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Abstract—The introduction of new services requiring large 
and dynamic bitrate connectivity can cause changes in the 
direction of the traffic in metro and even core network segments 
along the day. This leads to large overprovisioning in statically 
managed virtual network topologies (VNT), designed to cope 
with the traffic forecast. To reduce expenses while ensuring the 
required grade of service, in this paper we propose the VNT 
reconfiguration approach based on data analytics for traffic 
prediction (VENTURE); it regularly reconfigures the VNT based 
on predicted traffic thus, adapting the topology to both, the 
current and the predicted traffic volume and direction. A 
machine learning algorithm based on artificial neural network 
(ANN) is used to provide robust and adaptive traffic models. The 
reconfiguration problem that takes as input the traffic prediction 
is modelled mathematically and a heuristic is proposed to solve it 
in practical times. To support VENTURE, we propose an 
architecture that allows collecting and storing data from 
monitoring at the routers and that is used to train predictive 
models for every origin-destination pair. Exhaustive simulation 
results of the algorithm together with the experimental 
assessment of the proposed architecture are finally presented. 
 

Index Terms—Virtual Network Topology Reconfiguration, 
Machine learning for Traffic prediction, Multilayer Networks. 

I. INTRODUCTION 
tatic virtual network topologies (VNT), where large 
packet-switching nodes (e.g., IP/MPLS routers) are 

connected through virtual links (vlinks) supported by static 
connections in the optical layer, have been commonly 
designed to cope with the off-net traffic forecast. However, the 
introduction of cloud infrastructure in the telecom operator’ 
networks to create the telecom cloud [3] facilitates the 
introduction of new types of service (e.g., live-TV and video 
distribution [4]), which require large bitrate connectivity and 
causes changes in the direction of the traffic along the day in 
metro and even core network segments. This, together with the 
overall traffic increment that operators’ networks are needing 
to deal with year after year entails that static packet network 
topologies were largely overprovisioned thus, increasing 
network total cost of ownership (TCO). In view of that, 
network operators are looking for more efficient architectures 
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able to reduce TCO, while providing the required grade of 
service. To that end, VNT need to be dynamically adapted not 
only to variations in volume, but also to changes in the 
direction of the traffic. 

To support connectivity dynamicity, the IETF has recently 
standardized the Application-Based Network Operation 
(ABNO) architecture [5], which includes among others: i) the 
ABNO controller as the entrance point to the network for 
provisioning and advanced network coordination. It acts as a 
system orchestrator invoking its inner components according 
to a specific workflow; ii) a Virtual Network Topology 
Manager (VNTM) in charge of reconfiguring on demand 
VNT; iii) a Path Computation Element (PCE) to compute the 
path for new Label Switched Paths (LSP) on the Traffic 
Engineering Database (TED); iv) a provisioning manager 
(e.g., a SDN controller) responsible for managing LSPs, both 
at the optical layer (Lambda Switch Capable, LSC) and at the 
packet layer (Packet Switch Capable, PSC); and v) the 
Operations, Administration, and Maintenance (OAM) Handler 
to receive notifications and monitored counters. 

To automate VNT adaptability, traffic needs to be 
monitored in the packet nodes and counters be accessible by 
the OAM Handler. In particular, the disaggregated traffic 
volume forwarded by each packet node to every other 
destination node should be available. In addition, notification 
can be also triggered when the used vlink capacity reaches 
some configured threshold (e.g., 90%). In fact, threshold 
triggered VNT reconfiguration where the OAM Handler 
receives notifications from the control plane and reroutes 
individual IP/MPLS paths (PSC LSPs) in a reactive manner 
was proposed in [6]. 

However, the number of transponders to be installed tends 
to be as high as in a static VNT since dimensioning must be 
done to cope with the maximum of daily traffic forecast 
during a planning period (e.g., one year). In view of that, we 
propose an alternative approach to adapt the VNT based on 
traffic prediction that can reduce the number of transponders 
to be deployed in scenarios were traffic variations are as a 
result of changes in the traffic directionality. 

Because of its benefits, VNT reconfiguration has been 
widely studied in the literature. Authors in [7] proposed a 
centralized path reallocation module running periodically 
aiming at minimizing the number of used transponders. To 
follow traffic changes, authors in [8] proposed to add/remove 
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one single lightpath each time the VNT is reconfigured. 
Another topic is using monitored data to produce estimations 
that can help to anticipate changes in the traffic and 
proactively reconfiguring the VNT beforehand. In that regard, 
authors in [9] proposed a method for reducing errors in traffic 
estimations, while authors in [10] used estimated traffic to 
predict pre-defined scenarios. Finally, authors in [11] used 
future traffic estimation to trigger a VNT reconfiguration after 
the detection of an anomalous amount of traffic between two 
nodes. 

