
 1

Abstract—The introduction of new services requiring large
and dynamic bitrate connectivity can cause changes in the
direction of the traffic in metro and even core network segments
along the day. This leads to large overprovisioning in statically
managed virtual network topologies (VNT), designed to cope
with the traffic forecast. To reduce expenses while ensuring the
required grade of service, in this paper we propose the VNT
reconfiguration approach based on data analytics for traffic
prediction (VENTURE); it regularly reconfigures the VNT based
on predicted traffic thus, adapting the topology to both, the
current and the predicted traffic volume and direction. A
machine learning algorithm based on artificial neural network
(ANN) is used to provide robust and adaptive traffic models. The
reconfiguration problem that takes as input the traffic prediction
is modelled mathematically and a heuristic is proposed to solve it
in practical times. To support VENTURE, we propose an
architecture that allows collecting and storing data from
monitoring at the routers and that is used to train predictive
models for every origin-destination pair. Exhaustive simulation
results of the algorithm together with the experimental
assessment of the proposed architecture are finally presented.

Index Terms—Virtual Network Topology Reconfiguration,
Machine learning for Traffic prediction, Multilayer Networks.

I. INTRODUCTION
tatic virtual network topologies (VNT), where large
packet-switching nodes (e.g., IP/MPLS routers) are

connected through virtual links (vlinks) supported by static
connections in the optical layer, have been commonly
designed to cope with the off-net traffic forecast. However, the
introduction of cloud infrastructure in the telecom operator’
networks to create the telecom cloud [3] facilitates the
introduction of new types of service (e.g., live-TV and video
distribution [4]), which require large bitrate connectivity and
causes changes in the direction of the traffic along the day in
metro and even core network segments. This, together with the
overall traffic increment that operators’ networks are needing
to deal with year after year entails that static packet network
topologies were largely overprovisioned thus, increasing
network total cost of ownership (TCO). In view of that,
network operators are looking for more efficient architectures

Manuscript received June 10, 2016.
This work was presented in part at OFC 2016 [1] and [2].
Fernando Morales (fmorales@ac.upc.edu), Lluís Gifre, Marc Ruiz, and

Luis Velasco are with the Optical Communications Group (GCO) at
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.

Luis M. Contreras and Victor López are with Telefonica R&D (TID),
Distrito Telefonica, Madrid, Spain.

able to reduce TCO, while providing the required grade of
service. To that end, VNT need to be dynamically adapted not
only to variations in volume, but also to changes in the
direction of the traffic.

To support connectivity dynamicity, the IETF has recently
standardized the Application-Based Network Operation
(ABNO) architecture [5], which includes among others: i) the
ABNO controller as the entrance point to the network for
provisioning and advanced network coordination. It acts as a
system orchestrator invoking its inner components according
to a specific workflow; ii) a Virtual Network Topology
Manager (VNTM) in charge of reconfiguring on demand
VNT; iii) a Path Computation Element (PCE) to compute the
path for new Label Switched Paths (LSP) on the Traffic
Engineering Database (TED); iv) a provisioning manager
(e.g., a SDN controller) responsible for managing LSPs, both
at the optical layer (Lambda Switch Capable, LSC) and at the
packet layer (Packet Switch Capable, PSC); and v) the
Operations, Administration, and Maintenance (OAM) Handler
to receive notifications and monitored counters.

To automate VNT adaptability, traffic needs to be
monitored in the packet nodes and counters be accessible by
the OAM Handler. In particular, the disaggregated traffic
volume forwarded by each packet node to every other
destination node should be available. In addition, notification
can be also triggered when the used vlink capacity reaches
some configured threshold (e.g., 90%). In fact, threshold
triggered VNT reconfiguration where the OAM Handler
receives notifications from the control plane and reroutes
individual IP/MPLS paths (PSC LSPs) in a reactive manner
was proposed in [6].

However, the number of transponders to be installed tends
to be as high as in a static VNT since dimensioning must be
done to cope with the maximum of daily traffic forecast
during a planning period (e.g., one year). In view of that, we
propose an alternative approach to adapt the VNT based on
traffic prediction that can reduce the number of transponders
to be deployed in scenarios were traffic variations are as a
result of changes in the traffic directionality.

Because of its benefits, VNT reconfiguration has been
widely studied in the literature. Authors in [7] proposed a
centralized path reallocation module running periodically
aiming at minimizing the number of used transponders. To
follow traffic changes, authors in [8] proposed to add/remove

Virtual Network Topology Adaptability based
on Data Analytics for Traffic Prediction

Fernando Morales, Marc Ruiz, Lluís Gifre, Luis M. Contreras, Víctor López, and Luis Velasco

Invited Paper

S

 2

one single lightpath each time the VNT is reconfigured.
Another topic is using monitored data to produce estimations
that can help to anticipate changes in the traffic and
proactively reconfiguring the VNT beforehand. In that regard,
authors in [9] proposed a method for reducing errors in traffic
estimations, while authors in [10] used estimated traffic to
predict pre-defined scenarios. Finally, authors in [11] used
future traffic estimation to trigger a VNT reconfiguration after
the detection of an anomalous amount of traffic between two
nodes.

VNT reconfiguration requires from powerful algorithms to
analyze large amounts of traffic monitoring data to anticipate,
when possible, traffic changes. In this paper, we propose using
big data analytics to periodically (e.g., every hour) predict
traffic. In case the VNT needs to be reconfigured, predicted
traffic is used as input of a VNT optimizer that finds the
topology for the next period thus, implementing a decision
making process based on the observe-analyze-act loop [11].
Specifically, the contribution of this paper is two-fold:

1) targeting at adapting the VNT to future traffic conditions,
in section III we devise a robust and adaptive artificial
neural network (ANN) model that is afterwards used as
input of the VNT reconfiguration problem; we call this
approach as VNT reconfiguration based on traffic
prediction (VENTURE). The VENTURE problem is
formally stated and formulated as an ILP model in section
IV; in view of its complexity, a heuristic algorithm
providing better trade-off between complexity and
optimality is finally designed;

2) a big data network manager architecture to support VNT
adaptability based on traffic prediction from applying data
analytics on the monitored traffic data, as well as a
workflow assuming the ABNO architecture are proposed
in section V.

