
Research Article 1

Practical Methods for Allocating and Assessing
Resources in Flexgrid Networks
HUSSEIN CHOUMAN1,3, LUAY ALAHDAB1,3, RAFAEL COLARES2,3, ANNIE GRAVEY*,3, PHILIPPE GRAVEY3,
HERVÉ KERIVIN2,3, AND MICHEL MORVAN1,3

1Institut Mines Télécom, IMT Atlantique, Brest, France
2Laboratory LIMOS, CNRS UMR 6158, Clermont-Ferrand, France
3The authors contributed equally to this work
*annie.gravey@ieee.org

Compiled July 4, 2023

This paper focuses on quantifying the efficiency of different methods used to allocate resources in flexgrid
optical networks. These methods are based on a recently proposed Integer Linear Programming formulation
of the Routing and Spectrum Assignment (RSA) problem that takes into account all possible paths and
thus theoretically yields optimal solutions, whatever be the objective function. The paper advocates
using a metric-based approach for assessing RSA methods preferably to the classical approach based
on the blocking probability of dynamic demands, because of the long lifetime of optical paths and of
the necessity of evaluating an operational network’s state early enough before congestion. The main
existing fragmentation metrics are extended to network level and a family of network remaining capacity
metrics, more suited to assess congestion levels, are introduced. When demands are incrementally mapped,
the latter decrease quite linearly, with a slope reflecting the quality of the RSA method. Remaining
capacity values are used to compare several off-line methods where the demand sets are mapped either
globally or one-by-one with a suitable ordering. In both on- and off-line cases, using the sum of the
demands’ maximum spectrum slice index (an original objective function proposed here), provides the best
performance. Finally a method to anticipate a possible congestion, based on a combination of metrics
computed on the actual and a reference network instance, is presented.
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1. INTRODUCTION

In a flexgrid based optical network, the spectrum is split into
frequency slices; an optical channel is characterized by one or
several contiguous slices dedicated to this specific channel on
all links of the path it is routed on. On the one hand, this allows
a network operator to support different rates and thus to more
efficiently use the available spectrum; on the other hand, the
contiguity (on each link) and continuity (over all the links of a
path) constraints respectively yield the well-known spectrum
“horizontal” and “vertical” fragmentation issues, both implying
that some spectrum slices cannot be used over some links [1].

In flexgrid optical networks, the problem of resource allo-
cation consists in establishing lightpaths (optical paths) that
compete for spectrum resources. This is called Routing and
Spectrum Assignment (RSA). Off-line RSA considers a static set
of demands to be served simultaneously, whereas on-line RSA
deals with dynamic demands, serving them one by one. The RSA
problem is usually formulated as an Integer Linear Program-
ming (ILP) optimization problem. Thus, mapping demands on

a certain network will depend on the selected objective function.
One objective of the present paper is to apply to the RSA

methods introduced in [2] to both on-line and off-line realistic
frameworks. As an operational transport network should ac-
commodate all requested demands, blocking is to be avoided.
Moreover, it is well known that demands in a transport net-
work are long-lived; therefore, this paper assumes that once
established to satisfy a demand, an optical path is never re-
leased. Obviously, this does not mean that optical networks are
purely static objects as new demands have to be satisfied and
old demands should sometimes be modified. However, in the
context of always increasing traffic, optical resources have to
be regularly upgraded, either by adding new links or by mod-
ifying transceivers technology. It is quite hard to compare the
respective time scales of networks upgrading and optical paths
lifespan. This is not part of the present paper.

A second objective of the paper is to explore what is the
“best” method for mapping demands on a flexgrid network. As
blocking has to be avoided, the quality of a given RSA method
shall thus not be assessed by computing the blocking rate. This is
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why different metrics are discussed to define new RSA methods
or to assess their quality. Some of those are specifically designed
to assess the “remaining capacity” of a partially filled flexgrid
network.

A last objective of the paper is to propose a practical frame-
work for monitoring the on-line mapping procedures within an
operational network.

The rest of the paper is structured as follows: Section 2 de-
scribes new ILP methods and Section 3 focuses on “network
health” metrics, including both fragmentation and remaining
capacity metrics. Section 4 describes the experimental frame-
work that is used to compare RSA methods (on-line mapping in
Section 5, off-line mapping in Section 7 ) and assess the relevance
of the new remaining capacity metrics (Section 6). Section 8 pro-
poses a network health monitoring method and conclusions are
drawn in Section 9.

2. NEW METHODS FOR MAPPING DEMANDS ON A NET-
WORK

The RSA problem consists of mapping a given set of traffic de-
mands on an existing topology. As the emphasis of this study
lies on the RSA problem, the modulation format used by the
pair of transponders serving a demand has priorly been estab-
lished. Moreover, no intermediate regeneration of the lightpaths
is allowed. Thus each lightpath is associated with a pair of
transponders characterized by a number of spectrum slices and
a transmission reach.

A. Off-line RSA problem
An offline RSA instance is composed of

• an optical network, represented as an undirected, loopless,
and connected graph G = (V, E), where V corresponds to
the set of network nodes and E to the set of optical fibers
linking the network nodes,

• a fiber length (in kms) ℓe ∈ R+ for each e ∈ E,

• an optical spectrum (i.e., available frequency slices) S =
{1, . . . , s}, where s̄ denotes the number of slices to be con-
sidered per link,

• a multiset K of traffic demands, where each k ∈ K is spec-
ified by a pair of origin and destination nodes (ok, dk) ∈
V ×V, a required number of slices wk ∈ N+, and a maxi-
mum transmission reach Lk ∈ R+ (in kms).

A feasible solution to the RSA problem consists of providing for
each traffic demand k ∈ K, a lightpath composed of an (ok, dk)-
path Pk in G and a transmission channel Sk ⊆ S such that the
following conditions are satisfied:

• the length of path Pk does not exceeds the imposed trans-
mission reach Lk,

• the transmission channel Sk is composed of wk consecutive
slices (i.e., spectrum contiguity), that is, Sk = {i, i+ 1, . . . , i+
wk − 1} where 1 ≤ i ≤ s̄− wk + 1,

• the transmission channel Sk assigned to traffic demand k is
the same along all edges of path Pk (i.e., spectrum continu-
ity), and

• within any given link e ∈ E, a slice cannot be allocated to
more than one traffic demand (i.e., non-overlapping spec-
trum).

The goal of the RSA problem is to find the best feasible solution
according to a chosen objective function. The quality of a feasible
solution depends on the selected objective function. In [1], the
total number of transponders is minimized, as a way to minimize
the cost necessary to satisfy all demands. In [3, 4], the volume
of unsatisfied traffic is minimized. In [5], the sum of lengths
of the paths carrying the demands is minimized, in order to
limit the lengths of selected paths and thus minimize global
spectrum occupancy and delay. Furthermore, assume that slices
are indexed between 1 and the total number of slices on a link.
Other works aim to limit fragmentation by minimizing the max
slice-index in the network in [6], or the summation, over links,
of the max slice-index of each link in the network [7]. In this
work, we consider four different objective functions:

• Total Slice Occupancy (TSO): minimize the total number of
slices used across the network,

• Total Path Length (TPL): minimize the sum of selected path
lengths,

• Maximum slice index (MSI): minimize the highest used
frequency slice index,

• Total Slice Index (TSI): minimize the sum of the demands’
maximal used slice index.

