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Abstract—The construction of light-trees is one of the prin-
cipal subproblems for all-optical multicast routing (AOMR)
in sparse splitting Wavelength Division Multiplexing (WDM)
networks. Due to the light splitting constraint and the
absence of wavelength converters, several light-trees may
be required to establish a multicast session. However, the
computation of the cost-optimal multicast light-trees is NP-
hard. In this paper, first we study the cost bounds of the light-
trees built for a multicast session in unweighted WDM net-
works. Then, partially based on this result, the approxima-
tion ratios of some classical multicast light-tree computation
algorithms, i.e., Reroute-to-Source (R2S) and Member-Only
(MO) algorithms are derived in both unweighted and non-
equally weighted WDM networks. Moreover, integer linear
programming (ILP) formulations are introduced and carried
out to search the optimal light-trees for multicast routing.
The cost bounds and approximation ratios of R2S and MO
algorithms in some candidate WDM backbone networks are
examined through simulations.

Index Terms—Cost Bound; Approximation Ratio; Light-
tree, All-Optical Multicast Routing (AOMR); WDM Network;
Sparse Splitting.

I. INTRODUCTION

LL-optical multicast routing (AOMR) [1] is to deter-

mine a set of lightpaths from a source to the mul-
ticast members of the same session in a WDM network.
The light-tree concept is introduced in [2] to minimize the
number of wavelength channels and transceivers for all-
optical multicasting. Branching nodes in a light-tree should
be equipped with light splitters to support multicasting.
However, in sparse splitting [3] WDM networks, there are
two kinds of nodes: Multicast-Capable nodes (MC [3], i.e. the
nodes equipped with light splitters) and Multicast-Incapable
nodes (M1 [3], i.e. the nodes without light splitters). An MC
node is able to replicate the data packets in the optical
domain via light splitting and send the split light beam
to all the outgoing ports. While an MI node cannot split
but generally has the Tap-and-Continue (TaC [4]) capability.
The TaC permits to tap a small amount of optical power
from the incoming light beam for local usage and forward
the rest to only one outgoing port. Although one tree is
sufficient to span all the multicast destinations in a network
without splitting constraints, minimizing the cost of the
multicast tree is already a Steiner-Problem which is NP-
complete [7]. Due to sparse splitting, lack of wavelength
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converters, as well as continuous wavelength and distinct
wavelength constraints [8], one light-tree may not be able to
cover all the members of a multicast session while several
ones may be required, i.e., a light-forest [9]]. As a result, it
is even harder to optimize the total wavelength channel cost
for a multicast session.

Although many light-tree computation heuristics have
been proposed recently [7], [Q]-[12], none of them has ad-
dressed the cost bound of multicast light-trees in sparse
splitting WDM networks, let alone the approximation ratiod]
of the heuristic algorithms. Since the wavelength channel
cost is a very important metric for the selection of the
multicast light-trees, it is very critical to know at least the
cost bound of the light-trees, which could be referenced when
designing a WDM network. In [7], a heuristic is proposed
to construct multicast light-trees with QoS guarantee and
the cost upper bound of the light-trees is given. However,
in [7] it is supposed that all the network nodes are equipped
with costly light splitters, while it is not realistic in large
WDM mesh networks due to the high cost and complex
architecture of light splitters. Literature [13] also gives a
cost upper bound of NT for the multicast light-trees, where
N denotes the number of nodes in the network. However,
the cost bound in [13] has the following two shortcomings.
First it is derived on the hypothesis that the set of multicast
light-trees computed for a multicast session still retain a
tree structure in the IP layer (i.e., when all these light-
trees are merged together). In fact, this hypothesis is not
always held as demonstrated in the following example. A
multicast session with source s and destinations d;, d» and
ds is required in a sparse splitting optical network shown
in Fig. [I with solid line. Since node ds; is an MI node, two
light-trees (i.e., LT (dotted line) and LT, (dashed line)) on
two different wavelengths may be computed. As we can see
the IP layer of the merged LT} and LT, are drawn in Fig. [
with solid line, which is the same as the network topology.
Obviously, it is not a tree but a cycle. Second, the bound
NTZ in [13] seems to be too large for small size multicast
sessions, e.g., a multicast session with a source and only two
destinations.