VNT reconfiguration requires from powerful algorithms to 
analyze large amounts of traffic monitoring data to anticipate, 
when possible, traffic changes. In this paper, we propose using 
big data analytics to periodically (e.g., every hour) predict 
traffic. In case the VNT needs to be reconfigured, predicted 
traffic is used as input of a VNT optimizer that finds the 
topology for the next period thus, implementing a decision 
making process based on the observe-analyze-act loop [11]. 
Specifically, the contribution of this paper is two-fold: 

1) targeting at adapting the VNT to future traffic conditions, 
in section III we devise a robust and adaptive artificial 
neural network (ANN) model that is afterwards used as 
input of the VNT reconfiguration problem; we call this 
approach as VNT reconfiguration based on traffic 
prediction (VENTURE). The VENTURE problem is 
formally stated and formulated as an ILP model in section 
IV; in view of its complexity, a heuristic algorithm 
providing better trade-off between complexity and 
optimality is finally designed; 

2) a big data network manager architecture to support VNT 
adaptability based on traffic prediction from applying data 
analytics on the monitored traffic data, as well as a 
workflow assuming the ABNO architecture are proposed 
in section V. 

The discussion is supported by the results from exhaustive 
simulation over a realistic scenario and from the experimental 
validation of the big data -based architecture in section VI. 

II. VNT DESIGN AND RECONFIGURATION OPTIONS 
As introduced above, several approaches to design and 

dynamically reconfigure the VNT can be devised. In this 
section let us first review two of them: i) the static VNT design 
and ii) the threshold-based VNT capacity reconfiguration.  

In the static VNT design, the topology is designed and 
dimensioned to cope with the maximum of daily traffic 

forecast for every origin-destination (OD) pair during a 
planning period. The resulting topology is thus, capable of 
supporting the traffic at any time during that period provided a 
perfect traffic forecast. Fig. 1 presents an example for a seven-
node VNT, where the capacity of every vlink supports the 
maximum daily traffic volume. For illustrative purposes, the 
plot in Fig. 1a shows the variability in link 6-1 that needs to be 
dimensioned with a capacity of 200 Gb/s. Fig. 1b shows the 
resulting VNT with the capacity of every vlink. It is clear, in 
view of Fig. 1a that the main drawback of the static VNT 
design is over-provisioning since most of the available 
capacity in the VNT will remain underutilized along the day. 

To reduce capacity over-provisioning, that of the vlinks can 
be adapted over time instead of allocating a constant amount 
of resources. Let us assume that the capacity of the existing 
vlinks can be increased and decreased to follow the traffic 
variations but no new vlinks can be created or removed, 
keeping hence the VNT invariant. Traffic can be monitored at 
IP routers and when the amount of traffic through a vlink 
reaches some threshold (e.g., 90%) the network controller can 
increase the capacity of such vlink by setting-up a parallel 
lightpath between the two IP routers; conversely, unused 
capacity can be released by tearing down lightpaths. 

The example in Fig. 2a presents monitored traffic data 
captured during the last two hours in node 6, where traffic 
from that node to every other node in the VNT (labelled as 6-
>N), from node 6 to node 7 (6->7), and from node 6 to every 
other node except to node 7 (6->N\{7}) are plotted. Fig. 2b 
shows the initial VNT where every vlink is supported by a 100 
Gb/s lightpath in the underlying optical layer; the IP/MPLS 
path for OD 6-7 is also shown. A 90% threshold is configured 
and, in the event of threshold violation, the capacity of some 
vlinks is increased. In our example, two threshold violations 
for vlinks 1-6 and 1-7 are received, so the VNT capacity is 
updated (Fig. 2c). It is worth noting that IP/MPLS path for OD 
6->7 is not affected by the VNT reconfiguration. As shown in 
the example, the threshold-based reconfiguration is able to 
adapt the VNT capacity to traffic changes, so resources in the 
optical layer are allocated only when vlinks need to increase 
their capacity. However, the same number of transponders as 
in the static VNT design approach need to be installed in the 
IP routers; for instance, in the example in Fig. 2 two 
transponders are installed in routers 6 and 7 and another four 
in router 1 reserved for vlinks 1-6 and 1-7. 

Let us assume now that, instead of monitoring vlink  
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Fig. 1. Static VNT design. Fig. 2. Threshold-based VNT capacity reconfiguration. Fig. 3. VNT reconfig. 
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capacity usage, OD traffic is monitored in the routers. Indeed, 
analyzing the plots in Fig. 2a we realize that traffic 6->7 is 
responsible for the registered traffic increment. In this case, let 
us assume that new vlinks can be created/removed in addition 
to increasing the capacity of the existing ones, so the VNT is 
actually changed. We propose an approach where OD traffic is 
periodically analyzed and the current VNT is reconfigured 
accordingly. An example following this approach is illustrated 
in Fig. 3, where the OD traffic 6->7 is analyzed at t=60 and a 
maximum value (e.g., 90 Gb/s) is predicted for the next hour. 
Then, a new vlink between nodes 6 and 7 can be created by 
establishing a lightpath on the optical layer and traffic 6->7 
rerouted (Fig. 3b). Note that this solution reduces two 
transponders to be installed in router 1 compared to the 
previous approaches. It is clear that this reduction will happen 
when the amount of traffic is large enough. In particular, when 
the amount of traffic exceeds the capacity of the installed 
transponders (e.g., 100 Gb/s) direct vlinks can be created for 
part of that traffic, while the residual part could be routed 
through a different IP/MPLS path. 