Objective function TSO, TPL, and MSI have already been consid-
ered in the literature (see [8] and the references therein) whereas
objective function TSI is newly proposed in this work.

Notice that for a given objective function, there might exist
several different optimal solutions inducing – possibly very –
different mappings. In order to distinguish between these solu-
tions we may combine the proposed objectives. More precisely,
among the set of optimal solutions for a given objective, we can
look for the one that optimizes a second metric. Such procedure
(known as Lexicographic Method in multiobjective optimiza-
tion) provides Pareto-optimal solutions. We denote by Oi −Oj
the combination of objectives Oi and Oj which is obtained by
searching for a solution optimizing Oj within the set of opti-
mal solutions for Oi, where Oi and Oj are distinct objectives
functions.

B. ILP Formulation
The majority of ILP formulations devised to solve the offline RSA
problem are based on either an edge-path model or an edge-node
model (see [8] and the references therein.) The former model
is usually characterized by an exponential number of variables
(i.e., for each demand any feasible path or lightpath is associated
with a variable), a drawback bypassed by only considering a
precomputed subset of paths for each demand but at the price
of losing the overall optimality. The latter model is compact in
terms of the number of variables and constraints. However, it
suffers on the one hand, from handling the routing aspect in a
less intuitive and more involved way and on the other hand,
from being incomplete (i.e., its feasible set is a superset of the set
of feasible solutions to the offline RSA problem) which makes it
unable to handle some objective functions.

The ILP formulation used in this paper was first introduced
in [2] as a compact extended formulation, based on an edge-node
model, that has proved to be stronger than formulations known
in the literature [2, 9]. It is based on the formulation given in
[9], the first complete formulation for the RSA problem, and
consists of constructing a directed graph G′ = (V, A′) from G by
replacing each edge by two opposite arcs, inheriting the length
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of the edge, and of replacing the three sets of binary variables
considered in [9] by the set of binary variables { f sk

a : s ∈ S, k ∈
K, a ∈ A′} where f sk

a = 1 if and only if demand k is routed
through arc a and s is the last slice of the channel assigned to k.

Replacing each variable in the model of [9] by a linear func-
tion of the f -variables provides a multi-commodity flow formu-
lation where each commodity corresponds to a demand. This
formulation is then strengthened by adding the disaggregated
reach inequalities

∑
a∈A

la f sk
a − Lk ∑

a∈δ+(ok)

f sk
a ≤ 0 ∀k ∈ K, s ∈ S (1)

and the disaggregated flow conservation inequalities

∑
a∈δ+(ok)

f sk
a − ∑

a∈δ−(ok)

f sk
a = 0 ∀k ∈ K, s ∈ S, v ∈ V \ {ok, dk},

(2)
where δ+(ok) and δ−(ok) are the sets of arcs in A′ having ok as
their tail and head, respectively. The ILP formulation thus ob-
tained requires 2|E||K|s̄ variables and is valid for every objective
function considered for the RSA problem in the literature.

The four objective functions considered in this paper can be
expressed as linear functions of the f -variables as follows:

• TSO: min ∑
k∈K

wk ∑
a∈A′

∑
s∈S

f sk
a ,

• TPL: min ∑
a∈A′

ℓa ∑
k∈K

∑
s∈S

f sk
a ,

• MSI: min max
a∈A

max
k∈K

∑
s∈S

s f sk
a which can be trivially lin-

earized by adding a single variable and 2|E|s inequalities,

• TSI: min ∑
k∈K

∑
a∈δ+(ok)

∑
s∈S

f sk
a .

It is worth noticing that solving the ILP formulations associ-
ated with these four objective functions using branch-and-cut
frameworks may be more or less time-consuming. In fact, as
illustrated in [2], the spectrum-related objective functions (i.e.,
MSI and TSI) tend to require way longer than the routing-related
ones (i.e., TSO and TPL) to converge towards optimal solutions.
Convergence times for MSI and TSI are further discussed in
Section 7.

3. NETWORK HEALTH METRICS

The present Section focuses on deriving quantitative “network
health” indicators and highlighting the relationship between
spectrum fragmentation and these indicators. The goal of such
indicators is to address a network operator’s requirement: as-
suming that a given set of demands has to be mapped on a
certain network, is it possible to assess how much spectrum
resources are wasted and to gain insight on how much addi-
tional traffic could be supported once the initial set of demands
is mapped?

A naive way of assessing the remaining capacity of a network
on which an initial set of demands has already been mapped, is
to submit a set of supplementary demands to be mapped till one
demand is blocked, and to compute the number of supplemen-
tary demands that have been successfully mapped. However, as
different supplementary sets would yield different amounts, it
is necessary to consider a large number of supplementary sets in
order to statistically characterize the remaining capacity of the
network.

In order to avoid the above cumbersome method we propose
using network health metrics that characterize the global state
of the network.

After discussing state-of-the-art results regarding fragmenta-
tion metrics, which assess the fragmentation of links or paths,
new network level metrics are introduced as natural extensions
of existing link/path level metrics; these new metrics aim to
characterize either the global fragmentation within the network
or the network’s remaining capacity.

A. Existing fragmentation Metrics

External Fragmentation (EF) [10] is defined for each link as
the ratio of the maximum number of free contiguous slices
to the total number of free slices. The Utilization Entropy
[11] of a link is computed by dividing the total number of
slice usage status changes for all pairs of neighboring slices
by the total number of slices in the link-1. Shannon’s Entropy
(SE) [12] considers how slices are distributed on a link as follows:
SE = −∑N

i=1 Di/D log(Di/D) where D is the total number of
frequency slices in the spectrum, Di is the number of slices of
the ith block of either contiguous free or contiguous used slices
and N is the number of such blocks. Access Blocking Probability
(ABP) [13] is another link-level metric; it computes the ratio
between the number of possible demands that can be placed on
sets of contiguous free slices on a certain link and the number
that could be placed if all free slices were contiguous.

In general, a link level metric (e.g. EF, SE, and ABP) can
easily be extended at the path level by considering the path as
an aggregated link where a spectrum slice of a given index s
is free if and only if the spectrum slices with index s of the all
the links belonging to the path are free. The path-level metric is
then computed by applying the original metric definition to this
aggregated link. For example, such a method has been applied
to the SE metric [14].

In [11], UE was also extended at path level, but using a differ-
ent approach, i.e. by first computing for each slice the number of
status changes between two consecutive links of the paths and
dividing by the number of links-1 and then averaging this ratio
over all slices.

Wasted-Unusable-Free Ratio (WUFR) [15] is metric that is
directly defined as a path level metric: it the ratio of the number
of wasted slices (those that are only free on some, but not all, of
the links of a path) and unusable slices (those free on all links of
a path but belonging to a block of free slices that is smaller than
the number of slices requested by a transponder) to the number
of free slices.

B. Alternative path-level metrics

New path-level metrics, aiming at characterizing the remain-
ing capacity on a path, are introduced here, by extending the
approach described in [15].