For the above reasons, the first contribution of this paper
is to give a more accurate bound for wavelength channel cost
of multicast light-trees, which is based on our previous result
in [5]. It is valid for most of the multicast routing algorithms
under sparse splitting constraint, even if the IP layer of the
set of multicast light-trees does not retain the tree structure
(e.g, the iterative multicast routing algorithms as Member-
Only [9])). Costly and complex wavelength converters are
supposed to be unavailable, and an equal cost of 1 unit hop-

1A heuristic algorithm has an approximation ratio of p in network
G, if it can be guaranteed that for all possible multicast sessions in G
the total cost of the multicast light-forest computed by the heuristic
algorithm is at most p times worse than the total cost of the optimal
solution.
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TABLE |
SUMMARY OF THE APPROXIMATION PATIOS OBTAINED IN SPARSE SPLITTING WDM NETWORKS

[ Algorithm [ Unweighted WDM network |

Non-equally weighted WDM network ]

16 N4+49—7 16 N+49—7 N N
1<K<N 1<K < 2 5 <SK<5 —2§K<Ii\£
L
MO p(MO) < (K2 + 3K)/4 p(MO) < (K2 + 3K) /4 p(MO)< N — K p(MO) < ;(2
L&)
R2S p(R2S) = K p(R2S) < K p(R2S) < =X

Fig. 1. An example sparse splitting WDM network

count-cost is assumed over all the fiber links in the network.
We prove that the total cost of a multicast session is upper
bounded to (1) K(N — K), when K < &; (2) [22], when
K > % where K is the number of destinations in the mul-
ticast session and N is the number of nodes in the network.
Besides, the wavelength channel cost is lower limited to K.
Moreover, in unweighted WDM rings the optimal multicast
light-tree has a total cost inferior to N — [KLH}.

Solving the Steiner problem, the Shortest Path Tree algo-
rithm approximates the optimal solution with a ratio of K,
which is the number of destinations to be covered. A better
heuristic algorithm named Minimum Path Heuristic [14]
guarantees the result cost with a ratio of 2(1 — ﬁ) [25].
Solving the multicast routing problem in sparse splitting
WDM networks, the Reroute-to-Source (R2S) and Member-
Only (MO) algorithms are proposed in [9]. These two heuris-
tics are the variant algorithms of the Shortest Path Tree and
Minimum Path Heuristic in WDM networks. Will they retain
the same approximation ratios as for solving the Steiner
problem? Thus, the second contribution of this paper is to
investigate their approximation ratios in both unweighted
and non-equally weighted WDM networks, which is summa-
rized in Table[ll While our previous work [6] only considered
the latter case.

Moreover, cost bounds and approximation ratios of multi-
cast light-trees in some candidate all-optical backbone net-
works are examined through simulations. Integer Linear
Programming (ILP) formulations are proposed to find the
optimal multicast light-trees. MO and R2S [9] algorithms
are also implemented in the simulation.

The rest of this paper is organized as follows. System
model is given and the multicast routing problem is formu-
lated in Section [[Il Then the cost bound of multicast light-
trees in WDM mesh network is discussed in Section [ITIl
After that, the cost bound of multicast light-trees in WDM
rings is investigated in Section[TVl Furthermore, the approx-
imation ratios of two classical multicast routing algorithms
are derived in Section M To search the optimal solution for
sparse splitting multicast routing, the ILP formulations are
introduced in Section VIl The proposed cost bounds and ap-

proximation ratios are evaluated in Section V1] by extensive
simulations. Finally, we conclude the paper in Section V111l It
should be noticed that most proofs of theorems and lemmas
are included in the appendixes in order to have a good flow
in the paper.

