i.e.,

16,384 bytes and 80,000 bytes, assuming that every symbol is

represented with two scalars (I and Q). The telemetry adaptor

publishes raw samples X encoded as JSON objects (2b in Fig.

7) of size 75,783 and 370,007 bytes, respectively.

 8

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 10 20 30 40 50 60 70

p [K units]

R
el

at
iv

e
Er

ro
r

p = 36,864

19
2

192

48

48

Fig. 8. Resolution Evaluation

Table 2. AE parameters and performance

AE

Approach

Input

Neurons

Hidden

Neurons Z MSE Accuracy

Type

Raw Input 20,000 500 ReLu 32 2e-2 86%

Grid Input 36,864 500 ReLu 32 4e-5 95%

Finally, the events data source reproduces TAPI entities,

i.e., YANG sub-trees, generated by an SDN controller

reporting asynchronous events that happen in the network.

Each event has different size, being 40,000 bytes long on

average.

The implemented gRPC interface removes spaces and

serializes JSON objects into byte streams using the Python’s

pickle module, which can be deserialized to obtain the same

object. Additionally, the gRPC interface implements security

using Transport Layer Security (TLS), which encrypts the

end-to-end communication between telemetry agents and the

manager. On top of that, the gRPC interface applies the Gzip

compression algorithm to each received message aiming at

reducing even more the amount of data being transmitted.

B. Feature extraction and data compression

Intelligent data aggregation algorithms have been

implemented in Python and deployed in the telemetry agent

and manager for the techniques detailed in Section 4.

In the case of supervised FeX from the optical spectrum of

a lightpath, the algorithm in the telemetry agent generates

features ΦS in a JSON object with 184 characters (4a in Fig.

7), which is then serialized before being conveyed through the

gRPC interface. As for IQ constellations, the algorithm in the

telemetry agent applies GMM fitting to every constellation

sample X received and generates features ΦX encoded as a

JSON object with 1,000 characters (4b in Fig. 7).

Regarding data compression using AEs, the raw input

approach in Fig. 5a was numerically evaluated in [28] using

IQ constellation samples of reduced size (2,048 symbols). It

was shown that the maximum compression that produces

negligible reconstruction error results in vectors Z of size 32.

Then, we now focus on comparing raw input and grid input

approaches for IQ constellation samples of larger size (10,000

symbols), which provide much accurate information of the

optical signal.

Table 3. Size of telemetry measurements (bytes)

Measurement Scalar
JSON

(Fig. 7)
Serialized &

Gzip
Gzip compr.

ratio

S (75 GHz) 600 1,207 403 3.0

S (4.8 THz) 38,400 76,807 19,773 3.9

X (2,048 symb.) 16,384 75,783 35,485 2.1

X (10k symb.) 80,000 370,007 168,677 2.2

Φs (13 featu.) 52 184 105 1.8

Φx (5x16 featu.) 320 1000 519 1.9

Z (32 values) 128 391 248 1.6

Table 4. Compression ratios from collection to gRPC

Measurement w/o process FeX AE

S (75 GHz) 1.5 5.7 -

X (2,048 symb.) 0.5 31.6 66.1

X (10,000 symb.) 0.5 154.1 322.6

In the case of grid input approach, we need to firstly

determine the resolution p that allows an accurate

representation of the original constellation (see Section 4.B).

To this aim, we executed the map and count and resample

blocks in Fig. 5b (without AE) and compared the supervised

features described in Section 4.A of both original and

reconstructed constellations as fair measurement of fidelity.

Fig. 8 shows the relative error of the extracted features as a

function of parameter p. We observe negligible error (~1%)

for p > 35,000. In view of this, we selected p = 36,864, which

entails splitting the IQ constellation in a 192x192 grid i.e.,

each of the 16 constellation points is mapped on a 48x48 grid

(see the inner graph in Fig. 8).