The discussion is supported by the results from exhaustive
simulation over a realistic scenario and from the experimental
validation of the big data -based architecture in section VI.

II. VNT DESIGN AND RECONFIGURATION OPTIONS
As introduced above, several approaches to design and

dynamically reconfigure the VNT can be devised. In this
section let us first review two of them: i) the static VNT design
and ii) the threshold-based VNT capacity reconfiguration.

In the static VNT design, the topology is designed and
dimensioned to cope with the maximum of daily traffic

forecast for every origin-destination (OD) pair during a
planning period. The resulting topology is thus, capable of
supporting the traffic at any time during that period provided a
perfect traffic forecast. Fig. 1 presents an example for a seven-
node VNT, where the capacity of every vlink supports the
maximum daily traffic volume. For illustrative purposes, the
plot in Fig. 1a shows the variability in link 6-1 that needs to be
dimensioned with a capacity of 200 Gb/s. Fig. 1b shows the
resulting VNT with the capacity of every vlink. It is clear, in
view of Fig. 1a that the main drawback of the static VNT
design is over-provisioning since most of the available
capacity in the VNT will remain underutilized along the day.

To reduce capacity over-provisioning, that of the vlinks can
be adapted over time instead of allocating a constant amount
of resources. Let us assume that the capacity of the existing
vlinks can be increased and decreased to follow the traffic
variations but no new vlinks can be created or removed,
keeping hence the VNT invariant. Traffic can be monitored at
IP routers and when the amount of traffic through a vlink
reaches some threshold (e.g., 90%) the network controller can
increase the capacity of such vlink by setting-up a parallel
lightpath between the two IP routers; conversely, unused
capacity can be released by tearing down lightpaths.

The example in Fig. 2a presents monitored traffic data
captured during the last two hours in node 6, where traffic
from that node to every other node in the VNT (labelled as 6-
>N), from node 6 to node 7 (6->7), and from node 6 to every
other node except to node 7 (6->N\{7}) are plotted. Fig. 2b
shows the initial VNT where every vlink is supported by a 100
Gb/s lightpath in the underlying optical layer; the IP/MPLS
path for OD 6-7 is also shown. A 90% threshold is configured
and, in the event of threshold violation, the capacity of some
vlinks is increased. In our example, two threshold violations
for vlinks 1-6 and 1-7 are received, so the VNT capacity is
updated (Fig. 2c). It is worth noting that IP/MPLS path for OD
6->7 is not affected by the VNT reconfiguration. As shown in
the example, the threshold-based reconfiguration is able to
adapt the VNT capacity to traffic changes, so resources in the
optical layer are allocated only when vlinks need to increase
their capacity. However, the same number of transponders as
in the static VNT design approach need to be installed in the
IP routers; for instance, in the example in Fig. 2 two
transponders are installed in routers 6 and 7 and another four
in router 1 reserved for vlinks 1-6 and 1-7.

Let us assume now that, instead of monitoring vlink

Fo
re

ca
st

 T
ra

ffi
c

(G
b/

s)

Hour of the day

6 7

2

3

1

4

5

(b)

200

0

50

100

150

200

0 4 8 12 16 20 24

Link 6-1

Capacity x1

(a)

200

100

300

200

300

Tr
af

fic
 (G

b/
s)

Time (min)

6 7

2

3

1

4

5

(c)

200 200

6 7

2

3

1

4

5

(b)

100 100

0

50

100

150

200

0 20 40 60

6->7
6->N\{7}
6->N
Vlink Threshold

(a)

90% threshold
exceeded

60 80 100 120

6 7

2

3

1

4

5

(a)

100 100

6 7

2

3

1

4

5

(b)

100 100

100

Fig. 1. Static VNT design. Fig. 2. Threshold-based VNT capacity reconfiguration. Fig. 3. VNT reconfig.

 3

capacity usage, OD traffic is monitored in the routers. Indeed,
analyzing the plots in Fig. 2a we realize that traffic 6->7 is
responsible for the registered traffic increment. In this case, let
us assume that new vlinks can be created/removed in addition
to increasing the capacity of the existing ones, so the VNT is
actually changed. We propose an approach where OD traffic is
periodically analyzed and the current VNT is reconfigured
accordingly. An example following this approach is illustrated
in Fig. 3, where the OD traffic 6->7 is analyzed at t=60 and a
maximum value (e.g., 90 Gb/s) is predicted for the next hour.
Then, a new vlink between nodes 6 and 7 can be created by
establishing a lightpath on the optical layer and traffic 6->7
rerouted (Fig. 3b). Note that this solution reduces two
transponders to be installed in router 1 compared to the
previous approaches. It is clear that this reduction will happen
when the amount of traffic is large enough. In particular, when
the amount of traffic exceeds the capacity of the installed
transponders (e.g., 100 Gb/s) direct vlinks can be created for
part of that traffic, while the residual part could be routed
through a different IP/MPLS path.

In order to adapt the VNT to changes in the traffic, we
propose a predictive model built upon the monitored OD
traffic data. For every OD pair, meaningful statistical values
are predicted (e.g., the maximum bitrate for the next hour) and
used to adapt the VNT to meet the future traffic matrix,
assuming that every OD traffic can be conveyed through two
IP/MPLS paths at the most. We call this approach as
VENTURE.

III. DATA ANALYTICS -BASED VNT ADAPTATION
In this section, we present the proposed modules and the

machine learning procedure for the VENTURE approach. We
assume that traffic monitoring data is collected at the edge IP
routers at regular intervals, e.g., every 15 minutes. Every edge
router collects a set of samples for the traffic to every other
destination router, which is stored in a collected data
repository (Fig. 4). Note that since we focus on OD traffic
monitoring, |N|·(|N|-1) traffic samples need to be stored at
every monitoring interval, where |N| is the number of routers.