Il. MULTICAST ROUTING WITH SPARSE SPLITTING
A. Multicast Routing Problem

Multicast routing involves a source and a set of destina-
tions. In sparse splitting WDM networks, a set of light-trees
is employed to distribute messages from the source to all
the group members simultaneously. The objective of studying
multicast routing in WDM networks is to minimize the wave-
length channel cost while fulfilling a multicast session. The
computation of light-trees for a multicast session generally
has the following principles.

1) Due to sparse splitting and absence of wavelength
conversion, in a light-tree, the degree of an MI node
cannot exceed two. In consequence some destinations
cannot be included in the same light-tree. Thus, several
light-trees on different wavelengths may be required
for one multicast session.

2) Among the light-trees built for a multicast session,
one destination may be spanned (used to forward the
incoming light beam to other destination nodes) by
several light-trees, but it should be served (used to
receive messages from the source) by only one light-
tree. (e.g., dz in Fig. [ is spanned by both LT; and
LT, to forward the incoming light beam to d> and d;
respectively. Thus, it must tap the light beam only once
for recovering multicast messages either in LT; or in
LT5).

3) Since the number of wavelengths supported per fiber
link is limited, the maximum number of wavelengths
required and the traffic congestion in a fiber link should
be taken into account during the selection of multicast
light-trees. Thus, if a set of destinations D have been
spanned by a light-tree LTy, D C LTy, it is entirely
useless to construct another light-tree LT to serve and
only serve the destinations in subset D;, with D, C D.
This is because that destinations in D; could be served
directly in LT;. For instance, three light-trees LTy, LT>
and LT3 are computed to serve di,ds,ds respectively,
where LT; only contains di, d2, LT> only contains ds, ds
and LTs only contains ds,d:. However, LT3, for in-
stance, should be eliminated since ds is spanned in LT5
and can be served directly in LT instead of using the
tree LTs;.

B. System Model

A sparse splitting WDM network can be modeled by an
undirected graph G(V, E,c). V represents the vertex-set of
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G, |V| = N. Each node v € V is either an Ml or an MC
node. F represents the edge-set of GG, which corresponds to
the fiber links between the nodes in the network. Each edge
e € E is consisted of two optical fibers for opposite direction
communications. And e is associated with a cost function
c(e). Function ¢ is additive over the links of a lightpath
LP(u,v) between two nodes u and v, i.e.,

> o (1)

e€LP(u,v)

c(LP(u, v)) =

We consider a multicast session ms(s, D), which requests
for setting up a light distribution structure (i.e., light-forest)
under optical constraint (i.e., wavelength continuity, distinct
wavelength, sparse splitting and lack of wavelength conver-
sion constraints) from the source s to a group of destinations
D. Let K be the number of destinations, K = |D|. Without
loss of generality, it is assumed that & light-trees LT;(s, D;)
are required to span all the destinations involved in a
multicast session ms(s, D), where ¢ € [1,k]. It holds true
that

1<k<K<N-1 (2)

Although the i*" light-tree LT;(s, D;) may span some des-
tinations already spanned in the previous light-trees, D; is
used to denote exclusively the set of newly served destina-
tions in LT;(s, D;). Since all the destinations in D are served
by k light-trees and each destination should be served only
once, we obtain

D= UDi 3)

These k sets of destinations D, are disjoint, i.e.,
Vi,je[l,k]land i #j, DiND; =@ (4)

Let a positive integer K; = | D;| denote the size of the subset
D;, then we have

ZKi:|D|:K (5)

The total cost C of a multicast session ms(s, D) is defined as
the wavelength channel cost of the light-trees built to serve
all the destinations in set D. It can be calculated by

k

> e[LTi(s, Dy)]

i=1

k
YooY e (6)

i=1 e€LT;(s,D;)

C(ms(s, D))

I1l. CosT BOUNDS OF MULTICAST LIGHT-TREES IN WDM
MESH NETWORKS

In this section, we will study the cost bounds of light-trees
in unweighted WDM networks with two different light split-
ting configurations: full light splitting and sparse splitting.
Let SR = Nuc /N be the ratio of MC nodes in the network.
For the full light splitting case SR = 1, and for the sparse
splitting case 0 < SR < 1. For simplicity, it is assumed
that all links have the following cost function in unweighted