B.1. Wasted and accessible slices

Let pm,i be the ith path between the (o − d) pair m. On each
link of pm,i, there are used slices and free slices, the latter being
partitioned into wasted and accessible slices as explained in
Section 3.A; let us define Wm,i (respectively Am,i) as the number
of wasted (respectively accessible) slices on path pm,i. Metric
Wm,i (respectively Am,i) is Wm,i (respectively Am,i) divided by
the number of links of the path pm,i. Dimensionless metrics
are obtained by dividing the above metrics by the number s of
available slices on the links.
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B.2. Number of supplementary transponders

On a given path, accessible slices are grouped into “spectrum-
blocks”, that is, sets of continuous and contiguous accessible
slices separated by either wasted or used slices. If pm,i satisfies
transponder’s reach and has at least one spectrum-block j of size
larger than n, then it is defined as a n-feasible path. The number
of supplementary transponders with granularity n that could be
accommodated on pm,i is:

Xm,i(n) =
J

∑
j=1

⌊Am,i,j

n

⌋
(3)

where ⌊x/n⌋ denotes the integer division of x by n and J
denotes the total number of spectrum-blocks in a n-feasible path
pm,i.

Fig.1 illustrates the above concepts by computing the remain-
ing capacity metrics WBE, ABE and XBE(n) on path B-C-D-E
between nodes B and E with 3-slice and 6-slice transponders.
There are 18 used slices and 36 free slices, which are partitioned
into WBE = 9 wasted slices (in blue) and ABE = 27 accessible
slices (in orange). As there are 3 links on the path and s̄ = 18,
WBE= 3 and ABE= 9. Dimensionless metrics (respectively 16.7%
and 50 %) are obtained if we divide by s= 18. The accessible slices
of the path are grouped into two spectrum-blocks: spectrum-
block1, A(BE, 1)= 3, can accommodate one 3-slice transponder,
while spectrum-block2,A(BE, 2)= 6, can accommodate either two
3-slice transponders or a single 6-slice transponder.

Fig. 1. Remaining capacity metrics for PathBE.

C. Network State Metrics
Being either link level or path level, the previously described
metrics do not provide any quantitative insight on the whole
network’s remaining capacity (i.e. the network’s capability to
host future demands while taking into account the granularity
of transponders and network’s wasted resources).

In the following, several ways of characterizing the global
state of the network are considered.

C.1. Total number of holes

This metric is the sum of the number of holes on all the links (a
spectrum hole on a link is a set of contiguous free slices).

C.2. Network level fragmentation metrics

For a given path-level metric, the following methodology is
followed. For a given demand, all feasible paths, among the five
shortest paths computed for the (o-d) pair of the demand are
considered and the value of the path-level metric is computed
for each feasible path; then a (o-d)-level metric is obtained by
averaging the previously computed path-level metric values.

The network level metric is then computed as the average overall
(o− d) pairs.

Note that both versions of network-level UE metric that were
proposed by the authors of [11] differ from the above one. In-
deed, in the first one, they followed the same approach to derive
a path-level metric by considering all network links in an arbi-
trary order, while the second one was based on averaging the
path-level metrics on the shortest path between all (o− d) pairs.

Note also that the followed methodology also differs from
the one used in [16], where the average is made on all network
links. Averaging on paths instead of links enables capturing
the spectrum continuity issue and gives a more representative
weight to the links belonging to many paths compared to those
that are rarely used.

C.3. Network remaining capacity

The previous metrics focus only on fragmentation but do not
address whether or not the network is congested. In the follow-
ing, alternative metrics focus on the remaining capacity in the
network.

For (o− d) pair m, let Im denote the total number of paths that
can be used for m and Im(n) denote the number of n-feasible
paths (Im(n) ≤ Im). For each path i of (o − d) pair m and
path-level remaining capacity metric RCm,i (either Wm,i, Am,i,
or Xm,i(n)), network level metrics are obtained by first averaging
RCm,i over the number of feasible paths I (which can be Im
or Im(n) depending on the considered RCm,i metric), and then
averaging over the M (o− d) pairs. A network level remaining
capacity metric is thus defined as:

RC =

(
M

∑
m=1

∑I
i=1 RCm,i

I

)/
M. (4)

When RCm,i = Xm,i(n), the corresponding remaining capacity
metric shall be called X(n).

4. EXPERIMENTAL FRAMEWORK

A simple framework has been selected in order to compare the
various RSA methods. Intermediate regeneration of the light-
paths is not considered, which implies that each lightpath is
associated to a pair of transponders. For the sake of simplic-
ity and in order to focus on the RSA problem considered in
this paper, network design and the optical feasibility of given
paths have been abstracted: the modulation format used by the
transponder(s) serving a given demand is assumed to be de-
fined prior addressing the RSA problem and each transponder
T is simply characterized by a bit rate, the number of occupied
spectrum slices and a transmission reach T(br, ss, tr).

Therefore, a given demand to the optical transport network is
expressed as a number of spectrum slices to be carried between
an o-d pair. There may be several distinct demands between a
given (origin, destination) pair). The present paper considers
transmission systems operating in the extended C-band, cor-
responding to a 4-THz spectrum with a nominal number of
slices that equals 320 (i.e., 12.5 GHz per slice). The previous
assumptions imply that between each o-d pair, there should
exist at least one path shorter than the maximum reach allowed
by the transponder. Specifically, in all experiments presented
in this paper, the following three transponders T3, T5, T6 are
considered:

• T3 = T(100Gbit/s, 3, 3000km) ;

• T5 = T(200Gbit/s, 5, 1500km) ;
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• T6 = T(400Gbit/s, 6, 600km) .

Two widely used network topologies are considered, namely
the 17-node German network (Fig.2) and a modification of the
NSF topology (M-NSF), which is based on the 9-Node NSF
topology with 13 links [17] (Fig.3). The modification on the
original NSF topology consists in dividing its link lengths by 2 to
make it compatible with the transmission reach of the considered
transponders.

Fig. 2. 17-nodes German network topology

Fig. 3. 9-nodes M-NSF network topology

A set of demands is generated according to the following
procedure:

• the total number of initial demands in a set is fixed (200);
each demand is considered to be bi-directional as both di-
rections are reserved when a demand is mapped;

• for each initial demand :

– the number of slices is chosen in {3, 5, 6} with equal
probability;

– an o-d pair is uniformly selected within the N(N − 1)
possible pairs;

– when the reach associated to an initial demand is not
compatible with the shortest path for the selected o-
d pair, the demand is split into 2, or more, actual
demands with a larger reach, (i.e. using a different
transponder); this process stops as soon as the reach
of the actual demand is large enough. For example, if
the shortest path for the o-d pair is 1000 km, a 6-slices
demand (400Gbit/s) shall be split into two 5-slices de-
mands (200Gbit/s), while if the shortest path is 2000
km, the same demand shall be split into four 3-slices
demands (100Gbit/s).

This procedure implies that the final number of demands may
slightly vary from one set to another.

To run simulations that use the above optimization model,
the number s of available slices on each link needs to be specified.
For example, a fiber with a 4-THz spectrum has a nominal num-
ber of slices that equals 320 (i.e., 12.5 GHz per slice). However,
it would be better to decrease this number in order to decrease
both the number of variables and constraints in the ILP model
and consequently, the time necessary to obtain an optimal solu-
tion. Let an admissible link configuration be a number s of available
slices on each link that guarantees no blocking demands and no
links whose proportion of used slices exceeds a given threshold
T (e.g., T = 80%). For a given s value of the number of slices
on each link, let Pused(s) denote the maximum proportion of
used slices over all links in the configuration that minimizes
∑k∈K ∑a∈δ+(ok) ∑s∈S f sk

a ; the number of blocked demands for
that configuration is Nblocked(s). After checking that Pused(320)
is smaller than T and that Nblocked(320) = 0, Algorithm 1 is used
to heuristically derive an admissible link configuration.