Following a predefined time period, e.g., every hour, a time
series from the collected data repository is retrieved for each
OD pair and pre-processed applying data stream mining
sketches to conveniently summarize collected data thus
producing modeled data representing the OD pair that is stored
in a modeled data repository. Modeled data includes, among
others, for every OD the minimum, maximum, average, and
last collected bitrate within the hour.

The set of modeled variables for the current period t is
stored in a repository together with variables belonging to
previous periods. A prediction module based on machine
learning techniques generates the OD traffic matrix predicted
for the next period that is used by a decision maker module to
decide whether the current VNT needs to be reconfigured. In
case that a reconfiguration needs to be performed, the current
and the predicted OD traffic matrices are provided to the VNT

optimizer to adapt the VNT. Once the algorithm finds a
solution, the network controller would be responsible of
implementing the changes in the data plane.

The prediction module consists of ANN-based models [12],
selected because of its inherent capability of adapting to traffic
changes in a non-supervised manner; we consider different
ANNs to separately predict the traffic of each OD pair. Each
ANN receives as input p previous maximum bitrate measures
of the corresponding OD pair from the modeled data
repository and returns its expected maximum bitrate at time t.
Note that considering maximum instead of average bitrate
allows adapting the VNT to the maximum expected traffic
hence, ensuring a better grade of service.

Since the size of an ANN depends on the number of inputs,
hidden layers and neurons, we consider ANN models with p
inputs, s neurons in a single hidden layer and one output.
Consequently, s·(p+1) coefficients need to be found to specify
every ANN. Aiming at keeping the number of coefficients
small, we designed the algorithm in Fig. 5 that has to be
triggered every time an ANN needs to be refitted. It consists in
three phases: i) input data pre-processing, ii) selection of
significant inputs, and iii) dimensioning of the hidden layer.

In the first phase, a time series X with the maximum bitrate
for the selected OD pair is retrieved from the modelled data
repository. The auto-correlation function (ACF) is applied to
X and a list of lags is returned, where the i-th lag contains the
average correlation between every value in the time series and
its i-th previous value. Based on the lags analysis, a method is
triggered to detect whether a periodic repetitive (seasonal)
pattern is observable in X [13]. The resulting period per
defines the number of inputs of the ANN; in case of non-
seasonal data without observable periodical behavior, we
assume per=24 (i.e. one day) for convenience. Once per is
obtained, X is transformed into a dataset D used for ANN
fitting. Every row in D corresponds to a time t within the time
series and every column corresponds to a lag within per.

The second phase is an iterative procedure that finds the
ANN with the best trade-off between accuracy and number of
inputs. This trade-off is captured numerically by the Akaike
Information Criterion (AIC) [12]. Starting with p=per, the
ANN routine fits an ANN from dataset D and returns the
corresponding AIC value. While the AIC value obtained
improves the lowest one obtained so far, the best ANN is
stored and p is decremented effectively removing one input.
Aiming at reducing the complexity of selecting the input to be
removed, we select the lag with lowest ACF. When the
minimum AIC is reached, the third phase is executed to
increase even more the accuracy of the model by adding
hidden neurons until the AIC does not improve. The best ANN
is eventually returned.

We face next the VNT reconfiguration (VENTURE)
problem to be solved in the VNTM.

IV. THE VENTURE PROBLEM
In this section, we first formally state the VENTURE

 4

problem and devise an ILP to model it. In light of the

Prediction Decision
Maker

Data Stream
Mining

t

Modelled
Data

VNT
Optimizer

Network Controller

Modelled
Data

t0 ….

Predicted
OD Matrix

Multilayer
Network

VNT

Current
Traffic

IP/MPLS Layer

Optical Layer

OD Monitored
Data

601 …

Collected
Data Repository

X←getModelled
MaximumTS(o)

sort(lags, “ACF”)

i) pre-processing

minAIC=∞
s=1

<W,aic>←ANN(D,s)

aic<minAIC?

minAIC←aic
W* ← W; D* ← D

D.removeCol(lags[1].col)
lags.pop(1)

ii) input selection iii) hidden layer dimensioning

s++

aic<minAIC?

yes

no

yes

<W,aic>←ANN(D*,s)

minAIC←AIC
W* ← W

D←TStoDS(X,per)

per←findPeriod(lags)

lags←ACF(X)

no

Return W*

Start

Fig. 4. Applying the observe-analyze-act loop for VNT reconfiguration. Fig. 5. Self-learning ANN fitting algorithm.

complexity of the problem, a heuristic algorithm is eventually
devised.

A. Problem Statement
Given:

• The current VNT represented by a graph G(N, E’), being N
the set of routers and E’ ⊆ E the set of current vlinks. Set E
is the set of all possible vlinks connecting two routers.

• The set P with the transponders available in the routers;
every transponder with capacity B.

• The current traffic matrix D.
• The predicted traffic matrix OD. The bitrate bo of OD pair

o must be served following one single path. Only in the
case that bo is enough to fill transponders with an amount
over a given boundary usage tbu, the bitrate of pair o can
be split into two flows and served through different paths.

Output: The reconfigured VNT G*(N, E*), where E*⊆ E, and
the paths for the traffic on G*.

Objective: Maximize current and predicted served traffic
matrices, whilst minimizing the total number of transponders
used.

B. Mathematical formulation
Note from the problem statement that both, the current and

the predicted traffic matrices must be served. Consequently,
we generate an input traffic matrix OD, where every pair o is
the maximum of both, the current and the predicted traffic. In
addition, a parameter ko will be used to specify whether pair o
can be served using two paths.

The following sets and parameters are defined:
Topology:
N set of routers, index n.
E set of all possible vlinks, index e.
E+(n) subset of E with vlinks outgoing from router n.

