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Abstract—Varying the symbol rate is an alternative 

or complementary approach to varying the 
modulation format or the channel spacing, in order 
to turn optical networks into elastic networks. We 
propose to allocate just-enough bandwidth for each 
optical connection by adjusting the symbol rate such 
that penalty originating from long cascades of optical 
filters is contained. This helps reducing over-
provisioning for lightpaths where full capacity is not 
needed, by (i) eliminating unnecessary regenerators 
and (ii) reducing the power consumption of 
terminals, when the clock rate of electronics is 
reduced along with the Baud rate. We propose a 
novel architecture for an elastic optical interface 
combining a variable bitrate transceiver, paired with 
an elastic aggregation stage, with software-defined 
control. We then report a real-time FPGA-based 
prototype, delivering flexible transport frames to be 
sent with a PDM-QPSK modulation format. We 
interconnect this prototype with a commercial OTN 
switch and a centralized controller. We demonstrate 
fast and hitless reconfiguration of the interface and 
measure the reconfiguration time of hardware logic 
(<450µs) as well as end-to-end control and data plane 
(<0.9s). 
 

Index Terms—Elastic Optical Networks; Optical 
communication; Software Defined Networking; 
Flexgrid 
 

I. INTRODUCTION  

he commercial availability of 100G/200G and 400G 
transponder cards answers to the need for high 

transported capacity [1]. To achieve this, higher order 
modulation formats and faster symbol rates are two popular 
means which are often combined. Therefore intermediate 
regenerations are more and more required and are not only 
used for long distance links [2]. To further lower the cost per 
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bit, optical networks have to be rethought and in particular 
have to adapt to traffic demands and transmission 
impairments.  
 Flexible networks are a promising way to improve the 
network resource utilization in wavelength division 
multiplexed optical networks. A first mean is the usage of 
Optical Transport Network (OTN) switching to improve the 
wavelength utilization, hence spectrum resources, up to an 
ideal matched of a fully utilized wavelength [3]. Elastic 
Optical Networks (EON) is another popular mean with 
several degrees of freedom [4][5][6]. In particular, the use of 
flexible frequency spacing between channels is 
advantageous for saving scarce optical spectrum and for 
improving network capacity [7]. This is usually referred to 
as a flexgrid scenario [8]. Variable symbol rate could also be 
used with fixed channel spacing such as 37.5GHz grid to 
contain filtering issue. With Nyquist WDM, signal is much 
less sensitive to crosstalk but still suffers from tight 
filtering and laser frequency detuning [9]. With OFDM, 
filtering impact and guard band were investigated in [10]. 
Recent works proposed to mitigate the filter penalty cascade 
with spectral engineering [11][12]. In this work, we rather 
consider that the real filling of channels is far from 
approaching 100%. We thus proposed a just-enough 
bandwidth allocation by varying the symbol rate, hence the 
optical spectrum of each connection. 

Typical application examples are inter-datacenter or 
metro networks which exhibit variable aggregated traffic for 
back-up services or between day and night operations. 
Along this path, in 2011 a real-time bandwidth-variable 
transponder (BVT) prototype was proposed in [13] and 
reduced the power consumption proportionally to the 
effective traffic load thanks to a flexible aggregation of 
Ethernet frames. Alternatively, a real-time board in [14] 
aggregating Ethernet traffic was demonstrated for an 
adaptive-modulation format transmission. To make 
reconfigurable EON a reality, hitless BVT becomes an 
important feature. In [15] a hitless code rate change was 
introduced to change the optical line net bit rate according 
to OSNR conditions, but no previous works have tackled the 
symbol rate variation which is of key interest for next 
generation of networks with more and more intermediate 
regenerations. 

 In this paper, we detail how a real-time hitless elastic 
optical interface is capable of aggregating the incoming 
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We see directly the impact on the spectral occupancy. 
 

Fig. 5: Optical spectrum at BVT output after electro-optical 
modulation for different OTU2 client numbers and Baud rates. 
 

Fig. 6 represents the electronic eye diagrams for two 
different configurations. With 10 OTU2 clients at the input 
of the transmitter, the total output bitrate is maximum with 
107 Gbit/s corresponding to a one I/Q electrical signal at 
26.7 GBauds (Fig. 6a). Fig. 6b shows the eye diagram when 
4 OTU2 clients are multiplexed byte by byte, resulting in a 
42.8 GBauds electrical signal on one I/Q arm of the 
modulator. 
 

a) b) 
Fig. 6: BVT electrical outputs before E/O conversion for 10 clients 
(a) and 4 clients (b). 
 

The BVT has been then characterized in terms of quality 
of transmission and switching time when a new frequency 
command arrives at the restful server. The switching time 
displayed in Fig. 7 is the measured time of the total reset 
sequence of high speed output serializer/deserializer 
interfaces (GTZ in Xilinx Virtex 7), in which the serializer is 
aligned, reconfigured and no data is transmitted. This 
switching time includes ~2 µs guard time, in which the 
reference clock for the data is unstable [23]. It is technology 
dependent and may be improved with the most recent 
programmable electronic technologies and ASIC progress. 
Fig. 7 illustrates all combinations of any starting bitrate to 
ending bitrate, both from 10.7 Gbit/s to 107 Gbit/s, 
corresponding to the number of multiplexed OTU2 clients, 
which is an integer in the range [1:10]. In all 100 
configurations the switching time is below 450 µs and 
mainly depends of the ending bitrate. For example, case a 
(423µs) in Fig. 7 is the measured time of the switching from 
75 Gbit/s to 107 Gbit/s. Case b (432 µs) is the switching time 
from 107 Gbit/s to 53.5 Gbit/s. During the reconfiguration 
phase, the high speed transmitters are reset, and when it’s 
finished, notification signal is sent to the local controller, 
which can start again the packets transmission. A 
maximum pause time of 450 µs on the data flow corresponds 

to a maximum of 37 OTU2 frames to be stored and delayed 
in on-chip memories, which represents 74% of the total 
available block memories in this FPGA whitout need of 
external memory.  
 

Fig. 7: Switching time for all starting and ending bitrates 
combinations (10x10 in total). 

 
When the configuration for the new frequency request is 

done, the stored frames can be sent again, avoiding the lost 
of any data, but with additional latency due to the traffic 
interruption. This latency is temporary because it can be 
absorbed after reconfiguration by a real-time adjustment of 
the buffer emptying and a synchronization with the 
knowledge of the real traffic load. Latency variation is also 
limited to the reconfiguration time and the buffer reading, 
and can be then cancelled due to synchronous and 
deterministic processing inside the FPGA. With the 
management of the QoS of the traffic inside the OTN switch 
and an accurate monitoring of the OTU2 frames number to 
be multiplexed and transported, service continuity can be 
performed without any packet loss. 

The quality of the elastic optical signal has been 
measured with the Bit Error Rate vs the OSNR in 0.1nm for 
different transmitted bitrates (Fig. 8). The OSNR penalty 
for a Q-Factor of 8.5 dB (HD-FEC limit) remains below 
1.1dB for the bitrates of 107 Gbit/s and 75 Gbit/s, compared 
to the theoretical limit for a PDM-QPSK signal. This is 
partially due to the skew between the IQ lines of the two 
polarizations which are not easy to tune in this FPGA 
prototype. The constellation after offline processing for the 
two polarization states is inserted in Fig. 8 for the 
maximum transmitted bitrate of 107 Gbit/s and has been 
recorded in the laboratory clear and open for all 
combinations of bitrates. 
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