Algorithm 1. Heuristic for defining s

1: procedure DEFINE s(320, 40) ▷ s decreased by steps of 40
2: s← 320
3: while Nblocked(s) = 0 and Pused(s) < T do
4: s← s− 40
5: return s ▷ s is an admissible link configuration

On a typical set of 40 demands, using Algorithm 1 with T =
80%, a value for s of 120 can be selected for both Germany and
M-NSF networks.

In transmission networks, demands are not set up and broken
very often; indeed, in many operational networks, new demands
are added till the network is considered congested and is then
reorganized, possibly adding new resources or considering new
transponders. This is why we consider in our study that once a
demand is mapped, the resources it occupies are unavailable for
any other demand. Blocking occurs when a new demand cannot
be mapped on the partially filled network (i.e. not enough
available contiguous slices on a sufficiently short path).

As each actual demand corresponds to a given number of
allocated spectrum slices, an interesting indicator of a partially
filled network is the number of mapped slices , i.e. the total
number of slices corresponding to the set of demands currently
mapped on the network.

5. ON-LINE MAPPING

In the present Section, some of the tools introduced in Sections
2 and 3 are used to design on-line mapping methods; these are
then compared with several existing ones. One method, which
is shown to be among the most efficient ones, is then selected
to be used as a reference for on-line mapping in the rest of the
paper.

A. RSA Heuristic methods based on fragmentation metrics

First, the approach described in [11] and [15] that respectively
used the UE and WUFR metrics to derive RSA heuristics, is
extended to other path-level fragmentation metrics presented
in Section 3, namely EF, SE and ABP. Then, new RSA heuristics
based on network-level metrics are introduced. In the following,
heuristics RSA methods based on path-level and network-level
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metrics are named MetricName-P and MetricName-N respec-
tively.

Lastly, two new RSA heuristics involving the X(n) functions
introduced in Section 3.C are presented as X-P and X-N. For
these heuristics, for a demand of n slices, all possible mappings
are considered on all feasible paths (among a pre-computed set
of shortest paths) for the (o− d) pair of the demand.

• using X-P, only the paths corresponding to the (o− d) pair
m of the demand are considered and the mapping that max-
imizes Xm,i(n) over all possible mappings over all feasible
paths i is selected.

• using X-N, all (o− d) pairs are considered and the mapping
that maximizes the average value of X(n) over all paths
and all (o− d) pairs is selected as described in Equation (4).

B. ILP methods for On-line RSA
Four original On-Line Optimal (ONO) RSA methods based on
the formulation and the four objective functions introduced in
Section 2 are named accordingly ONO-ObjectiveName.

C. On-line RSA performance
The performance of the different on-line RSA methods is as-
sessed by applying each of them to both Germany and M-NSF
networks, and by considering 128 sets of demands in each case.
As explained in Section 4, the number of demands per set is
not constant. For the German network, the number of demands
(resp. slices) in a given set varies from 207 to 217 (resp. 950 to
1034). For the NSF network, these figures are respectively 243
to 249 for demands and 1082 to 1174 for slices. Starting from an
empty network, demands are mapped one by one till the first
blocking occurs, and the number of allocated slices is recorded.

Two classical on-line RSA heuristics are considered as bench-
marks:

• FAR-FF (Fixed Alternative Routing - First Fit)[18], which
selects the shortest available path among a set of pre-
computed paths list for the (o − d) pair; then, the slices
are selected as first fit; FAR-FF is thus fragmentation un-
aware.

• LLR-FF-ACC (Least Loaded Route - First Fit - Accessible)
[19], which selects the least loaded path, i.e. the one provid-
ing the highest number of accessible slices for the (o− d)
pair, and then select the slices as first fit; LLR-FF-ACC is
thus fragmentation aware.

The results regarding the heuristic methods are first pre-
sented in Fig.4 and Fig.5 that show for each network topology
and RSA method, using box-plot representation [20], the distri-
bution of allocated slices obtained with the 128 demand sets. In
the chosen box-plot representation, whiskers are drawn within
the 1.5 Inter-quartile range value.

Even though the number of mapped slices strongly depends
on the actual set of demands, several trends may be noted when
comparing these methods:

• in most cases, metric-based methods provide significantly
better results when operated at network rather than path
level, the only exception being X-N in the German network
case, which is not quite as good as X-P;

• for both networks, X-P provide the best results among the
path level-based methods;

Fig. 4. Total mapped slices distribution among 128 demand
sets with the on-line RSA Heuristics (German network)

Fig. 5. Total mapped slices distribution among 128 demand
sets with the on-line RSA Heuristics (M-NSF network)

• regarding the average mapped-slices numbers, the best
values are obtained by UE-N in both cases although LLR-
FF-ACC is a close second, especially in the M-NSF network
case.

Fig. 6. Total mapped slices distribution among 128 demand
sets using ILP with four different objectives and three heuris-
tics as bench-marks (German network)

The results achieved with the ILP formulation with the four
objectives are then presented in Fig. 6 and Fig. 7. In both figures,
these results are bench-marked with the classical FAR-FF and
LLR-FF-ACC methods and with the best heuristics, namely UE-
N.

• ONO-TSI provides the best results for both networks, in
front of UE-N and LLR-FF-ACC, the figures being very
close in the M-NSF case;

• ONO-MSI is next, with a slightly worse performance;
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Fig. 7. Total mapped slices distribution among 128 demand
sets using ILP with four different objectives and three heuris-
tics as bench-marks (M-NSF network)

• the other methods provide the worst performances, with
ONO-TSO performing globally better than FAR-FF and
ONO-TPL;

Based on these results, ONO-TSI is selected to be used as a
reference for on-line mapping in the rest of the paper and for
assessing network health evolution in the next Sections.

6. RELEVANCE OF REMAINING CAPACITY METRICS

According to the definition of the remaining capacity metric
X(n), and assuming, to simplify the discussion, that the total
number of slices is an integer multiple of n, this metric exhibits
the following features:

• nX(n) = s̄ in an empty network;

• X(n) decreases when a new demand is mapped;

• if X(n) = 0, it is impossible to satisfy any demand request-
ing the mapping of n slices;

In order to facilitate computing X(n), the number of consid-
ered paths for a given (o − d) pair has been limited to the 10
(respectively 5) shortest ones (in terms of physical length) for the
German network (respectively for the M-NSF network). Note
that this procedure should preserve the three above mentioned
features of X(n).

In the present Section, the behavior of X(n) is assessed in
order to know to which extent it could provide useful informa-
tion on the network health once a demand set has been mapped
and on the performance of the RSA method used to achieve this
mapping.

To this end, the evolution of X(n) during the on-line experi-
ments of Section 5 is first analysed. Then, another experiment is
introduced in order to correlate the values of X(n) in a partially
filled network with the numbers of slices that can be mapped on
top of the initial mapping.

A. Evolution of X(n) metric
Among the algorithms used in Section 5, the emphasis is put
on those based on ILP formulation using objectives TSI, MSI,
TPL and TSO. As shown previously, the two former are repre-
sentative of well-performing RSA on-line methods, while the
latter present significantly worst performances. How X(n) for
n = 1, 3, 5, 6 varies during the 128 experiments of mapping
demands one by one is then analysed.