E-(n) subset of E with vlinks incident in router n.
Traffic:
OD set of origin-destination pairs, index o. Every o is

defined by the tuple <so, to , do, bo>, where so and to
specify the source and target nodes, do the currently
served bitrate and bo the maximum of current and
predicted bitrate to serve for pair o, respectively.

ko maximum number of paths to serve pair o; ko = 2 if bo
≥ tbu; ko = 1 otherwise.

Equipment:
P set of transponders, index p. Every transponder

consists of one transmitter (tx) and one receiver (rx).
P+(n) subset of tx transponders in router n.
P-(n) subset of rx transponders in router n.
P(n) subset of transponders in n. P(n) = P+(n) U P-(n).
B capacity of every transponder.

The decision variables are:
xp binary, 1 if transponder p is used, 0 otherwise.
xpe binary, 1 if transponder p is used to support vlink e, 0

otherwise.
xok integer, fraction of bitrate of pair o served through path

k.
xoke integer, fraction of bitrate of pair o served through path

k using vlink e.
zoke binary, 1 if pair o is routed using path k through vlink e,

0 otherwise.
yn integer+, number of transponders used at router n.
vo integer+, fraction of unserved bitrate of pair o.

Then, the proposed ILP formulation is as follows:

∑∑
∈∈

++
Nn

n
ODo

o yvP)·1|(|min (1)

subject to:

 5









==∈∀−
∈

=∈∀
==∈∀

=− ∑∑
−+ ∈∈

oo

oo

o

oo

nEe
oke

nEe
oke

tnkkODo
tsNn

kkODo
snkkODo

zz

,..1,1
},{\

,..1,0

,..1,1

)()(

(2)

EekkODozbx ookeooke ∈=∈∀⋅≤ ,..1,

(3)
 EekkODoxx ookoke ∈=∈∀≤ ,..1, (4)

EekkODoxzbx ookeokeook ∈=∈∀≤−⋅− ,..1,)1((5)

ODobvx oo

k

k
ok

o

∈∀≥+∑
=1

 (6)

ODodx o

k

k
ok

o

∈∀≥∑
=1

 (7)

NjiEjiexBx
iPp

pe
ODo

k

k
oke

o

∈∈=∀⋅≤ ∑∑ ∑
+∈∈ =

,|),(
)(1

(8)

NjiEjiexBx
jPp

pe
ODo

k

k
oke

o

∈∈=∀⋅≤ ∑∑ ∑
−∈∈ =

,|),(
)(1

(9)

)(,
)(

nPpNnxx p
nEe

pe
+

∈

∈∈∀≤∑
+

(10)

)(,
)(

nPpNnxx p
nEe

pe
−

∈

∈∈∀≤∑
−

(11)

Nnyx n
nPp

p ∈∀≤∑
+∈)(

 (12)

Nnyx n
nPp

p ∈∀≤∑
−∈)(

 (13)

The multi-objective cost function (1) minimizes both,
unserved traffic and used transponders, where the highest cost
corresponds to the first term.

The network flow constraints in (2) define paths on the
topology for every OD pair. Each of these paths has a
continuous capacity assignment along its route, as imposed by
constraints (3)-(5). Notwithstanding constraint (6) allows
serving only a fraction of the total capacity bo of every OD
pair; that fraction has to include at least the currently served
bitrate as stated in constraint (7). Note that optimal solutions
might include loops that they can be safely removed in a post-
processing phase.

Constraints (8)-(13) deal with transponder equipment.
Constraints (8) and (9) assign transmission and reception
transponders to vlinks, respectively to support the capacitated
paths. Constraints (10) and (11) prevent from assigning one
transponder to multiple vlinks. Finally, constraints (12) and
(13) compute the maximum between the number of
transponders used for transmission and reception at every
node, which represents the number of transponders to be
installed in every router.

ILP problems belong to the NP-complete complexity class,
as proven in [14]. The size of the proposed formulation is
O(|N|4+|P|·|N|2) variables and O(|N|4+|P|·|N|) constraints. As an

example, the size of the above formulation for the network
instance with ko=2 and 14 nodes presented in section VI is of
2·105 variables and 105 constraints. As a result, solving the
proposed formulation becomes impractical for realistic
scenarios even using commercial solvers; in our tests, solving
times were longer than 10 h. Consequently, we developed a
heuristic algorithm that provides much better trade-off
between optimality and complexity.

C. Heuristic algorithm
We devise a heuristic algorithm to solve the VENTURE

problem consisting of three phases; the pseudocode is
presented in Table I. After deallocating current traffic and
releasing used resources (lines 2-5 in Table I), bitrate bo of OD
pairs is split into two different flows and stored in set Q: flow
go carries bitrate enough to fill transponders with an amount
over tbu and flow lo carries the remaining bitrate; these flows
will be routed through different paths (lines 6-7). Next, the
first two phases focus on routing every flow go through the
direct vlink connecting source and destination routers (lines 8-
9); sets F stores the path of the flows. The first phase selects
those flows for which a direct vlink already exists in the
current VNT and the second phase does the same for the rest
of flows thus, creating new direct vlinks. After these two
phases, the residual bitrate uo is checked and stored in set U. If
all traffic has been already served, the algorithm ends (lines
10-12); otherwise, OD pairs are sorted by the amount of
unserved bitrate and the third phase eventually routes the
unserved bitrate by possibly increasing the capacity of existing
vlinks or by adding new ones (line 13). The reconfigured VNT
and the new routing are eventually returned.