Table 2 shows the configuration and performance of raw

input and grid input approaches after training AEs with 2,000

samples from lightpaths ranging from 80km to 2,000km

during 1,000 epochs. The two selected evaluation metrics are:

i) the loss in terms of mean squared error (MSE) computed

with a validation dataset containing 500 samples not used

during training; and ii) the reconstruction accuracy. For the

sake of a fair comparison, the latter has been computed by

applying the map and count block to both original and

reconstructed constellations (regardless of the AE approach)

and computing the accuracy on reconstructing the count in

each grid quadrant. In light of the noticeable results, we

conclude that the proposed grid input approach allows not

only a better reconstruction than the raw input one, but also it

achieves negligible reconstruction error when compressing

10,000 symbols into 32 latent space features. Such vectors Z

of size 32 are output as JSON objects (4c in Fig. 7), resulting

in 391 characters in total for the JSON object.

C. Size and data rate analysis

Let us now study the size and data rate of the different

telemetry measurements. Table 3 shows the size of every

telemetry measurement at their different stages: i) scalar

representation, i.e., using float, integer and string data types;

ii) JSON object using text; and iii) JSON object serialization

and gzip compression. The compression ratio achieved by

gzip is also presented as reference, where we observe that gzip

 9

0

50

100

150

200

250

300

0 2 4 6 8 10

S (4.8THz)

X (10,000)

115200 b/s

0

5

10

15

20

25

0 10 20 30 40 50 60

S (4.8THz)
X (2,048)
X (10,000)
9600 b/s

C
o

lle
ct

io
n

 D
at

a
R

at
e

(k
b

/s
)

14s 32.8s

Telemetry Period (s)

2.75s 6s

(b)

(a)

 Telemetry Period (s) Telemetry Period (s)

gR
P

C
D

a
ta

 R
a

te
 (

kb
/s

)

D
a

ta
 R

a
te

 (
kb

/s
)

(a)
(b)

0

10

20

30

40

50

0 10 20 30 40 50 60

S (75GHz)

X (10,000)

X (2,048)

S (4.8THz)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60

ΦS

ΦX

Z

Fig. 9. Collection rate vs telemetry period. Fig. 10. gRPC data rate after serialization and gzip w/o processing (a) and using FeX/AEs (b).

Table 5. Processing times in telemetry agents (ms)

Measurement w/o process FeX AE

S (75 GHz) 3 4 -

X (2,048 symb.) 4 24 12 (raw)

X (10,000 symb.) 16 243 162 (grid)

reduces the size of the JSON objects in the order of 2-3 times.

Table 4 shows the achieved compression ratio from the size

of the collected measurement (scalar) to the size of the

serialized and compressed byte stream being conveyed

through the gRPC interface, when: i) the measurement is sent

unprocessed; ii) when features are extracted and sent; and iii)

when the AE is used to generate the latent space to be sent

(only in the case of optical constellations). In general, the

reduction of the size when processing is carried out is higher

when the size of the collected measurement is high, ranging

between 5.7 and 322 times. In addition, we observe larger size

reduction when AEs are used as compared to FeX. Finally, we

observe that if no processing is performed, using compressed

JSON objects for the gRPC interface results in increased size

of telemetry measurements. In this case, binary serialization

of the scalar measurement would be a much better option.

Let us analyze the requirements of the data interface of the

optical devices and their relation to the telemetry period. Fig.

9 presents the telemetry collection data rate when the

telemetry period ranges from 1s to 1min for samples using

scalar values. Assuming a maximum data rate for telemetry

collection of 9600 b/s (e.g., for a typical serial interface), the

minimum telemetry period for optical constellations with

2,048 symbols would be around 14 sec (Fig. 9a). That period

increases to over 32 sec in the case of the spectrum for the

whole C band, and over 1 minute in the case of optical

constellations with 10,000 symbols. A reduced collection

period increases the speed of the interface, e.g., 21.3 Kb/s are

needed to collect 10,000 symbols every 30 sec. To reduce the

telemetry collection period, higher speed interfaces are

needed. E.g., with a 115200 b/s serial interface (Fig. 9b), the

telemetry period reduces to 2.75 sec in the case of the

spectrum for the whole C band, and to 6 sec for optical

constellations with 10,000 symbols.