In order to adapt the VNT to changes in the traffic, we 
propose a predictive model built upon the monitored OD 
traffic data. For every OD pair, meaningful statistical values 
are predicted (e.g., the maximum bitrate for the next hour) and 
used to adapt the VNT to meet the future traffic matrix, 
assuming that every OD traffic can be conveyed through two 
IP/MPLS paths at the most. We call this approach as 
VENTURE. 

III. DATA ANALYTICS -BASED VNT ADAPTATION 
In this section, we present the proposed modules and the 

machine learning procedure for the VENTURE approach. We 
assume that traffic monitoring data is collected at the edge IP 
routers at regular intervals, e.g., every 15 minutes. Every edge 
router collects a set of samples for the traffic to every other 
destination router, which is stored in a collected data 
repository (Fig. 4). Note that since we focus on OD traffic 
monitoring, |N|·(|N|-1) traffic samples need to be stored at 
every monitoring interval, where |N| is the number of routers. 

Following a predefined time period, e.g., every hour, a time 
series from the collected data repository is retrieved for each 
OD pair and pre-processed applying data stream mining 
sketches to conveniently summarize collected data thus 
producing modeled data representing the OD pair that is stored 
in a modeled data repository. Modeled data includes, among 
others, for every OD the minimum, maximum, average, and 
last collected bitrate within the hour. 

The set of modeled variables for the current period t is 
stored in a repository together with variables belonging to 
previous periods. A prediction module based on machine 
learning techniques generates the OD traffic matrix predicted 
for the next period that is used by a decision maker module to 
decide whether the current VNT needs to be reconfigured. In 
case that a reconfiguration needs to be performed, the current 
and the predicted OD traffic matrices are provided to the VNT 

optimizer to adapt the VNT. Once the algorithm finds a 
solution, the network controller would be responsible of 
implementing the changes in the data plane. 

The prediction module consists of ANN-based models [12], 
selected because of its inherent capability of adapting to traffic 
changes in a non-supervised manner; we consider different 
ANNs to separately predict the traffic of each OD pair. Each 
ANN receives as input p previous maximum bitrate measures 
of the corresponding OD pair from the modeled data 
repository and returns its expected maximum bitrate at time t. 
Note that considering maximum instead of average bitrate 
allows adapting the VNT to the maximum expected traffic 
hence, ensuring a better grade of service. 

Since the size of an ANN depends on the number of inputs, 
hidden layers and neurons, we consider ANN models with p 
inputs, s neurons in a single hidden layer and one output. 
Consequently, s·(p+1) coefficients need to be found to specify 
every ANN. Aiming at keeping the number of coefficients 
small, we designed the algorithm in Fig. 5 that has to be 
triggered every time an ANN needs to be refitted. It consists in 
three phases: i) input data pre-processing, ii) selection of 
significant inputs, and iii) dimensioning of the hidden layer. 

In the first phase, a time series X with the maximum bitrate 
for the selected OD pair is retrieved from the modelled data 
repository. The auto-correlation function (ACF) is applied to 
X and a list of lags is returned, where the i-th lag contains the 
average correlation between every value in the time series and 
its i-th previous value. Based on the lags analysis, a method is 
triggered to detect whether a periodic repetitive (seasonal) 
pattern is observable in X [13]. The resulting period per 
defines the number of inputs of the ANN; in case of non-
seasonal data without observable periodical behavior, we 
assume per=24 (i.e. one day) for convenience. Once per is 
obtained, X is transformed into a dataset D used for ANN 
fitting. Every row in D corresponds to a time t within the time 
series and every column corresponds to a lag within per. 

The second phase is an iterative procedure that finds the 
ANN with the best trade-off between accuracy and number of 
inputs. This trade-off is captured numerically by the Akaike 
Information Criterion (AIC) [12]. Starting with p=per, the 
ANN routine fits an ANN from dataset D and returns the 
corresponding AIC value. While the AIC value obtained 
improves the lowest one obtained so far, the best ANN is 
stored and p is decremented effectively removing one input. 
Aiming at reducing the complexity of selecting the input to be 
removed, we select the lag with lowest ACF. When the 
minimum AIC is reached, the third phase is executed to 
increase even more the accuracy of the model by adding 
hidden neurons until the AIC does not improve. The best ANN 
is eventually returned. 

We face next the VNT reconfiguration (VENTURE) 
problem to be solved in the VNTM. 