An example for a specific set of demands is given in Fig. 8
that shows the evolution of X(1) values as a function of the

number of mapped slices for one of the 128 demand sets when
using the four RSA methods. Linear regressions are included,
and the corresponding determination coefficient R2 is provided.
The linear fits of X(1) are quite good and computed slopes differ

Fig. 8. Evolution of X(1) vs the number of mapped slices for
German network (set 2))

significantly between the well- and bad-performing methods.
Moreover, for the latter, the first blocking occurs at larger X(1)
values than for the former.

Linear fits of the X(n) values for n in {1, 3, 5, 6} are then
shown, using box-plot representation, in Fig. 9 for the Germany
network and in Fig. 10 for the M-NSF network. The linear re-
gression slopes displayed are those of n.X(n), in order to ease
the comparison between the different values of n. The focus
is here on objectives TSI and TSO, as the results achieved with
objective MSI and TPL are close to those obtained with TSI and
TSO, respectively.

Fig. 9. Distribution of the slope (top) for nX(n) and the R2

coefficient of determination (bottom) for X(n) among 128 de-
mand sets for the German network
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Fig. 10. Distribution of the slope (top) for nX(n) and the R2

coefficient of determination (bottom) for X(n) among 128 de-
mand sets for the M-NSF network

• In the German network, the slopes of the nX(n) linear re-
gression vary within ranges of values that are nearly identi-
cal for all values of n; the quality of the linear fits is quite
similar for all values of n for objective TSI and better than
the one achieved with objective TSO, for which a quality
degradation from n = 1 to n = 5, and an improvement for
n = 6 are observed.

• in the M- NSF network, for n = 1, 3 or 5, the distribution of
the slopes as well as the quality of the linear fits are very
close; for n = 6, the slope is less pronounced than for the
smaller n values. For this last case, it is worth noting that
there is a feasible path for the n = 6 transponder only for
17 out of the 34 (o, d) pairs, which indeed makes it difficult
to compare X(6) with the other X(n).

It can be concluded from the above analysis that the X(n)
value computed after a significant number of demands has been
mapped (i.e. the network is “partially filled”) can be used to
compare different RSA methods. This is illustrated by Fig. 11,
which displays, for the four ILP objectives, the distribution of
X(1) values computed after mapping the 40 first demands of the
128 demand sets. Clearly, ranking the ILP objectives according
to the X(1) distributions is equivalent to ranking them using the
method described in Section 5 (see Figs. 6 and 7).

B. Correlation between X(n) and blocking
The previous results show that, comparing the X(n) values
achieved with different RSA algorithms applied to many de-
mand sets, provides a useful insight on their relative perfor-
mances. This shall be used in Section 7 to compare off-line RSA
methods. However, one may wonder whether the mere knowl-
edge of the obtained X(n) for different mappings of a given set
of demands may be used to compare the quality of these dif-
ferent mappings: if a mapping yields a larger X(n) value than
another one, does it ensure that more slices can be mapped on
top of the first mapping than on top of the second one ?

Fig. 11. Distribution of X(1) values computed after mapping
40 demands using ILP formulation with four different objec-
tives (German network)

Another experiment is then introduced to try answering the
above question. Firstly, an initial set of demands is mapped,
resulting in remaining capacity metrics values. Five initial sets,
generated according to the procedure described in Section 4,
are considered; the first 40 demands of these sets are mapped
using various RSA methods and the resulting X(n) values are
computed. The numbers of slices corresponding to the initial 40
demand sets vary between 183 and 196 for the German network
and between 170 and 190 for the modified-NSF one. It was
chosen to map 40 demands, roughly corresponding to a bit less
than 200 mapped slices since using on-line mapping, blocking
typically occurs between 300 and 600 mapped slices, depending
on the RSA method.

Secondly, the demands of the 128 random sets used in Sec-
tion 5 are mapped one by one, using the ONO-TSI method, on
top of the initial mapping, till the first blocking; the total number
of mapped slices are then computed for all the sets of additional
demands.

For the German and modified-NSF networks, 75 and 52 dif-
ferent initial mappings were respectively generated by using
different RSA methods, based on the algorithms and objective
functions presented in Section 2. As the present section’s objec-
tive is to assess the correlation between the initial X(n) values
and the ability to serve additional demands on top of this initial
mapping, the methods used for the latter are not detailed.

In the following the focus is put on X(1) but similar results,
not shown here, have been obtained with the other X(n) metrics.
The results regarding the German network are presented for
four of the five sets in Fig. 12 depicting for each set the median,
the 95th and the 5th percentiles. For all these sets two distinct
regions roughly separated by the X(1) = 60 line are observed:

• in both regions, there is some variation of the number of
additionally mapped slices but it is much more pronounced
in the low X(1) region;

• in the high X(1) region, the minimum number of additional
slices that can be mapped is close to 200;

• in the low X(1) region, this number may be close to zero in
the worst cases;

• results vary slightly from one set to the other, in particular,
lower results in the high X(1) region for set 4 and a lesser
variation between high and low X(1) for set 2.

The results for set 5, not shown here, are in line with these
observations.
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Fig. 12. Additional mapped slices versus initial X(1) values. 4
initial mappings over the German network, 128 additional de-
mand sets. Median (grey), 95th percentile (blue), 5th percentile
(red)

.

The corresponding results for the M-NSF network shown in
Fig. 13 present globally the same features, with more variations
between demand sets.

Fig. 13. Additional mapped slices versus initial X(1) values. 4
initial mappings over the M-NSF network, 128 additional de-
mand sets. Median (grey), 95th percentile (blue), 5th percentile
(red)

The following conclusions can be drawn from this analysis:

• any mapping presenting a high X(n) ensures that a large
number of additional slices can be mapped, for any of the
considered random set;

• conversely, for a mapping in the low X(n) region, the num-
ber of additional slices that can be mapped can be very large
or very small, depending on the considered random sets;

• when two initial mappings are considered, one in each
region, the number of additional slices that can be mapped
on the high X(n) initial mapping is statistically significantly
larger than the one that can be mapped on the low X(n)
initial mapping.

7. OFF-LINE MAPPING PERFORMANCE

The off-line RSA problem consists of selecting paths and allo-
cating spectral resources to a set of demands. Section 2 has

presented a RSA-algorithm and different objectives functions,
which may be optimized using this algorithm. In the present
section, different mappings obtained using these objective func-
tions are compared by using the X(n) metrics. As previously,
the German and M-NSF networks are considered.

A straightforward way to use the RSA algorithm is to apply
it to the overall demand set. By construction, this process guar-
antees that the obtained mapping will optimize the objective
function. This method is called Off-line Optimal (OFO). Using
OFO with objective functions TPL and TSO, the convergence
time is quite small; it is longer for TSI and it is always much
longer for MSI. These general results regarding TSI and MSI are
illustrated in Table 1: three sets of respectively, 30, 40, and 50
demands are mapped the M-NSF network case. A maximum
computation time has been fixed to two hours; when an opti-
mum solution is not found before reaching this limit, the relative
gap between upper and lower bounds is indicated.

Table 1. OFO-TSI and OFO-MSI computation times for M-NSF
instances.