Once the samples are collected, let us analyze the data rates

generated through the gRPC interface when the serialized and

gzip compressed measurements are conveyed (Fig. 10). In

Fig. 10a, we observe that sending unprocessed samples results

in large data rates. E.g., assuming a telemetry period of 30 sec

N
o

rm
a

liz
ed

 D
at

a
V

o
lu

m
e

α

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

Aggregation period (min)

0%

20%

40%

60%

80%

100%

0 3 6 9 12 15 18 21 24 27 30

IQ Constellation
Spectrum

(a)

(b)

Fig. 11. Data summarization performance

results in data rates as high as 45 kb/s in the case of optical

constellations with 10,000 symbols, which reduces to 9.5 kb/s

when the constellations have 2,048 symbols only. In the case

of the optical spectrum of a single channel, the generated data

rate is low because of the coarse resolution of the OSA. In Fig.

10b, the generated data rate when FeX or AEs are used to

reduce the dimensionality of the telemetry measurements is

shown. In this case, data rates as low as 138 / 66 b/s are

generated when FeX / AEs are used to process the received

constellation samples.

In the example in Section 2 for a network with 50 nodes

and considering constellation and spectrum measurements

only, the network would generate 541 GB of data every day

when samples are sent to the centralized repository every 30

sec in their scalar format, i.e., 192.89 TB per year. This

reduces to 3.74 GB per day, 1.33 TB per year, when telemetry

measurements are processed by the algorithms in the

telemetry agents.

Table 5 presents the processing times in the telemetry agent

for each sample as a function of the type of processing,

including when only the format of the sample is changed,

when features are extracted and when the encoder is used for

data compression. Note that in the case of AE, additional time

is needed for the decoder to reconstruct the samples, which

takes the same time as the encoder. We observe relatively

short processing times, which increases with the size of the

input sample. This indicates the low complexity of the

proposed algorithms. In fact, in our tests, two cores of an Intel

 10

Time (hh:mm)

30 sec period 10 min period10 min period

Time (hh:mm)

10 min period

(a)
f1_6dB

f1_3dBσ_I

σ_Q

30 sec period 10 min period

(b)

Fr
eq

. O
ff

se
t

(G
H

z)

-31.8 Freq. Offset (GHz)

IQ
 V

ar
ia

n
ce

Freq. Offset (GHz)
-30.85

Fig. 12. Example of data summarization for constellation samples. Visualization in Grafana.

Fig. 13. Event visualization in Kibana

i7 processor were able to extract features of 5 constellations

samples with 10,000 symbols per second. Note that although

such computing resources need to be available in every

network location, their cost is more than compensated by the

reduction in the volume of data that would otherwise require

to be sent to the central processing system.

Finally, when messages arrive at the telemetry manager

through the gRPC interface, they follow specific processing.

In the specific case of the latent space Z, it is used as input to

the decoder that generates samples X*. To compare the results

of FeX to those from the AE, the algorithm in the telemetry

manager, samples each distribution to obtain IQ constellations

samples with k symbols and stores them in the DB.

D. Data summarization

Telemetry data rate can be further reduced by

implementing data summarization on the extracted features

(Algorithm 1), which can be sent with a larger period in case

no significant changes occur. Algorithm 1 has been evaluated

for both IQ constellation using samples with 10,000 symbols

and 75 GHz optical spectrum samples from a lightpath of

1,000 km operating under normal conditions. Fig. 11a shows

the data volume sent by the telemetry agent to the manager as

a function of parameter α. Data volume is normalized to the

no summarization case, i.e., data is sent every collection

period (30 sec). We observe that configuring α=4 allows

achieving remarkable summarization (<10% of total

telemetry measurements) for both IQ constellations and

optical spectrum samples. In addition, Fig. 11b shows the

impact of the aggregation interval after fixing α=4. As a result,

we conclude that an aggregation interval of 10 min, i.e., w=20

Table 6. Processing time and telemetry measurements volume

Scalar

(30 sec)