The algorithm for the first phase is detailed in Table II. The
uncapacitated original topology is used to route flows go
through an existing direct vlink so as to introduce inertia to the
changes in the current topology (line 3 in Table II). The
number of transponders to be allocated in the end routers of
the direct vlink is computed as the minimum between the
amounts of transponders needed to allocate go and the unused
transponders (lines 4-7); those transponders are allocated to

TABLE I MAIN ALGORITHM
INPUT G(N,E’), D, OD, B, tbu
OUTPUT G*, F

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

Q ← ∅, U ← ∅
for each d ∈ D do dealloc(G, d)
for each e ∈ E’ do

setCapacity(e, 0)
releaseTransponders(e)

for each o ∈ OD do
Q ← Q U {<o, go, lo> = splitOD(o, B, tbu)}

<Q, F’> ← PhaseI(G, Q)
<G’, Q, F’’> ← PhaseII(G, Q)
for each q ∈ Q do

U ← U U {<o, uo = go + lo>}
if U=∅ then return <G’, F’ U F’’>
<G*, F’’’> ← PhaseIII(G’, U, thr)
if F’’’=∅ then return INFEASIBLE
return <G*, F’ U F’’ U F’’’>

 6

TABLE II PHASEI ALGORITHM

INPUT G(N,E), Q
OUTPUT Q, F

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

F ← ∅
for each q=<o, go, lo> ∈ Q do

if e=(so, to) ∉ E OR go=0 then continue
no ← ceil (go / B)
ns ← getNumUnusedTransponders (so, P+)
nt ← getNumUnusedTransponders (to, P-)
n ← min{no, ns, nt}
allocateTransponders(e, n)
f ← SP(G, o, go)
if f ≠ ∅ then

allocate(G, f)
F ← F U {f}
go ← go – f.b

return <Q, F>

add capacity to the direct vlink (line 8) and a shortest path is
computed on the resulting VNT (line 9). In case that a path is
found (i.e., capacity was added to the direct vlink), the path is
allocated and the amount of served bitrate reduced from the
one requested (lines 10-13). The updated set Q and the found
paths stored in set F are eventually returned (line 14).

The second phase is similar to the first phase, but for flows
go through non existing direct vlink. New capacitated direct
vlinks are thus, added to the topology to support those flows.

In the third phase, the current topology is extended to a full
mesh topology by adding uncapacitated vlinks (lines 2-4 in
Table III). Next, a randomized routing procedure is run for a
given number of iterations (lines 6-31); at every iteration, the
initial extended topology and the unserved bitrate are cloned
and the latter randomly sorted, giving higher priority to flows
with higher remaining traffic (lines 7-12). Those flows with
unserved bitrate are routed using one single path (lines 13-16).
Aiming at minimizing the number of used transponders, link
metrics are set proportional to the number of transponders
needed to allocate the remaining capacity of the current flow
(line 15). If no path is found, the corresponding cost is added
to the iteration cost (lines 17-19); otherwise, in case the path
capacity does not serve the remaining bitrate, we check
whether the capacity of its links can be increased using the
available resources, i.e., transponders in the end nodes and
spectral resources to create a lightpath at the optical layer
(lines 20-22). Finally, the path is allocated and the remaining
bitrate of the flow is updated, as well as the iteration cost
(lines 23-26).

Once a solution has been built, a local search procedure is
executed (line 27) aiming at finding a local minimum. The
best topology and the found paths are returned as final
solution (lines 29-32).

The local search procedure tries to reduce the total number
of used transponders during the constructive phase. Since the
number of transponders used in a node is computed as the
maximum between transmission and reception, this procedure
focuses on releasing transponders that actively contribute to

TABLE III PHASEIII ALGORITHM

INPUT G(N, E), U, thr
OUTPUT G*(N, E*), F

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

G*(N, E*) ← G(N, E); F ← ∅
for each e=(i, j) ∉ E | i, j ∈ N, i ≠ j do

E* ← E* U {e}
setCapacity(e, 0)

bestCost ← +∞
for ite = 1 .. maxIter do

iteUnserved ← 0
Gite ← G
Uite ← U
Fite ← ∅
for each u ∈ Uite do u.order ← rand(0,1) * uo
sort(Uite, u.order, DESC)
for each u ∈ Uite do

if u.uo = 0 then continue
updateMetrics(Gite, u.uo)
f ← SP(Gite, u.o, u.uo)
if f = ∅ then

iteCost ← iteCost + u.uo * (|P|+1)
continue

if f.b < u.uo AND canIncreaseCap(f, Gite, u.uo) then
increaseCap (f, Eite, u.uo)
f.b ← u.uo

Fite ← Fite U {f}
allocate(Gite, f)
u.uo ← u.uo – f.b
iteCost ← iteCost + u.uo * (|P|+1)

<Gite, Fite> ← doLocalSearch(Gite, Fite)
iteCost ← iteCost + numUsedTransponders(Gite)
if iteCost < bestCost then

bestCost ← iteCost
<G*, F> ← <Gite, Fite>

return <G*, F>

TABLE IV LOCAL SEARCH PROCEDURE
INPUT G(N,E), F
OUTPUT G*(N,E*), F*

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

G* ← G; F* ← F; Erem ← E
while Erem ≠ ∅ do

for each e ∈ Erem do
e.balance ← computeTransponderBalance (e)

sort(Erem, e.balance, DESC)
e ← removeFirst(Erem)
Fe ← getPaths(e)
<Gaux, Faux> ← <G*, F*>
release(Gaux, Fe)
Eaux ← Eaux \ {e}
sort(Fe, f.b, DESC)
allRerouted ← true
for each f ∈ Fe do

recomputeZeroCostLinks(Gaux)
f’ ← SP(Gaux, o, f.b)
if f’ = ∅ then

allRerouted ← false; break
allocate(Gaux, f’)
Faux ← (Faux \ {f}) U {f’}

if allRerouted then <G*, F*> ← <Gaux, Faux>
return <G*, F*>

 7

Core
Network

Big Data Network
Manager

Monitoring Configuration

NMS / OSS

ABNO

ABNO
Controller

TED LSP-DB

Active Stateful
PCE

Provisioning Manager

VNTM

Input Traffic

Input Traffic

OAM
Handler

Modeled
data

Data Stream
Mining

Prediction Decision
Maker

OAM Handler

Data Collector

NoSQL
DB

D
istributed

Synchronization

Big Data Repository

Reconfig VNT
(predicted traffic)

OK

OAM
Handler VNTM

VNT Reconfig
Computation

NMS

VNT Reconfig
Authorisation

ABNO
Controller

OK

Monitoring Data Stream
Mining and Traffic Prediction

Reconfig VNT
(predicted traffic)