Number of demands OFO-TSI OFO-MSI

30 47.41s 1453.51s

40 148.23s 7200s (1.07%)

50 4205.89s 7200s (9.99%)

The above results show that OFO may not be applied with
TSI and MSI to realistically large instances, due to the complex-
ity of the RSA problem. Therefore, a less complex, alternative
approach consisting in applying the RSA algorithm sequentially
by mapping the demands one by one is introduced; this method
is called Off-line Heuristic (OFH). OFH provides potentially sub-
optimal mappings; on the other hand, obtaining mappings with
OFH is always quite rapid. Therefore, it is to be expected that for
a (large) operational network, when it is not possible to compute
an optimal mapping, heuristic methods such as OFH should
be considered to map sets of demands. OFH is similar to the
method used for solving the on-line RSA problem, but presents a
major difference because in the off-line problem all demands are
known and the order in which they are processed can be chosen.
It is to be expected that the final mapping (and consequently the
X(n) values) will depend on the selected ordering. Among the
many possible demands permutations, some specific orderings
are considered in the following and the impact of the ordering
is assessed for both OFH and OFO.

Let us define the (o, d) distance as the length of the shortest
path (in terms of physical length) between o and d. The requested
capacity for a demand of s slices between o and d is defined as
the product between s and the minimum number of hops on the
considered paths between o and d (10 paths for Germany and 5
for M-NSF). Six orderings are then specified:

• Slice-based ordering - largest to smallest (SBLS): demands
are ordered by decreasing number of requested slices; when
demands request the same numbers of slices, they are sorted
by decreasing (o, d) distances;

• Slice-based ordering - smallest to largest (SBSL): demands
are ordered by increasing number of requested slices; when
demands request the same numbers of slices, they are sorted
by increasing (o, d) distances;
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• Distance-based ordering - longest to shortest (DBLS): de-
mands are ordered by decreasing (o, d) distances;

• Distance-based ordering - shortest to longest (DBSL): de-
mands are ordered by increasing (o, d) distances;

• Capacity-based ordering - largest to smallest (CBLS): de-
mands are ordered by decreasing capacity value; when
demands request the same capacity, they are sorted by de-
creasing (o, d) distances;

• Capacity-based ordering - smallest to largest (CBSL): de-
mands are ordered by increasing capacity value; when de-
mands request the same capacity, they are sorted by increas-
ing (o, d) distances;

Regarding the objective functions, the four objective func-
tions already used in the previous Sections and some composite
functions following the approach presented in Section 2 are con-
sidered. As seen previously, the spectrum unaware objectives
functions TPL and TSO yield significantly worst performances
than the spectrum aware objectives functions TSI and MSI. How-
ever, it is interesting to investigate to which extent a combination
of a primary spectrum unaware objective followed by a secondary
spectrum aware objective could improve the quality of the ob-
tained mapping. For the sake of simplicity, the only results that
are presented are those obtained with composite objectives TSO-
TSI and TPL-MSI. Also for the sake of simplicity, the focus is put
on the X(1) metric, as Section 6.A shows that the various X(n)
metrics evolve quite similarly.

Considering the six selected orderings, both simple and se-
lected composite objective functions, and using either OFO or
OFH, the 40 demands of each of the five demand sets introduced
in Section 6.B are mapped. Whenever a mapping is obtained,
X(1) is computed; then, mean and standard deviation of X(1)
computed over the six considered orderings are computed and
reported in Table 2. Note that, due to a limit set on conver-
gence time, OFO mappings with MSI in the experiments over
the German network are not obtained.

A. Assessing OFO performance

Table 2 shows that in the OFO case, the demand ordering has
a very limited impact on X(1) when spectrum aware objective
functions (TSI, MSI) are used either as single or as a secondary
objective. With objectives TPL and TSO, the X(1) value depends
slightly more on the demand ordering, but this doesn’t affect the
comparison between the different objectives.

Regarding single objective functions, in the German network
TSI outperforms both TPL and TSO, as expected. In the M-NSF
network, where MSI results are available, the results obtained
with this objective are close to those obtained for TSI but never
higher. TPL and TSO are behind TSI and MSI but the discrepancy
is lower than in the German case and significantly varies with
the demand set.

Considering composite objectives TSO-TSI and TPL-MSI, it
appears that complementing a spectrum-unaware primary ob-
jective with a secondary one which is spectrum-aware greatly
improves the performance in comparison with the single objec-
tive case. In the German network, the X(1) values achieved with
composite objectives remain lower than those achieved with TSI.
In the M-NSF case, TSO-TSI provides an higher X(1) value for
one set, while TPL-MSI yields significantly lower values than
those achieved with MSI.

To summarize, when using OFO, TSI provides the best per-
formance (which is consistent with the results obtained in the
on-line case) regardless of the ordering of the demands which
has an insignificant impact on the obtained metrics values.

B. Assessing OFH performance
Table 2 shows that in the OFH case, regardless on demand order-
ing, objective functions TPL and TSO yield significantly lower
results than the four other ones, in nearly all instances, the only
exception being M-NSF network with set 1 and objective TSO.
This shows that spectrum-aware objective functions should be
preferred in OFH, either as single objective function, or as a
secondary objective function.

However, as demand ordering has a significant impact on
X(1) which is quite pronounced with objectives TSI and MSI,
especially for the German network, it is necessary to assess the
impact of demand ordering on the four spectrum-aware OFH
mapping methods (TSI, MSI, TSO-TSI, TPL-MSI). This is done by
ranking the obtained X(1) values in the considered 40 instances
where OFH is applied (five demand sets, four spectrum aware
objective functions on two networks). The obtained rankings
are displayed in Fig. 14.

Fig. 14. Obtained rankings of the X(1) values. 6 ordering of
demands, 5 sets of 40 demands, 4 spectrum-aware OFH map-
ping methods (TSI, MSI, TSO-TSI, TPL-MSI) for both German
and M-NSF networks.

Fig. 14 shows that CBLS, being ranked first or second in 33
instances performs quite well. CBSL and DBSL are badly ranked
in most cases. SBLS is also correctly ranked in general (first
or second in 24 instances) while the performances of SBSL and
DBLS depend on the considered instance. These results may be
interpreted as follows:

• serving first the demands that potentially require the largest
amount of spectral resources (CBLS) is generally the best
strategy; and the opposite one (CBSL) is logically the worst
one;

• serving first the demands with the largest (o, d) distance
(DBLS) is smarter than doing the contrary (DBSL) but as
this a spectrum unaware strategy, its efficiency is still poor;

• grouping the demands according to the numbers of re-
quested slices makes sense as it likely limits fragmentation;
starting with the largest numbers of requested slices (SBLS)
seems more appropriate but the opposite (SBSL) also per-
forms reasonably well.

