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Abstract: We report on DFB and DBR lasers formed from a wavelength insensitive multi-

segmented silicon nitride waveguide. Using a five-segment waveguide, we obtain lasing in 

erbium-doped DBR (-3.6 dBm) and DFB (-7.3 dBm) cavities.  
OCIS codes: (130.0130) Integrated optics; (130.2790) Guided waves; (130.3120) Integrated optics devices; (140.3460) 

Lasers.  

 

1. Introduction  

Lasers on a silicon platform have generated substantial interest due to the numerous important applications ranging 

from integrated communications to optical sensors. Several methods have been developed to realize on-chip lasers, 

including germanium-on-silicon lasers [1], III-V hybrid lasers [2, 3], and erbium-doped glass lasers [4, 5]. Of these 

approaches, only erbium-doped glass lasers have been shown to achieve both ultra-narrow linewidth [4] and CMOS-

compatibility [3]. Thus, the next step is to demonstrate integration with other photonics devices. In particular, silicon 

nitride based waveguides provide robust, low-loss and compact devices for a wide range of optical wavelengths [6, 

7]. Erbium laser resonators have been demonstrated by patterning silicon nitride structures beneath the erbium host 

material (Al2O3) to form an inverted ridge waveguide [4, 5]. In a traditional waveguide design, the relatively high 

index contrast of these materials (
xSiNn = 1.99 and

2 3Al On = 1.65) requires that the silicon nitride layer be very thin so 

that the mode overlaps strongly with the gain medium. However, a thin silicon nitride layer prevents the layer from 

being effectively reused to form other important integrated devices such as microring-resonators. 

Here, we solve this problem by implementing a multi-segmented silicon nitride waveguide [8] to achieve strong 

overlap with the active region while maintaining a thick silicon nitride layer for passive component integration.  

Additionally, the resulting design facilitates broadband, high confinement and overlap factors across the entire near-

infrared wavelengths (0.9 μm – 2.0 μm) offering potential for amplifier and laser operation across an extremely 

broad bandwidth, a result that will become of increasing importance as the S, C, and L bands become saturated. We 

demonstrate multi-segmented waveguide Er3+:Al2O3 lasers in distributed Bragg reflector (DBR) cavities with 

maximum output powers of -3.6 dBm and distributed feedback (DFB) cavities with maximum output powers of -7.3 

dBm at a wavelength of λ~1565nm.  

2.  Design and Simulation 

Figure 1 a) shows the schematic of the multi-segmented waveguide designs for Er3+:Al2O3 lasers. The waveguide 

consists of a silicon (Si) substrate, a five segment SiNx waveguide buried in SiO2 (
2SiOn =1.445), and a SiO2 gap 

between the top surface of the SiNx and the Er3+:Al2O3. The distance between the Si to the bottom layer of SiNx 

(>2.5μm) was chosen so that the fundamental TE mode is not affected by the substrate. The parameters of the SiNx 

waveguide consist of a waveguide thickness t = 200 nm, width w = 600 nm, and gap g = 400 nm. A layer of oxide 

(SiO2) filling the gap with thickness of 200 nm was deposited in between the erbium glass and SiNx to help reduce 

the guiding effect of high index SiNx [5]. Lastly, an Er3+:Al2O3 of thickness of 1500 nm was put on top of the 

structure. 

The intensity distributions of the fundamental TE mode at different wavelengths were calculated by a finite 

difference mode solver. Figure 1 b) and c) show the intensity distribution for pump wavelength at 980 nm and signal 

wavelength at 1550 nm. If we define the confinement factor (γ) and overlap factor (Γ) in the active medium by the 

following, 
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then we obtain 1550 90%nm  , 980 89%nm  , and 980 1550 99%  . 

 
Figure 1 a) Schematic of the vertical five-segment waveguide design. The calculated intensity of fundamental TE mode at b) 980 nm (pump) and 

c) 1550 nm (signal).  

We extended our analysis of the multi-segmented structure to broader wavelength selections; 950 nm and 980 

nm (InGaAs pump diode), 1050 nm (Ytterbium/Yb and Neodymium/Nd doped laser), 1300 nm (Nd doped laser), 

1550 nm (Er doped laser), and 2000 nm (Thulium/Tm and Holmium/Ho doped laser). The confinement and overlap 

factors (with 980 nm as the reference pump) of these wavelengths are shown in Figure 2. We obtained >85% 

confinement factor for all wavelengths longer than 950 nm and >98% intensity overlap factor with 980 nm pump 

over the entire near-infrared wavelength light sources, demonstrating insensitivity of mode profiles at various 

wavelengths. We note that the calculation has ignored the variation of the refractive indices at various wavelengths. 