Announce
new vLinks

Announce
updated vLinks

1

2 3 4

7

1112

10

PCE

Set-up
LSC LSPs

5

6
Initiate LSC LSPs

Reroute
PSC LSPs

8
Update PSC LSPs

Tear-down
LSC LSPs

9
Initiate LSC LSPs

(Remove)

Fig. 6. Big data network manager architecture. Fig. 7. Proposed workflow.

that maximum at every node. The algorithm is detailed in
Table IV, where all current vlinks in the VNT are processed
(lines 2-20). The vlink with ports most actively contributing to
the cost function is selected along with the set of paths routed
through it (lines 6-7). This set is released from the VNT and
sorted with respect to the bitrate (lines 8-11). Next, the set of
paths is re-routed by possibly using new vlinks at zero
objective cost (lines 13-15). In case of a feasible solution, the
VNT is updated with these changes (line 20).

Table V presents the time complexity of the proposed
algorithms, where R0 is the worst case time complexity to find
a feasible lightpath to support every direct vlink. For
illustrative purposes, the computation time for the scenario
with 14 nodes presented in section VI is also provided.

TABLE V TIME COMPLEXITY OF THE ALGORITHMS

Phase I/II Phase III (per iter) Local Search
O(|N|2·R0) O(|N|2·(|E|·log|N|+R0)) O(|E|2·(log|E| + |Fe|·log|N|))

<1m 298ms 234ms

V. PROPOSED ARCHITECTURE AND WORKFLOW
To support the generic modules introduced in section III for

VENTURE, we propose the architecture in Fig. 6. A big data
repository consisting of a distributed database and a data
collector is used to store collected data. ABNO’s OAM
Handler includes data stream mining sketches, the modeled
data repository, the prediction module running the proposed
ANN to anticipate next period traffic conditions and the
decision maker that decides whether the VNT should be
updated based on the predicted traffic. Finally, ABNO’s
VNTM is in charge of computing the new VNT.

Fig. 7 presents the proposed workflow. Monitored traffic
data is sent to the collected data repository ready to be
analyzed. Periodically, ABNO’s OAM Handler retrieves
aggregated monitored data and applies data stream mining
techniques on the received data to transform monitored data

into modeled data. Modeled data is used by the prediction
module, running the proposed ANN (labeled as 1 in Fig. 7).
Based on the predicted traffic, a decision maker module
decides whether the VNT should be updated. In case of VNT
reconfiguration, the VNTM is in charge of computing the new
VNT. To that end, the OAM Handler issues a request to the
ABNO controller that includes the predicted traffic together
with some other parameters to facilitate VNTM computation
(2) and the ABNO controller initiates the workflow
forwarding the request to the VNTM (3).

The VNTM computes the new VNT with the predicted
traffic matrix received from the OAM Handler (4). Continuing
with our seven-node VNT example, let us assume that the new
VNT consists on adding the new virtual link 6-7 and reducing
the capacity of some other vlinks. The solution is first notified
to the NMS (5) and then, its implementation is divided into a
sequence to avoid traffic disruption as anticipated above:
firstly, lightpath (LSC LSP) 6-7 is created (6) and the new
vlink is advertised (7); next, PSC LSPs are rerouted (8) (a
make-before-brake strategy to avoid disruption can be
implemented) and unused capacity in vlinks 1-3 and 1-4
removed by tearing down the underlying LSC LSPs (9); new
vlinks’ capacity is advertised (10). Upon VNT reconfiguration
completion, VNTM replies the ABNO controller (11), which
eventually replies the OAM Handler (12).

VI. ILLUSTRATIVE RESULTS
This section focuses first on validating the VENTURE

approach through simulation. Next, the proposed architecture
is experimentally assessed in our SYNERGY testbed.

A. Simulation results
For evaluation purposes, we implemented an event-driven

simulator in OMNeT++ containing the modules described in
Fig. 4. To measure the effect of volumetric and directional
changes in traffic, we implemented generators that inject
traffic following two pre-defined traffic profiles named as

 8

N
or

m
al

iz
ed

 b
itr

at
e

Hour of the day

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22

DC2DC
Users

a) b)

625

638

650

663

675

1 2 3 4 5 6 7 8 9 10
p

AI
C

s AIC
Error (%)

avg max

1 631.43 2.07% 10.44%

2 616.65 2.64% 9.55%

3 644.46 3.21% 10.68%

Fig. 8. Average daily traffic profiles used in the simulation (a) and
ANN goodness-of-fit (b).

Users and Datacenter-to-Datacenter (DC2DC) (see average
daily evolution in Fig. 8a). In addition, some random values
around the average value are usually observed in real traffic.
In consequence, a function εt representing random variable
traffic is also added. We assume that εt follows a 0-centered
normal (Gaussian) probability distribution, i.e., εt~N(0,σ2)
where σ represents the standard deviation. In consequence, the
daily traffic profile of every OD pair can be defined as YOD(t)
= α · f(t) + εt, where function f(t) represents the average traffic
profile and α is a scaling factor in Mb/s.

Finally, the set of nodes was divided into two subsets to
generate changes in the direction of the traffic; ODs with
destination one of the nodes in the first subset follow the
Users profile, while the others follow the DC2DC one. We
consider a scenario where a maximum of 26 × 100 Gb/s
transponders per node are equipped. With such configuration,
the static and threshold-based approaches are applied to a full-

mesh 14-node VNT, where the initial capacity of each vlink
ranges from 100 to 200 Gb/s.

The ANN models are trained applying the fitting algorithm
in Fig. 5 on a training dataset with modelled data belonging to
the last week. Results in Fig. 8b illustrate the average size and
goodness-of-fit of ANN models. Recall that during the input
selection phase, the number of inputs p is decreased aiming at
minimizing the AIC value. We observe that the minimum AIC
is on average reached at p=4, being mainly selected those
inputs from t-1 to t-4. Results from the hidden layer
dimensioning phase are shown in the table embedded in Fig.
8b, for a number of hidden neurons ranging from 1 to 3. Note
that the minimum AIC is obtained for s=2, which results in an
ANN model with 10 coefficients that accurately predicts the
output variable with a good trade-off between average and
maximum relative errors (2.64% and 9.55%, respectively).