FeX + AE

(30 sec)

Summarization

(30 sec / 10 min)

E2e processing

time (S)
6 ms 6 ms 1 ms (+ FeX + AE)

E2e processing

time (X)
32 ms 583 ms 7 ms (+ FeX + AE)

Measurements

(day)
541 GB 3.74 GB 0.21 GB

Measurements

(year)
192.89 TB 1.33 TB 78 GB

telemetry measurements collected every 30 seconds, achieves

the largest data summarization observed in Fig. 11a. Note that

10 min is an enough short period to adapt to smooth variations

without the need of sending finer telemetry data.

Fig. 12 shows the measurements that are finally stored in

the Measurements DB for a lightpath of 80 km. The plots are

extracted from visualization panels in Grafana. For illustrative

purposes, we synthetically induced a gradual degradation of

the lightpath (length increase) that causes variation (large

dispersion) on the received IQ constellations. Fig. 12a plots

the evolution of σI and σQ features for constellation point (-

3+3i); before and after constellations stored in the Telemetry

DB are also shown. Data summarization reduces the telemetry

period to 10 min until the value of the features increases

significantly due to the induced degradation, when it increases

the telemetry period to equal the collection period. This

behavior facilitates algorithms in the telemetry manager to

detect the degradation as fast as possible. Once the value of

the features stabilizes again, the telemetry period is

automatically increased back. Next, the reference lightpath

suffers a filter shift of 1 GHz in some ROADM along its route,

which causes variation on the measured spectrum. Fig. 12b

plots the evolution of f13dB and f16dB features. Data

summarization adapts the telemetry period as needed to

follow the variations in the features, while reducing the

volume of measurements that are sent.

Finally, to assess the support of variety of telemetry data on

the proposed telemetry architecture, Fig. 13 shows a capture

of Kibana with some TAPI events generated by an SDN

controller and injected through telemetry agent 2 (see Fig. 6).

 11

6. CONCLUDING REMARKS

The 5 V’s of telemetry data have been examined and

illustrated and the variety of measurements, e.g., from optical

devices, as well as events, e.g., from control systems, that are

part of telemetry data in the context of optical networking,

were reviewed. We concluded that having fine grain (velocity)

and true (veracity) telemetry for network data analysis (value)

at a centralized location only results in a large amount of data

to be conveyed from the devices (volume). A way to deal with

such characteristics is by extending the telemetry pipeline and

adding intelligence as close as possible to the observation

points, where measurements are collected. In view of that, a

distributed architecture has been proposed, where intelligence

is not only located in the centralized system, but also in the

telemetry agents, which receive and process telemetry

measurements before sending them to the central location.

Intelligent data aggregation for dimensionality reduction

(volume and velocity) has been proposed for those

measurements with larger size, i.e., optical spectrum and IQ

constellations. In particular, three techniques have been

proposed: i) supervised FeX; ii) data compression using AE;

and iii) data summarization.

Synthetically-generated events and measurements of

optical spectrum and IQ constellations are injected into the

telemetry system to experimentally obtain illustrative results.

It was shown that the proposed intelligent data aggregation

techniques introduce negligible error and relatively low

processing delay, while reducing the dimensionality of the

telemetry measurements several orders of magnitude. Table 6

summarizes processing times and amount of data from

measurements collected for a network with 50 nodes

(described in Section 2) in one single day and along one year.

The benefits of the proposed telemetry system architecture

and the proposed intelligence techniques are absolutely clear

in the view of the results.

Funding. The research leading to these results has received funding

from the Smart Networks and Services Joint Undertaking under the

European Union's Horizon Europe research and innovation

programme under Grant Agreement No. 101096120 (SEASON),

from the MICINN IBON (PID2020-114135RB-I00) project and

from the ICREA Institution.

REFERENCES
1. L. Velasco, P. Layec, F. Paolucci, and N. Yoshikane, “Introduction to the JOCN

Special Issue on Advanced Monitoring and Telemetry in Optical Networks,”
IEEE/OSA J. Opt. Commun. Netw., vol. 13, pp. AMTON1-AMTON2, 2021.