Based on the previous results, CBLS is used to compare more
precisely the performances obtained with objective functions
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Table 2. Mean and standard deviation of X(1) over the 6 considered orderings, for 5 sets of 40 demands

German Network

Objective TSI TPL MSI TSO TSO-TSI TPL-MSI

Mean/StD Mean/StD Mean/StD Mean/StD Mean/StD Mean/StD

Set1 OFO 79.8/0.1 47.7/2.4 ./. 48.9/2.3 69.6/0.2 66.3/0.2

Set1 OFH 73.5/4.1 50.2/2.6 68.2/4.5 53.8/1.2 65.8/2.7 62.3/2.4

Set2 OFO 81.5/0.1 45.4/2.0 ./. 50.5/1.7 77.6/0.1 57.4/0.2

Set2 OFH 74.6/4.4 44.2/4.3 69.4/4.9 54.2/2.6 71.9/2.0 53.7/2.4

Set3 OFO 77.4/0.1 52.8/2.1 ./. 53.9/1.4 71.1/0.3 66.1/0.6

Set3 OFH 72.0/3.3 53.3/1.8 67.8/4.7 55.6/5.2 68.3/2.6 64.9/3.3

Set4 OFO 71.4/0.1 36.3/1.6 ./. 46.2/1.1 62.8/0.2 40.8/0.6

Set4 OFH 63.8/5.9 37.5/1.4 59.2/7.6 48.7/1.9 59.1/3.8 40.1/1.7

Set5 OFO 82.8/0.1 44.4/1.9 ./. 47.0/2.4 77.2/0.6 55.2/0.6

Set5 OFH 73.3/2.2 45.9/2.4 69.2/4.2 51.6/1.7 68.3/1.3 52.2/1.3

M-NSF Network

Objective TSI TPL MSI TSO TSO-TSI TPL-MSI

Mean/StD Mean/StD Mean/StD Mean/StD Mean/StD Mean/StD

Set1 OFO 78.9/0.1 65.4/0.7 78.9/0.9 70.5/1.4 80.8/0.0 70.6/0.3

Set1 OFH 74.6/1.8 66.1/1.3 73.5/2.1 72.1/2.7 79.5/1.2 69.2/1.8

Set2 OFO 69.9/0.2 48.6/2.8 69.2/0.2 52.2/1.5 69.7/0.2 62.0/0.2

Set2 OFH 65.5/3.6 52.0/2.9 60.3/6.0 56.9/4.6 67.5/2.9 58.8/2.7

Set3 OFO 78.2/0.1 49.3/1.2 77.1/0.5 55.2/2.7 75.4/0.1 55.3/0.5

Set3 OFH 71.9/3.7 50.6/1.8 68.4/2.6 65.7/2.1 73.2/2.1 55.1/1.5

Set4 OFO 65.5/0.1 47.8/1.2 64.6/0.2 50.4/2.2 65.0/0.1 53.4/0.4

Set4 OFH 61.8/3.9 49.6/2.4 58.1/5.2 56.3/2.8 63.8/1.6 54.1/1.8

Set5 OFO 66.4/0.0 47.7/1.2 66.4/0.2 50.7/1.6 59.3/0.6 52.1/0.4

Set5 OFH 62.5/3.8 45.2/2.0 58.2/3.8 52.1/1.7 58.3/1.5 52.2/0.4

TSI, MSI, TSO-TSI and TPL-MSI. This is done by comparing the
X(1) values obtained with the CBLS ordering, for five sets of
40 demands and with the four spectrum-aware OFH mapping
methods on both considered networks. The obtained results are
displayed in Fig. 15.

Fig. 15 shows that in the German network, the four methods
are identically ranked for the five sets, the method using TSI
being ranked first. The methods using TSI, MSI and TSO-TSI
provide close values with all sets while the results of the TPL-
MSI method depend strongly on the considered set. As seen in
previous studies, M-NSF results are less contrasted: TPL-MSI
yields always the lowest values, while TSI performs the best in
four of the five sets and TSO-TSI is best in the last one.

To summarize, when using OFH, a method based on the
CBLS ordering and on objective function TSI provides a con-
sistently good performance; slightly less efficient methods are
SBLS ordering and objectives functions MSI or TSO-TSI.

C. Comparing OFO and OFH

The previous results show that for both OFO and OFH, using
TSI as an objective function provides the best results; for OFH, it
is also necessary to focus on the CBLS ordering. It now seems
worth comparing OFO and OFH.

This is done for a subset of the previously considered cases; in

those four cases (3 related to the German network, one to the M-
NSF network), the X(1) values obtained after mapping 40 initial
demands with either OFO or OFH using objective function TSI
and CBLS ordering, are compared; then, on top of each set of
two partially filled networks, ONO-TSI is used to map one by
one the demands of the 128 sets described in Section 4 till a first
blocking occurs; this allows comparing the respective numbers
of additionally mapped slices. The obtained results are reported
in Table 3 and Fig. 16.

Table 3. OFO versus OFH X(1) ratios after the initial mapping
of 40 demands and ratios of average of additionally mapped
slices

Network Germany M-NSF

Initial set of demands 1 3 5 1

X(1)OFO/X(1)OFH 1.04 1.04 1.09 1.00

Average of additional
mapped slices ratio
(OFO/OFH)

1.06 1.04 1.08 1.02

The OFO over OFH X(1) ratio for four different instances in
Table 3 varies between 1.00 and 1.09. This suggests that OFO
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Fig. 15. X(1) values obtained with CBLS ordering. 5 sets of
40 demands, 4 spectrum-aware OFH mapping methods (TSI,
MSI, TSO-TSI, TPL-MSI) for both German (top) and M-NSF
(bottom) networks.

works slightly better than OFH. This is confirmed by the ratios
of average of additionally mapped slices over the partially filled
networks. These last values are in the same range as the X(1)
ratio, with quite similar set-to-set variations.

Fig. 16. Distribution of the additionally mapped slice ratio
between OFO and OFH initial mapping with objective TSI
among 128 additional demand sets, for 4 initial sets of 40 de-
mands (3 for German and 1 for M-NSF network)

It is seen on the global distribution of the additionally
mapped slice ratios shown in Fig. 16 that, although OFO statisti-
cally allows mapping more slices than OFH, this is not always
the case.

To summarize, the above results show, as expected, the su-
periority of OFO over OFH when objective function TSI and
ordering CBLS are used; however, their performances are quite
close. From a practical point of view, this can be very interesting
in operational networks due to the complexity issue of OFO. In-
termediate approaches, where the ordered demands are served

in OFH by blocks (with a size providing a suitable computation
time) instead of being handled one by one, could possibly allow
approaching even closer the performance of OFO. This is outside
the scope of the present paper.

The results in Table 3 also confirm the pertinence of X(1) as an
indicator of the quality of a given mapping, as small differences
in X(1) also correspond to small differences in average on the
number of additional demands that can be accommodated on
a partially filled network. Possible methods for using the X(n)
metrics to predict network congestion are discussed in the next
section.

8. USING METRICS TO PREDICT CONGESTION

Based on the evolution of X(n) as a function of the mapped
slices observed in Section 6.A, the present Section investigates
whether monitoring X(n) when performing on-line mapping
can serve to predict an incoming network congestion. As X(n)
decreases when demands are mapped successively, a possible
way to predict such congestion could be to compare its value
with a given threshold.

A. Applying X(n) metric to predict congestion in on-line map-
ping: basic scenario

The scenario first considered, similar to the one studied in Sec-
tion 6.A, assumes that all demands are served one by one using
the same RSA algorithm and that once mapped, a demand re-
mains permanently.

Fig. 17 shows the distribution of the last value taken by
3X(3) before the first blocking, computed over 128 different
demand sets applied to the German network for the 4 on-line
RSA methods ONO-MSI, ONO-TSI, ONO-TPL and ONO-TSO.
X(3) has been chosen as congestion indication metric but results
would be quite similar for any of the other X(n) metrics.