Next, we compare the effect in the unserved traffic and the
number of used transponders under the threshold-based
approach (we assumed 90% threshold) that runs continuously
and under the VENTURE one that it is triggered at fixed
intervals of one hour. For the sake of completeness, the static
case where no reconfiguration is performed is also included.

Fig. 9 presents the obtained blocking probability for the
range of loads considered; values for both, the static and the
threshold-based approaches are omitted since yield zero
blocking probability. In the case of the VENTURE approach,
Fig. 9a plot the average and maximum hourly blocking along a

Normalized load Hour of the day Hour of the day

B
lo

ck
in

g
pr

ob
ab

ili
ty

 (%
)

B
lo

ck
in

g
pr

ob
ab

ili
ty

 (%
)

B
lo

ck
in

g
pr

ob
ab

ili
ty

 (%
)

a) b) c)

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

0.25 0.5 0.75 1

maximum

average

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

0 2 4 6 8 10 12 14 16 18 20 22
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 9. Average and maximum hourly blocking prob. of VENTURE vs. load (a). Blocking prob. along one day and for normalized loads 0.48
(b) and 1.0 (c).

Normalized load Hour of the day

U
se

d
tr

an
sp

on
de

rs

M
ax

im
um

 u
se

d
tr

an
sp

on
de

rs

a) b) c)

0

50

100

150

200

250

300

350

400

0.25 0.5 0.75 1

static
threshold-based
venture

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20 22
Hour of the day

N
or

m
al

iz
ed

 O
D

 b
itr

at
e

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 10. Maximum used transponders vs. load (a). Used transponders along one day and for normalized loads 0.48 (b) and 1.0 (c).

 9

day. We observe that, for a wide range of traffic loads,
maximum blocking probability is below 0.24%, while that on
average is virtually zero. Fig. 9b-c analyze the evolution of
blocking probability during the day for the lowest and highest
load, respectively. We observe that small peaks of blocking
probability appear related to abrupt changes in the injected
traffic and last for a couple of hours at the most, which is the
time that VENTURE takes in fully adapting the VNT to traffic
changes with the specific configuration selected.

Fig. 10 focuses on the use of transponders. Fig. 10a plots
the maximum transponder usage as a function of the load for
each approach. Both, the static and the threshold-based
approaches show a constant transponder usage for loads lower
than 0.5, which is increased from that load up. For low loads,
the capacity of vlinks in the fully meshed VNT is 100 Gb/s in
both cases and it is increased to 200 Gb/s for high loads under
the static approach. The threshold-based approach, however, is
able to manage the use of transponders by flexibly using
available transponders to increment the capacity of vlinks
running out of capacity; this way it achieves transponder
savings up to 11% with respect to the static VNT approach.

Interestingly, transponder usage scales linearly with the
load with VENTURE. Compared to the threshold-based
approach, VENTURE obtains savings between 8% and 42%.

Fig. 10b-c focus on the use of transponders along the day
for the lowest and highest loads for the three approaches.
Apart from the constant transponder usage in the static
approach, we show the different usages of the threshold-based
and the VENTURE approaches. In particular, we observe how

the VENTURE approach is able to remarkably reduce up to
45% transponder usage at some hours, mainly when the
DC2DC traffic profile is dominant. On the other hand, in those
hours when Users traffic profiles dominate, transponder usage
under VENTURE still outperforms that of the threshold-based
approach.

In conclusion, the VENTURE approach maximizes the
overall utilization of available transponders in two different
ways: i) by reconfiguring the virtual topology to follow traffic
direction changes, and ii) by increasing the capacity of vlinks
when the traffic increases.

B. Experimental assessment
Experiments have been carried out on the UPC’s

SYNERGY test-bed. Apache Cassandra database [15] was
used as a big data repository and a data collector module was
implemented to offer an UDP- based interface to the monitors,
storing the received data in Cassandra. Apache Spark [16] was
used to implement data stream mining and machine learning
techniques. Finally, ABNO modules in Fig. 6 were
implemented using UPC’s iONE software [17]. A HTTP
REST API interface was implemented between the OAM
Handler and the ABNO controller and from it to VNTM, so as
to report the predicted traffic matrix. PCEP was used between
VNTM, PCE, and the provision manager. Finally, BGP-LS
was used to synchronize TEDs. In particular, VNTM is in
charge of advertising topological changes in the VNT,
including vlink creation and releasing, as well as updating
vlink capacity changes.

Fig. 11 illustrates monitored traffic data being periodically

Fig. 11. Exchanged messages for monitored traffic Collection.

2
3

5

6

7

12

10

8

9

11

9

Fig. 12. Exchanged messages for VNT reconfiguration. Fig. 13. Message (2) details.

 10

send by the packet nodes to the data collector, as well as the
request that the OAM Handler issues to Cassandra’s REST
API to collect monitored data. UDP monitoring messages
contain, among others, the source node and the timestamp of
the sample, and for each aggregated flow leaving the node to a
destination, its destination node and bitrate. After selecting
and aggregating monitored data between the selected times ti
and tj, Cassandra replies with a JSON-encoded matrix
specifying for each pair of source-destination the average,
maximum and minimum bitrate

Fig. 12 shows the meaningful messages exchanged between
ABNO modules. For the sake of clarity, messages are
identified following the workflow in Fig. 6. The OAM handler
sends a REST API request to the ABNO controller (message
2) containing the predicted traffic matrix for the next period.
The details of that message are presented in Fig. 13. After
receiving the predicted traffic matrix, the VNT computes the
optimal VNT and issues requests to the PCE to implement the
LSC LSPs supporting the new vlinks, reroute the selected PSC
LSPs, and tear down unused LSC LSPs. In addition, VNT
changes are advertised to the rest of ABNO modules. The total
process took 217ms, from the instant the OAM handler
triggered the workflow.