 
Figure 2 a) Confinement factor of different light sources. b) Intensity overlap factor of different wavelength with 980 nm. 

3.  Er3+:Al2O3 Laser based on VMS waveguide 

We designed DBR and DFB resonators for Er3+:Al2O3 lasers. Periods of both DBR and DFB are the same  = 504 

nm. The DBR cavity consists of a straight multi-segmented waveguide of length Lgain = 13.8 mm confined by two 

similar reflection gratings. Each grating is formed by periodic additional side pieces on both sides of the multi-

segmented waveguide (adding to total of 7 SiNx segment waveguides), with each additional pieces having widths of 

wDBR = 600 nm and separated from the multi-segmented waveguide by a gap of gDBR = 400 nm. The total length of 

each of the gratings is given by LDBR = 5 mm. The DFB cavity consists of grating across the entire gain region, with 

the grating also formed by periodic additional side pieces with wDFB = 300 nm and gDFB = 550 nm. The total length 

of the DFB is LDFB = 20 mm. The quarter-wave phase shift of the DFB was designed to be slightly off from the 

center of the cavity (0.6 LDFB) so as to ensure lasing out of a single facet.  

The laser cavities were fabricated within a 300mm CMOS foundry. A 6 μm-thick plasma-enhanced chemical 

vapor deposition (PECVD) SiO2 layer with 0.2 μm-thick LPCVD SiNx layer was first purchased from vendor. The 

nitride layer was then patterned using 193 nm immersion lithography and reactive ion etching. After patterning, a 

PECVD SiO2 layer was deposited and chemically mechanically polished (CMP)-ed to a height of 0.1 μm above the 

silicon nitride layer. A second nitride layer was then deposited and patterned with a thickness of 0.2 μm and buried 



under additional 4 μm SiO2 layer. The second nitride layer is a part of process for other devices, however in the case 

of laser structures, we utilized this layer as an etch stop for erbium trench. After the nitride was etched away, we 

deposited another 0.1 μm SiO2 to make the total oxide gap to become 0.2 μm. Trenches for dicing and fiber end 

coupling were then etched into the edges of the dies by deep oxide and silicon etching. Finally, the wafers were 

transferred from the CMOS foundry, diced into individual dies, and an Er3+:Al2O3 layer was deposited by reactive 

co-sputtering using a process similar to that reported in [9]. Using the prism coupling method to measure the planar 

losses around 1550 nm, we obtained background loss, dopant concentration, and thickness of the film to be < 0.1 

dB∕cm, 1.0×10
20

 cm−3, and 1 μm respectively. The confinement and overlap factors for 1 μm-thick Er3+:Al2O3 are 

given by 1550 75%nm  , 1550 66%nm  , and 980 1550 99%  respectively. 

 
Figure 3 Spectrum of a) DBR and b) DFB lasers. 

The DBR and DFB lasers were pumped by using two 978 nm diode lasers. By transmission measurement, we 

measured the coupling losses. For the DBR laser, we estimated maximum on-chip power of Pmax = 0.44 mW (-3.6 

dBm) and slope efficiency of η = 1.4%. The threshold pump power is Pth = 64 mW. For DFB laser, we estimated 

maximum on-chip power of Pmax = 0.18 mW (-7.3 dBm) and slope efficiency of η = 2.7%. The threshold pump 

power is Pth = 14 mW. Figure 3 shows the spectrum of the DBR and DFB lasers at ~1565 nm. 

4.  Conclusion 

We report on a wavelength insensitive design for the near-infrared range by using a multi-segmented waveguide 

design. The design allows for high confinement and intensity overlap between the pump and signal wavelengths. We 

use a five-segmentwaveguide design to demonstrate Er3+:Al2O3 in DBR and DFB cavities. We obtained maximum 

power of -3.6 dBm for DBR laser and -7.3 dBm for DFB laser. The waveguide design allows operation of lasers at 

different wavelengths and due to the increased layer thickness, a further integration of compact silicon nitride 

devices.  
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