IV. THE VENTURE PROBLEM 
In this section, we first formally state the VENTURE 
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problem and devise an ILP to model it. In light of the  
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Fig. 4. Applying the observe-analyze-act loop for VNT reconfiguration. Fig. 5. Self-learning ANN fitting algorithm. 
 

complexity of the problem, a heuristic algorithm is eventually 
devised. 

A. Problem Statement 
Given: 

• The current VNT represented by a graph G(N, E’), being N 
the set of routers and E’ ⊆ E the set of current vlinks. Set E 
is the set of all possible vlinks connecting two routers. 

• The set P with the transponders available in the routers; 
every transponder with capacity B. 

• The current traffic matrix D. 
• The predicted traffic matrix OD. The bitrate bo of OD pair 

o must be served following one single path. Only in the 
case that bo is enough to fill transponders with an amount 
over a given boundary usage tbu, the bitrate of pair o can 
be split into two flows and served through different paths. 
 

Output: The reconfigured VNT G*(N, E*), where E*⊆ E, and 
the paths for the traffic on G*. 

Objective: Maximize current and predicted served traffic 
matrices, whilst minimizing the total number of transponders 
used. 

B. Mathematical formulation 
Note from the problem statement that both, the current and 

the predicted traffic matrices must be served. Consequently, 
we generate an input traffic matrix OD, where every pair o is 
the maximum of both, the current and the predicted traffic. In 
addition, a parameter ko will be used to specify whether pair o 
can be served using two paths. 

The following sets and parameters are defined: 
Topology: 
N set of routers, index n. 
E set of all possible vlinks, index e. 
E+(n) subset of E with vlinks outgoing from router n. 

E-(n) subset of E with vlinks incident in router n. 
Traffic: 
OD set of origin-destination pairs, index o. Every o is 

defined by the tuple <so, to , do, bo>, where so and to 
specify the source and target nodes, do the currently 
served bitrate and bo the maximum of current and 
predicted bitrate to serve for pair o, respectively.  

ko maximum number of paths to serve pair o; ko = 2 if bo 
≥ tbu; ko = 1 otherwise. 

Equipment: 
P set of transponders, index p. Every transponder 

consists of one transmitter (tx) and one receiver (rx). 
P+(n) subset of tx transponders in router n. 
P-(n) subset of rx transponders in router n. 
P(n) subset of transponders in n. P(n) = P+(n) U P-(n). 
B capacity of every transponder. 

The decision variables are: 
xp binary, 1 if transponder p is used, 0 otherwise. 
xpe binary, 1 if transponder p is used to support vlink e, 0 

otherwise. 
xok integer, fraction of bitrate of pair o served through path 

k. 
xoke integer, fraction of bitrate of pair o served through path 

k using vlink e. 
zoke binary, 1 if pair o is routed using path k through vlink e, 

0 otherwise. 
yn integer+, number of transponders used at router n. 
vo integer+, fraction of unserved bitrate of pair o. 

Then, the proposed ILP formulation is as follows: 

∑∑
∈∈

++
Nn

n
ODo

o yvP )·1|(|min  (1) 

subject to: 
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The multi-objective cost function (1) minimizes both, 
unserved traffic and used transponders, where the highest cost 
corresponds to the first term. 

The network flow constraints in (2) define paths on the 
topology for every OD pair. Each of these paths has a 
continuous capacity assignment along its route, as imposed by 
constraints (3)-(5). Notwithstanding constraint (6) allows 
serving only a fraction of the total capacity bo of every OD 
pair; that fraction has to include at least the currently served 
bitrate as stated in constraint (7). Note that optimal solutions 
might include loops that they can be safely removed in a post-
processing phase. 

Constraints (8)-(13) deal with transponder equipment. 
Constraints (8) and (9) assign transmission and reception 
transponders to vlinks, respectively to support the capacitated 
paths. Constraints (10) and (11) prevent from assigning one 
transponder to multiple vlinks. Finally, constraints (12) and 
(13) compute the maximum between the number of 
transponders used for transmission and reception at every 
node, which represents the number of transponders to be 
installed in every router. 

ILP problems belong to the NP-complete complexity class, 
as proven in [14]. The size of the proposed formulation is 
O(|N|4+|P|·|N|2) variables and O(|N|4+|P|·|N|) constraints. As an 

example, the size of the above formulation for the network 
instance with ko=2 and 14 nodes presented in section VI is of 
2·105 variables and 105 constraints. As a result, solving the 
proposed formulation becomes impractical for realistic 
scenarios even using commercial solvers; in our tests, solving 
times were longer than 10 h. Consequently, we developed a 
heuristic algorithm that provides much better trade-off 
between optimality and complexity. 