VII. CONCLUSIONS
An efficient approach, named as VENTURE, to adapt the

current VNT to future traffic conditions aiming at minimizing
TCO has been proposed. The approach consists in monitoring
OD traffic in the IP/MPLS routers and applying data analytics
to learn predictive models that are used as inputs of a
reconfiguration problem. In particular, an ANN for every OD
pair was proposed as a predictive model along with an
algorithm to obtain a highly accurate ANN using as few
coefficients as possible. The VENTURE reconfiguration
problem was formally stated and formulated as an ILP. In
view of its complexity for short-term valid solutions, a
heuristic algorithm to provide near optimal solutions in
practical computation times was proposed.

In addition, a big data analytics OAM handler has been
proposed to support VENTURE. Monitoring data is collected
by the OAM Handler and locally stored. Periodically, e.g.,
every hour, collected monitoring data is transformed into
modelled data and the ANNs are used to predict next period
traffic. A workflow is proposed, where the VNTM module
solves the VENTURE reconfiguration problem to find the
optimal VNT based on the predicted traffic computed by the
OAM handler.

We compared the performance of VENTURE through
simulation against the static and the threshold-based
approaches. We observed savings between 8% and 42% in the
number of transponders to be installed in the routers when the
VENTURE approach was applied. In addition, VENTURE is
able to deactivate transponders during low traffic hours thus,
decreasing the energy consumption and releasing lightpaths
from the underlying optical layer, which contribute to a costs

reduction.

Finally, the proposed architecture was experimentally
assessed in our SYNERGY test-bed.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Spanish MINECO SYNERGY project (TEC2014-
59995-R) and from the Catalan Institution for Research and
Advanced Studies (ICREA).

REFERENCES
[1] Ll. Gifre, L. M. Contreras, V. Lopez, and L. Velasco, “Big Data

Analytics in Support of Virtual Network Topology Adaptability,” in
Proc. of the Optical Fiber Communication Conference (OFC), 2016.

[2] F. Morales, M. Ruiz, and L. Velasco, “Virtual Network Topology
Reconfiguration based on Big Data Analytics for Traffic Prediction,” in
Proc. of the Optical Fiber Communication Conference (OFC), 2016.

[3] L. Velasco, L.M. Contreras, G. Ferraris, A. Stavdas, F. Cugini, M.
Wiegand, and J. P. Fernández-Palacios, “A Service-Oriented Hybrid
Access Network and Cloud Architecture,” IEEE Communications
Magazine, vol. 53, pp. 159-165, 2015.

[4] M. Ruiz, M. Germán, L. M. Contreras, and L. Velasco, “Big Data-
backed Video Distribution in the Telecom Cloud,” Elsevier Computer
Communications, vol. 84, pp. 1-11, 2016.

[5] D. King and A. Farrel, “A PCE-based Architecture for Application-based
Network Operations,” IETF RFC 7491, 2015.

[6] A. Aguado et al., “Dynamic Virtual Network Reconfiguration over SDN
Orchestrated Multi-Technology Optical Transport Domains,” in Proc. of
the European Conference on Optical Communications (ECOC) 2015.

[7] F. Agraz, L. Velasco, J. Perelló, M. Ruiz, S. Spadaro, G. Junyent, and J.
Comellas, “Design and Implementation of a GMPLS-Controlled
Grooming-capable Optical Transport Network,” IEEE/OSA Journal of
Optical Communications and Networking (JOCN), vol. 1, pp. A258-
A269, 2009.

[8] A. Gençata and B. Mukherjee, “Virtual-Topology Adaptation for WDM
Mesh Networks Under Dynamic Traffic,” IEEE Transactions on
Networking, vol. 11, 2003.

[9] Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto and M.
Murata, “Gradually Reconfiguring VNT Based on Estimated Traffic
Matrices,” IEEE Transactions on Networking, vol. 18, 2010.

[10] N. Fernández, R. Durán, D. Siracusa, A. Francescon, I. de Miguel, E.
Salvadori, J. Aguado and R. Lorenzo, “Virtual Topology
Reconfiguration in Optical Networks by Means of Cognition: Evaluation
and Experimental Validation,” IEEE/OSA Journal of Optical
Communications and Networking, vol. 7, pp. A162 - A173, 2015.

[11] L. Velasco, A. P. Vela, F. Morales, and M. Ruiz, “Designing, Operating
and Re-Optimizing Elastic Optical Networks,” IEEE/OSA Journal of
Lightwave Technology (JLT), DOI: 10.1109/JLT.2016.2593986, 2016.

[12] J. Boyd, “Destruction and Creation,” U.S. Army Command and General
Staff College, 1976.

[13] F. Emmert-Streib and M. Dehmer, “Information Theory and Statistical
Learning,” Springer Science & Business Media, 2008.

[14] J.D. Hamilton, “Time Series Analysis,” Princeton University Press,
1994.

[15] K. Steiglitz, C. H. Papadimitriou, “Combinatorial Optimization:
Algorithms and Complexity,” Prentice-Hall, New Jersey, 1982.

[16] Apache Cassandra: http://cassandra.apache.org/
[17] Apache Spark: http://spark.apache.org/
[18] L. Velasco and Ll. Gifre, “iONE: A Workflow-Oriented ABNO

Implementation,” in Proc. of the Photonics in Switching Conference,
2015.

http://spark.apache.org/

	I. Introduction
	II. VNT Design And Reconfiguration Options
	III. Data analytics -based VNT adaptation
	IV. The VENTURE Problem
	A. Problem Statement
	B. Mathematical formulation
	C. Heuristic algorithm

	V. Proposed Architecture and Workflow
	VI. Illustrative Results
	A. Simulation results
	B. Experimental assessment

	VII. Conclusions
	Acknowledgment
	References