2. L. Velasco, A. Chiadò Piat, O. González, A. Lord, A. Napoli, P. Layec, D. Rafique,
A. D'Errico, D. King, M. Ruiz, F. Cugini, and R. Casellas, “Monitoring and Data
Analytics for Optical Networking: Benefits, Architectures, and Use Cases,” IEEE
Network Magazine, vol. 33, pp. 100-108, 2019.

3. L. Velasco, S. Barzegar, D. Sequeira, A. Ferrari, N. Costa, V. Curri, J. Pedro, A.
Napoli, and M. Ruiz, “Autonomous and Energy Efficient Lightpath Operation
based on Digital Subcarrier Multiplexing,” IEEE J. on Selected Areas in Comm.,
vol. 39, pp. 2864-2877, 2021.

4. A. P. Vela, B. Shariati, M. Ruiz, F. Cugini, A. Castro, H. Lu, R. Proietti, J. Comellas,
P. Castoldi, S. J. B. Yoo, and L. Velasco, “Soft Failure Localization during
Commissioning Testing and Lightpath Operation [Invited],” IEEE/OSA J. Opt.
Commun. Netw., vol. 10, pp. A27-A36, 2018.

5. S. Barzegar, M. Ruiz, A. Sgambelluri, F. Cugini, A. Napoli, and L. Velasco, "Soft-
Failure Detection, Localization, Identification, and Severity Prediction by
Estimating QoT Model Input Parameters," IEEE Transactions on Network and
Service Mngt., vol. 18, pp. 2627-2640, 2021.

6. B. Shariati, M. Ruiz, J. Comellas, and L. Velasco, “Learning from the Optical
Spectrum: Failure Detection and Identification [Invited],” IEEE/OSA J. of
Lightwave Technol., vol. 37, pp. 433-440, 2019.

7. C. Natalino, A. Udalcovs, L. Wosinska, O. Ozolins and M. Furdek, “Spectrum
Anomaly Detection for Optical Network Monitoring Using Deep Unsupervised
Learning,” IEEE Communications Letters, vol. 25, pp. 1583-1586, 2021.

8. D. Sequeira, M. Ruiz, N. Costa, A. Napoli, J. Pedro, and L. Velasco, “OCATA: A
Deep Learning-based Digital Twin for the Optical Time Domain,” IEEE/OPTICA
J. Opt. Commun. Netw., vol. 15, pp. 87-97, 2023.

9. L. Velasco, M. Devigili, and M. Ruiz, “Applications of Digital Twin for
Autonomous Zero-Touch Optical Networking [Invited],” invited in International
Conference on Optical Network Design and Modeling (ONDM), 2023.

10. D. Laney, “3D Data Management: Controlling Data Volume, Velocity, and
Variety,” META Group Technical Report, 2001.

11. H. Lun; X. Liu; M. Cai; Y. Zhang; R. Gao; W. Hu; L. Yi; Q. Zhuge, “Machine-
learning-based telemetry for monitoring long-haul optical transmission
impairments: methodologies and challenges [Invited],” IEEE/OSA J. Opt.
Commun. Netw., vol. 13, pp. E94-E108, 2021.

12. D. Rafique and L. Velasco, “Machine Learning for Optical Network Automation:
Overview, Architecture and Applications,” IEEE/OSA J. Opt. Commun. Netw.,
vol. 10, pp. D126-D143, 2018.

13. J. Pesic, M. Curtol, L. Abnaou, A. E. Imadi and S. Morganti, “SDN Automation for
Optical Networks Based on Open APIs and Streaming Telemetry,” in Proc. Int.
Conference on Optical Network Design and Modelling (ONDM), 2022.

14. M. Ghobadi, and M. Ratul, “Optical Layer Failures in a Large Backbone.” In Proc.
Internet Measurement Conference (IMC), 2016.