C. Heuristic algorithm 
We devise a heuristic algorithm to solve the VENTURE 

problem consisting of three phases; the pseudocode is 
presented in Table I. After deallocating current traffic and 
releasing used resources (lines 2-5 in Table I), bitrate bo of OD 
pairs is split into two different flows and stored in set Q: flow 
go carries bitrate enough to fill transponders with an amount 
over tbu and flow lo carries the remaining bitrate; these flows 
will be routed through different paths (lines 6-7). Next, the 
first two phases focus on routing every flow go through the 
direct vlink connecting source and destination routers (lines 8-
9); sets F stores the path of the flows. The first phase selects 
those flows for which a direct vlink already exists in the 
current VNT and the second phase does the same for the rest 
of flows thus, creating new direct vlinks. After these two 
phases, the residual bitrate uo is checked and stored in set U. If 
all traffic has been already served, the algorithm ends (lines 
10-12); otherwise, OD pairs are sorted by the amount of 
unserved bitrate and the third phase eventually routes the 
unserved bitrate by possibly increasing the capacity of existing 
vlinks or by adding new ones (line 13). The reconfigured VNT 
and the new routing are eventually returned. 

The algorithm for the first phase is detailed in Table II. The 
uncapacitated original topology is used to route flows go 
through an existing direct vlink so as to introduce inertia to the 
changes in the current topology (line 3 in Table II). The 
number of transponders to be allocated in the end routers of 
the direct vlink is computed as the minimum between the 
amounts of transponders needed to allocate go and the unused 
transponders (lines 4-7); those transponders are allocated to  
 

TABLE I MAIN ALGORITHM 
INPUT G(N,E’), D, OD, B, tbu 
OUTPUT G*, F 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

Q ← ∅, U ← ∅ 
for each d ∈ D do dealloc(G, d) 
for each e ∈ E’ do 

setCapacity(e, 0) 
releaseTransponders(e) 

for each o ∈ OD do 
Q ← Q U {<o, go, lo> = splitOD(o, B, tbu)} 

<Q, F’> ← PhaseI(G, Q) 
<G’, Q, F’’> ← PhaseII(G, Q) 
for each q ∈ Q do 

U ← U U {<o, uo = go + lo>} 
if U=∅ then return <G’, F’ U F’’> 
<G*, F’’’> ← PhaseIII(G’, U, thr) 
if F’’’=∅ then return INFEASIBLE 
return <G*, F’ U F’’ U F’’’> 
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TABLE II PHASEI ALGORITHM 

INPUT G(N,E), Q 
OUTPUT Q, F 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 

F ← ∅ 
for each q=<o, go, lo> ∈ Q do 

if e=(so, to) ∉ E OR go=0 then continue 
no ← ceil (go / B) 
ns ← getNumUnusedTransponders (so, P+) 
nt ← getNumUnusedTransponders (to, P-) 
n ← min{no, ns, nt} 
allocateTransponders(e, n) 
f ← SP(G, o, go) 
if f ≠ ∅ then  

allocate(G, f) 
F ← F U {f} 
go ← go – f.b 

return <Q, F> 
 

add capacity to the direct vlink (line 8) and a shortest path is 
computed on the resulting VNT (line 9). In case that a path is 
found (i.e., capacity was added to the direct vlink), the path is 
allocated and the amount of served bitrate reduced from the 
one requested (lines 10-13). The updated set Q and the found 
paths stored in set F are eventually returned (line 14). 

The second phase is similar to the first phase, but for flows 
go through non existing direct vlink. New capacitated direct 
vlinks are thus, added to the topology to support those flows. 

In the third phase, the current topology is extended to a full 
mesh topology by adding uncapacitated vlinks (lines 2-4 in 
Table III). Next, a randomized routing procedure is run for a 
given number of iterations (lines 6-31); at every iteration, the 
initial extended topology and the unserved bitrate are cloned 
and the latter randomly sorted, giving higher priority to flows 
with higher remaining traffic (lines 7-12). Those flows with 
unserved bitrate are routed using one single path (lines 13-16). 
Aiming at minimizing the number of used transponders, link 
metrics are set proportional to the number of transponders 
needed to allocate the remaining capacity of the current flow 
(line 15). If no path is found, the corresponding cost is added 
to the iteration cost (lines 17-19); otherwise, in case the path 
capacity does not serve the remaining bitrate, we check 
whether the capacity of its links can be increased using the 
available resources, i.e., transponders in the end nodes and 
spectral resources to create a lightpath at the optical layer 
(lines 20-22). Finally, the path is allocated and the remaining 
bitrate of the flow is updated, as well as the iteration cost 
(lines 23-26). 

Once a solution has been built, a local search procedure is 
executed (line 27) aiming at finding a local minimum. The 
best topology and the found paths are returned as final 
solution (lines 29-32). 