Fig. 17. Distribution of last value of 3X(3), before the first
demand blocking among 128 demand sets for the German
network

As seen in Fig.17, the last X(3) value before blocking are glob-
ally higher and more widely spread for a non spectrum-aware
method (ONO-TSO, ONO-MSO) than for a spectrum-aware
method (ONO-TSI, ONO-MSI). Therefore, the threshold value
should be significantly higher for the former. This is illustrated
in Fig. 18 that represents the distribution of the number of addi-
tional mapped slices after X(3) becomes lower than 15: looking
at the 5% percentile, it is seen that with ONO-MSI and ONO-TSI,
it is possible to add at least 100 slices whereas the corresponding
numbers of additional slices for ONO-TPL and ONO-TSO can
be less than 50.
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Fig. 18. Distribution of the number of additional mapped
slices after X(3) becomes lower than 15, among 128 demand
sets for the German network

In order to gain some insight on the pertinence of such a
threshold-based approach, the focus is put on ONO-TSI and
ONO-TSO methods; Fig. 19 shows the number of additional
slices that can be mapped once X(3) has crossed a given thresh-
old; it is computed over 128 demand sets for the German net-
work. With Fig. 19, it is seen that the number of additional
mapped slices behaves quite linearly as a function of the thresh-
old value set for X(3) for both TSI and TSO. Thus, it may be
expected that monitoring the evolution of X(3) should allow
warning the network operator that the number of slices that can
be surely mapped becomes too low.

Fig. 19. Minimum number of additional mapped slices vs
X(3) threshold

The above results suggest that a threshold on X(n) could in-
deed provide an estimation of the minimum additional number
of slices that could be served before congestion occurs. However,
a threshold on the number of already mapped slices could also
be used in this simple scenario as the relationship between X(n)
and the number of mapped slices has been shown in Section 6.A
to be close to linear, especially for spectrum aware RSA methods.

B. Applying X(n) metric to predict congestion in on-line map-
ping: real-life scenario

In an operational network, some demands may be released and
thus, in the absence of rerouting of the remaining demands, the
spectrum could suffer from some excess fragmentation even if
the demands are mapped using a spectrum-aware algorithm
such as ONO-TSI. Other operations, e.g. demand rerouting in
response to fibre or equipment failure, could also lead to sig-
nificant discrepancies with the ideal scenario considered in the

previous Section. Using a simplistic threshold-based approach
(either on X(n) or on the number of mapped slices) cannot thus
be directly applied.

In order to take account of such situations, it is proposed
to use a threshold based approach augmented with a compar-
ison between the actual X(n) value (Xactual(n)) and the value
it would take in a reference scenario (Xref(n)), based on a well-
performing RSA algorithm. For this purpose, OFH-TSI with
CBLS ordering is selected as the well-performing RSA algorithm
since Section 7 has shown that it provides a good trade-off be-
tween performance and scalability. Let

∆X(n) = Xref(n)− Xactual(n)

Whenever the set of mapped slices is modified, Xactual(n))
and Xref(n)) are computed. Algorithm 2 is then applied.

Algorithm 2. Network Health monitoring algorithm

1: procedure MONITORING((∆X/X)thr, Xthr(n))
2: if ∆X(n)/Xref(n) > (∆X/X)thr then
3: Remap demands
4: if Xref(n) < Xthr(n) then
5: Send warning : Impending Congestion

Algorithm 2 states that when the relative difference be-
tween Xactual(n)) and Xref(n)) is higher than a given thresh-
old ((∆X/X)thr), a demand re-mapping with the reference al-
gorithm is triggered. Introducing such a threshold avoids too
frequent re-mappings. If Xref(n) becomes lower than a threshold
(Xthr(n)) the re-mapping may still be performed but in addition,
a message is generated to warn the operator about a congestion
risk that could require specific measures, such as activating or
deploying new resources.

It is worth noting that Xactual(n) and Xref(n) can easily be
computed and interpreted by a centralized network controller
in order to trigger the requested actions. In particular, in large
networks, computing X(n) is much simpler than simulating the
mapping of a set of random additional demands.

The choice of the threshold values introduced in the above
procedure depends on the actual use case, in particular the con-
sidered topology and operator’s policy. For example, in the case
of the German network, plausible values may be derived from
the X(n) behaviour commented in Section 6.A:

• (∆X/X)thr = 5%, as the comparison between OFO-TSI and
OFH-TSI in Table 3 shows that relative differences of a few
percent in X(n) indeed translates into significant perfor-
mance differences;

• Xthr(n) = 40/n, as Fig. 19 shows that, using on-line map-
ping with TSI objective, a threshold of 40 on 3X(3) enables
to map (in 95% of the considered cases) about 100 additional
slices, which represent about 20% of the total mapped slices;
therefore such a threshold value could be used to call for
new resources.

9. CONCLUSION AND PERSPECTIVES

This work addressed two key aspects of spectral resource man-
agement in flexgrid optical networks, namely their allocation
and how to assess the quality of this allocation.

An exact RSA method, recently proposed by some of the
authors [2], has been applied to various scenarios. As it takes
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into account all possible paths, it theoretically yields optimal
solutions, whatever be the objective function.

Scenarios design and results evaluation are important fea-
tures of the present work. The classical approach based on a
dynamic demand scenario in which the blocking probability is
the performance metric has not been considered.

This raised the issue of metrics to assess the quality of an
RSA at the network level. A first group of metrics was built by
extending the main existing fragmentation metrics, originally
defined at either link or path-levels, to (o− d) pair and network
levels. However, in order to evaluate how far from congestion
is the network, an alternative approach has been proposed by
introducing a family of network remaining capacity metrics
X(n), where n is the number of spectral slices requested by a
hypothetical demand. When plotted against the total number of
spectrum slices of the mapped demands, it has been shown that
all X(n) metrics decrease quite linearly, with a slope that varies
with the actual demand sets, among a range that depends on the
chosen objective. These newly defined metrics have been used
to design heuristic methods to perform on-line RSA.

The proposed RSA methods and newly definded metrics
have been applied to practical scenarios relying on the German
network topology and on a second one derived from the 9-node
NSF topology.

Among all on-line methods, the most efficient one is based
on an ILP formulation that minimizes the sum of the demands’
maximal used slice index (TSI). In particular, it is more efficient
that the one based on minimizing the max slice index among all
links (MSI) that was used in previous works.

The X(1) values are used to compare several off-line methods,
with either single or combined objectives, where the demand sets
are mapped either globally (OFO) or one-by-one with different
orderings (OFH). As in the on-line case, minimizing TSI was
shown to be the best performing objective for most instances
for both OFO and OFH. Using the best objective and a suitable
ordering, OFH has been shown to perform almost as well as
OFO in several small instances. This could be important for the
application to large instances, for which OFO is not applicable
contrary to OFH. Using a routing-oriented primary objective
followed by a spectrum-oriented secondary one, also improves
the scalability.

Finally, the paper discusses how a remaining capacity metric
such as X(n) can be used to monitor network health and thus
trigger corrective actions such as spectrum defragmentation
and/or deployment of new resources. A procedure that could
be applied in an operational context is suggested.

A first point that could deserve further investigations in more
sophisticated scenarios would be to identify the best usage of
the many X(n) metrics as the reported results do not show
significant differences related to the chosen n value.

Physical layer limitations were accounted for in the ILP for-
mulation by using a maximum reach constraint depending on
the requested amount of spectrum slices (that is implicitly on
the modulation format). There should be no major difficulty
to replace this simple approach with an interface between the
present optimization software and a more accurate tool such as
GNPy [21].

A natural extension of the present work would be to adapt the
proposed RSA methods to space-division multiplexing and/or
multi-band WDM.
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