15. R. Casellas, R. Martínez, R. Vilalta, R. Muñoz, A. González-Muñiz, O. González
de Dios, and J.-P. Fernández-Palacios, “Advances in SDN control and telemetry
for beyond 100G disaggregated optical networks [Invited],” IEEE/OSA J. Opt.
Commun. Netw., vol. 14, pp. C23-C37, 2022.

16. H. Qarawlus, S. Biehs, B. Shariati, J. J. P. Manresa, A. Bouchedoub, H. Haße, P.
Safari, A. Autenrieth, and J. Fischer, “Demonstration of Data-Sovereign
Telemetry Broker for Open and Disaggregated Optical Networks,” in Proc.
Optical Fiber Communication Conference (OFC), 2023.

17. OIF: SDN Transport API, [On-line] https://www.oiforum.com/technical-
work/hot-topics/sdn-transport-api-2/.

18. F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi, “Network telemetry
streaming services in SDN-based disaggregated optical networks,” IEEE/OSA J.
Lightwave Technol., vol. 36, pp. 3142-3149, 2018.

19. Ll. Gifre, J.-L. Izquierdo-Zaragoza, M. Ruiz, and L. Velasco, “Autonomic
Disaggregated Multilayer Networking,” IEEE/OSA J. Opt. Commun. Netw., vol.
10, pp. 482-492, 2018.

20. SONiC, [On-line] http://sonic-net.github.io/SONiC/
21. A. Giorgetti, D. Scano, A. Sgambelluri, F. Paolucci, E. Riccardi, R. Morro, P.

Castoldi, and F. Cugini, “Enabling hierarchical control of coherent pluggable
transceivers in SONiC packet–optical nodes,” IEEE/OPTICA J. Opt. Commun.
Netw., vol. 15, pp. 163-173, 2023.

22. A. Sgambelluri, A. Pacini, F. Paolucci, P. Castoldi, and L. Valcarenghi “Reliable
and scalable Kafka-based framework for optical network telemetry,”
IEEE/OPTICA J. Opt. Commun. Netw., vol. 13, pp. E42-E52, 2021.

23. L. Velasco, P. González, and M. Ruiz, “An Intelligent Optical Telemetry
Architecture,” in Proc. OFC, 2023.

24. L. Velasco, S. Barzegar, and M. Ruiz, “Is Intelligence the Answer to Deal with the
5 V's of Telemetry Data?” in Proc. OFC, 2023.

25. P. Gonzalez, R. Casellas, J-J Pedreno-Manresa, A. Autenrieth, F. Boitier, B.
Shariati, J. Fischer, M. Ruiz, J. Comellas, and L. Velasco, “Distributed
Architecture Supporting Intelligent Optical Measurement Aggregation and
Streaming Event Telemetry,” in Proc. OFC, 2023.

26. H. Lun, X. Liu, M. Cai, Y. Zhang, R. Gao, W. Hu, L. Yi, and Q. Zhuge, “Machine-
learning-based telemetry for monitoring long-haul optical transmission
impairments: methodologies and challenges [Invited],” IEEE/OSA J. Opt.
Commun. Netw., vol. 13, pp. E94-E108, 2021.

27. R. Casellas, R. Martínez, R. Vilalta, and R. Muñoz, “Control, management, and
orchestration of optical networks: Evolution, trends, and challenges,” IEEE J.
Lightwave Technol., vol. 36, pp. 1390-1402. 2018.

 12

28. M. Ruiz, D. Sequeira, and L. Velasco, “Deep Learning -based Real-Time Analysis
of Lightpath Optical Constellations [Invited],” IEEE/OPTICA J. Opt. Commun.
Netw., vol. 14, pp. C70-C81, 2022.

29. N. Bouguila and W. Fao, Mixture Models and Applications, Springer, 2020.
30. C. McAnlis and A. Haecky, Understanding Compression: Data Compression for

Modern Developers, O’Reilly, 1st Edition, 2016.
31. M. Ruiz, L. Velasco, and D. Sequeira, “Optical Constellation Analysis (OCATA),”

[On-line] https://doi.org/10.34810/data146, 2022.