The local search procedure tries to reduce the total number 
of used transponders during the constructive phase. Since the 
number of transponders used in a node is computed as the 
maximum between transmission and reception, this procedure 
focuses on releasing transponders that actively contribute to  
 

TABLE III PHASEIII ALGORITHM 

INPUT G(N, E), U, thr 
OUTPUT G*(N, E*), F 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 

G*(N, E*) ← G(N, E); F ← ∅ 
for each e=(i, j) ∉ E | i, j ∈ N, i ≠ j do 

E* ← E* U {e} 
setCapacity(e, 0) 

bestCost ← +∞ 
for ite = 1 .. maxIter do 

iteUnserved ← 0 
Gite ← G 
Uite ← U 
Fite ← ∅ 
for each u ∈ Uite do u.order ← rand(0,1) * uo 
sort(Uite, u.order, DESC) 
for each u ∈ Uite do 

if u.uo = 0 then continue 
updateMetrics(Gite, u.uo) 
f ← SP(Gite, u.o, u.uo) 
if f = ∅ then 

iteCost ← iteCost + u.uo * (|P|+1) 
continue 

if f.b < u.uo AND canIncreaseCap(f, Gite, u.uo) then 
increaseCap (f, Eite, u.uo) 
f.b ← u.uo 

Fite ← Fite U {f} 
allocate(Gite, f) 
u.uo ← u.uo – f.b 
iteCost ← iteCost + u.uo * (|P|+1) 

<Gite, Fite> ← doLocalSearch(Gite, Fite) 
iteCost ← iteCost + numUsedTransponders(Gite) 
if iteCost < bestCost then 

bestCost ← iteCost 
<G*, F> ← <Gite, Fite> 

return <G*, F> 

TABLE IV LOCAL SEARCH PROCEDURE 
INPUT G(N,E), F 
OUTPUT G*(N,E*), F* 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

G* ← G; F* ← F; Erem ← E 
while Erem ≠ ∅ do 

for each e ∈ Erem do 
e.balance ← computeTransponderBalance (e) 

sort(Erem, e.balance, DESC) 
e ← removeFirst(Erem) 
Fe ← getPaths(e) 
<Gaux, Faux> ← <G*, F*> 
release(Gaux, Fe) 
Eaux ← Eaux \ {e} 
sort(Fe, f.b, DESC) 
allRerouted ← true 
for each f ∈ Fe do 

recomputeZeroCostLinks(Gaux) 
f’ ← SP(Gaux, o, f.b) 
if f’ = ∅ then 

allRerouted ← false; break 
allocate(Gaux, f’) 
Faux ← (Faux \ {f}) U {f’} 

if allRerouted then <G*, F*> ← <Gaux, Faux> 
return <G*, F*> 
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Fig. 6. Big data network manager architecture. Fig. 7. Proposed workflow. 
 

that maximum at every node. The algorithm is detailed in 
Table IV, where all current vlinks in the VNT are processed 
(lines 2-20). The vlink with ports most actively contributing to 
the cost function is selected along with the set of paths routed 
through it (lines 6-7). This set is released from the VNT and 
sorted with respect to the bitrate (lines 8-11). Next, the set of 
paths is re-routed by possibly using new vlinks at zero 
objective cost (lines 13-15). In case of a feasible solution, the 
VNT is updated with these changes (line 20). 

Table V presents the time complexity of the proposed 
algorithms, where R0 is the worst case time complexity to find 
a feasible lightpath to support every direct vlink. For 
illustrative purposes, the computation time for the scenario 
with 14 nodes presented in section VI is also provided. 

TABLE V TIME COMPLEXITY OF THE ALGORITHMS 

Phase I/II Phase III (per iter) Local Search 
O(|N|2·R0) O(|N|2·(|E|·log|N|+R0)) O(|E|2·(log|E| + |Fe|·log|N|)) 

<1m 298ms 234ms 

V. PROPOSED ARCHITECTURE AND WORKFLOW 
To support the generic modules introduced in section III for 

VENTURE, we propose the architecture in Fig. 6. A big data 
repository consisting of a distributed database and a data 
collector is used to store collected data. ABNO’s OAM 
Handler includes data stream mining sketches, the modeled 
data repository, the prediction module running the proposed 
ANN to anticipate next period traffic conditions and the 
decision maker that decides whether the VNT should be 
updated based on the predicted traffic. Finally, ABNO’s 
VNTM is in charge of computing the new VNT. 

Fig. 7 presents the proposed workflow. Monitored traffic 
data is sent to the collected data repository ready to be 
analyzed. Periodically, ABNO’s OAM Handler retrieves 
aggregated monitored data and applies data stream mining 
techniques on the received data to transform monitored data 

into modeled data. Modeled data is used by the prediction 
module, running the proposed ANN (labeled as 1 in Fig. 7). 
Based on the predicted traffic, a decision maker module 
decides whether the VNT should be updated. In case of VNT 
reconfiguration, the VNTM is in charge of computing the new 
VNT. To that end, the OAM Handler issues a request to the 
ABNO controller that includes the predicted traffic together 
with some other parameters to facilitate VNTM computation 
(2) and the ABNO controller initiates the workflow 
forwarding the request to the VNTM (3). 

The VNTM computes the new VNT with the predicted 
traffic matrix received from the OAM Handler (4). Continuing 
with our seven-node VNT example, let us assume that the new 
VNT consists on adding the new virtual link 6-7 and reducing 
the capacity of some other vlinks. The solution is first notified 
to the NMS (5) and then, its implementation is divided into a 
sequence to avoid traffic disruption as anticipated above: 
firstly, lightpath (LSC LSP) 6-7 is created (6) and the new 
vlink is advertised (7); next, PSC LSPs are rerouted (8) (a 
make-before-brake strategy to avoid disruption can be 
implemented) and unused capacity in vlinks 1-3 and 1-4 
removed by tearing down the underlying LSC LSPs (9); new 
vlinks’ capacity is advertised (10). Upon VNT reconfiguration 
completion, VNTM replies the ABNO controller (11), which 
eventually replies the OAM Handler (12). 

VI. ILLUSTRATIVE RESULTS 
This section focuses first on validating the VENTURE 

approach through simulation. Next, the proposed architecture 
is experimentally assessed in our SYNERGY testbed. 

A. Simulation results 
For evaluation purposes, we implemented an event-driven 

simulator in OMNeT++ containing the modules described in 
Fig. 4. To measure the effect of volumetric and directional 
changes in traffic, we implemented generators that inject 
traffic following two pre-defined traffic profiles named as  
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Fig. 8. Average daily traffic profiles used in the simulation (a) and 
ANN goodness-of-fit (b). 

Users and Datacenter-to-Datacenter (DC2DC) (see average 
daily evolution in Fig. 8a). In addition, some random values 
around the average value are usually observed in real traffic. 
In consequence, a function εt representing random variable 
traffic is also added. We assume that εt follows a 0-centered 
normal (Gaussian) probability distribution, i.e., εt~N(0,σ2) 
where σ represents the standard deviation. In consequence, the 
daily traffic profile of every OD pair can be defined as YOD(t) 
= α · f(t) + εt, where function f(t) represents the average traffic 
profile and α is a scaling factor in Mb/s. 

Finally, the set of nodes was divided into two subsets to 
generate changes in the direction of the traffic; ODs with 
destination one of the nodes in the first subset follow the 
Users profile, while the others follow the DC2DC one. We 
consider a scenario where a maximum of 26 × 100 Gb/s 
transponders per node are equipped. With such configuration, 
the static and threshold-based approaches are applied to a full-

mesh 14-node VNT, where the initial capacity of each vlink 
ranges from 100 to 200 Gb/s. 

The ANN models are trained applying the fitting algorithm 
in Fig. 5 on a training dataset with modelled data belonging to 
the last week. Results in Fig. 8b illustrate the average size and 
goodness-of-fit of ANN models. Recall that during the input 
selection phase, the number of inputs p is decreased aiming at 
minimizing the AIC value. We observe that the minimum AIC 
is on average reached at p=4, being mainly selected those 
inputs from t-1 to t-4. Results from the hidden layer 
dimensioning phase are shown in the table embedded in Fig. 
8b, for a number of hidden neurons ranging from 1 to 3. Note 
that the minimum AIC is obtained for s=2, which results in an 
ANN model with 10 coefficients that accurately predicts the 
output variable with a good trade-off between average and 
maximum relative errors (2.64% and 9.55%, respectively). 

Next, we compare the effect in the unserved traffic and the 
number of used transponders under the threshold-based 
approach (we assumed 90% threshold) that runs continuously 
and under the VENTURE one that it is triggered at fixed 
intervals of one hour. For the sake of completeness, the static 
case where no reconfiguration is performed is also included. 

Fig. 9 presents the obtained blocking probability for the 
range of loads considered; values for both, the static and the 
threshold-based approaches are omitted since yield zero 
blocking probability. In the case of the VENTURE approach, 
Fig. 9a plot the average and maximum hourly blocking along a  
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Fig. 9. Average and maximum hourly blocking prob. of VENTURE vs. load (a). Blocking prob. along one day and for normalized loads 0.48 
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Fig. 10. Maximum used transponders vs. load (a). Used transponders along one day and for normalized loads 0.48 (b) and 1.0 (c). 
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day. We observe that, for a wide range of traffic loads, 
maximum blocking probability is below 0.24%, while that on 
average is virtually zero. Fig. 9b-c analyze the evolution of 
blocking probability during the day for the lowest and highest 
load, respectively. We observe that small peaks of blocking 
probability appear related to abrupt changes in the injected 
traffic and last for a couple of hours at the most, which is the 
time that VENTURE takes in fully adapting the VNT to traffic 
changes with the specific configuration selected. 

Fig. 10 focuses on the use of transponders. Fig. 10a plots 
the maximum transponder usage as a function of the load for 
each approach. Both, the static and the threshold-based 
approaches show a constant transponder usage for loads lower 
than 0.5, which is increased from that load up. For low loads, 
the capacity of vlinks in the fully meshed VNT is 100 Gb/s in 
both cases and it is increased to 200 Gb/s for high loads under 
the static approach. The threshold-based approach, however, is 
able to manage the use of transponders by flexibly using 
available transponders to increment the capacity of vlinks 
running out of capacity; this way it achieves transponder 
savings up to 11% with respect to the static VNT approach. 

Interestingly, transponder usage scales linearly with the 
load with VENTURE. Compared to the threshold-based 
approach, VENTURE obtains savings between 8% and 42%. 

Fig. 10b-c focus on the use of transponders along the day 
for the lowest and highest loads for the three approaches. 
Apart from the constant transponder usage in the static 
approach, we show the different usages of the threshold-based 
and the VENTURE approaches. In particular, we observe how 

the VENTURE approach is able to remarkably reduce up to 
45% transponder usage at some hours, mainly when the 
DC2DC traffic profile is dominant. On the other hand, in those 
hours when Users traffic profiles dominate, transponder usage 
under VENTURE still outperforms that of the threshold-based 
approach. 

In conclusion, the VENTURE approach maximizes the 
overall utilization of available transponders in two different 
ways: i) by reconfiguring the virtual topology to follow traffic 
direction changes, and ii) by increasing the capacity of vlinks 
when the traffic increases. 

B. Experimental assessment 
Experiments have been carried out on the UPC’s 

SYNERGY test-bed. Apache Cassandra database [15] was 
used as a big data repository and a data collector module was 
implemented to offer an UDP- based interface to the monitors, 
storing the received data in Cassandra. Apache Spark [16] was 
used to implement data stream mining and machine learning 
techniques. Finally, ABNO modules in Fig. 6 were 
implemented using UPC’s iONE software [17]. A HTTP 
REST API interface was implemented between the OAM 
Handler and the ABNO controller and from it to VNTM, so as 
to report the predicted traffic matrix. PCEP was used between 
VNTM, PCE, and the provision manager. Finally, BGP-LS 
was used to synchronize TEDs. In particular, VNTM is in 
charge of advertising topological changes in the VNT, 
including vlink creation and releasing, as well as updating 
vlink capacity changes. 

Fig. 11 illustrates monitored traffic data being periodically  
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send by the packet nodes to the data collector, as well as the 
request that the OAM Handler issues to Cassandra’s REST 
API to collect monitored data. UDP monitoring messages 
contain, among others, the source node and the timestamp of 
the sample, and for each aggregated flow leaving the node to a 
destination, its destination node and bitrate. After selecting 
and aggregating monitored data between the selected times ti 
and tj, Cassandra replies with a JSON-encoded matrix 
specifying for each pair of source-destination the average, 
maximum and minimum bitrate 

Fig. 12 shows the meaningful messages exchanged between 
ABNO modules. For the sake of clarity, messages are 
identified following the workflow in Fig. 6. The OAM handler 
sends a REST API request to the ABNO controller (message 
2) containing the predicted traffic matrix for the next period. 
The details of that message are presented in Fig. 13. After 
receiving the predicted traffic matrix, the VNT computes the 
optimal VNT and issues requests to the PCE to implement the 
LSC LSPs supporting the new vlinks, reroute the selected PSC 
LSPs, and tear down unused LSC LSPs. In addition, VNT 
changes are advertised to the rest of ABNO modules. The total 
process took 217ms, from the instant the OAM handler 
triggered the workflow. 

VII. CONCLUSIONS 
An efficient approach, named as VENTURE, to adapt the 

current VNT to future traffic conditions aiming at minimizing 
TCO has been proposed. The approach consists in monitoring 
OD traffic in the IP/MPLS routers and applying data analytics 
to learn predictive models that are used as inputs of a 
reconfiguration problem. In particular, an ANN for every OD 
pair was proposed as a predictive model along with an 
algorithm to obtain a highly accurate ANN using as few 
coefficients as possible. The VENTURE reconfiguration 
problem was formally stated and formulated as an ILP. In 
view of its complexity for short-term valid solutions, a 
heuristic algorithm to provide near optimal solutions in 
practical computation times was proposed. 

In addition, a big data analytics OAM handler has been 
proposed to support VENTURE. Monitoring data is collected 
by the OAM Handler and locally stored. Periodically, e.g., 
every hour, collected monitoring data is transformed into 
modelled data and the ANNs are used to predict next period 
traffic. A workflow is proposed, where the VNTM module 
solves the VENTURE reconfiguration problem to find the 
optimal VNT based on the predicted traffic computed by the 
OAM handler. 

We compared the performance of VENTURE through 
simulation against the static and the threshold-based 
approaches. We observed savings between 8% and 42% in the 
number of transponders to be installed in the routers when the 
VENTURE approach was applied. In addition, VENTURE is 
able to deactivate transponders during low traffic hours thus, 
decreasing the energy consumption and releasing lightpaths 
from the underlying optical layer, which contribute to a costs 

reduction. 

Finally, the proposed architecture was experimentally 
assessed in our SYNERGY test-bed. 
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