WDM networks:
c(e) = 1 unit hop-count-costfl 7
Thus,

k
Clms(s, D)) =>_ Y 1 €)

i=1 e€LT;(s,D;)

A. Full Light Splitting WDM Networks

In the case that all network nodes are equipped with
light splitters, each node could act as a branching node in a
light-tree. Hence, one light-tree is sufficient to span all the
multicast members. It is a Steiner-problem which tries to
find a minimum partial spanning tree covering the source
and all the multicast members. In a light-tree, there are at
most N nodes when all the network nodes are spanned (i.e.,
when {v|v € LT} = V), and at least K + 1 nodes if and only
if the light-tree just contains the source and the multicast
members (i.e. when {v|v € LT} = {s} U D). So, the cost of the
multicast light-tree is bounded to

K <C(ms(s,D)) <N -1 9)

To minimize the total cost in full light splitting case, the
Minimum Path heuristic [14] and the Distance Network
heuristic [16] can be good choices, since they are guaranteed
to get a light-tree with a total wavelength channel cost no
more than 2(1 — %) times that of the optimal Steiner

tree [15], [16]. ic.,

C(ms(s,D)) <2(1 - %) x Copt (10)

+1

where Cop: denotes the wavelength channel cost of the
Steiner tree for ms(s, D).

B. Sparse Splitting WDM Networks

In the case of sparse splitting, only a subset of nodes
can act as branching nodes in a light-trees. One light-tree
may not be sufficient to accommodate all the group mem-
bers simultaneously. Generally, several light-trees should be
employed.

Lemma 1: Vj € [1, k], the cost of the ;" light-tree holds

Kj = |Dj| < c(LTy(s, Dj)) <N —k (11)

Theorem 1: In sparse splitting WDM networks, the total
cost of the light-trees built for the multicast session ms(s, D)
satisfies
K<
K>

K(N - K),
2
LT
1VV. CosT BOUND OF MULTICAST LIGHT-TREES IN
UNWEIGHTED WDM RINGS

A. Multicast Light-tree in unweighted WDM Rings

In WDM rings, all the nodes are mandatorily equipped
with TaC [4] capability, one light-tree is able to span all the
multicast members. The multicast light-tree in a WDM ring
consists of either a lightpath or two edge disjoint lightpaths
originating from the same source. In an N-node WDM ring,
the cost of the multicast light-tree for multicast session
ms(s, D) is subject to

KSC(ms(&D)) <N-1

K< C(ms(s,D)) < { 12)

SRR

(13)

2For instance, in an unweighted WDM network, each link is an
optical fiber of 10 km. 1 unit hop-count-cost can be considered as
the wavelength channel cost in a 10 km optical fiber.
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B. Optimal Multicast Light-tree in unweighted WDM Rings

Different from WDM mesh networks, minimizing the cost
of the multicast light-tree in a WDM ring is very simple. The
minimum spanning tree for the multicast members is the
optimal solution. Here, we use the concept gap introduced
in [17], [18]. A gap is a path between two adjacent multicast
members in {s}UD so that no other members are involved in
this path. The optimal multicast light-tree can be obtained
by removing the biggest gap from the ring [17].

Theorem 2: In a WDM ring, the cost of the optimal light-
tree for multicast session ms(s, D) complies

N

K+1 (14)

KSC(ms(&D)) <N-T

V. APPROXIMATION RATIOS OF THE HEURISTIC
ALGORITHMS FOR SPARSE SPLITTING MULTICAST
ROUTING

Like the Steiner problem, it is NP-hard to find the light-
trees with the optimal cost for multicast routing in sparse
splitting WDM networks. This is why many heuristic algo-
rithms have been proposed to solve this problem in poly-
nomial time. In order to guarantee the quality of the re-
sultant light-trees, it is imperative to determine the cost
approximation ratios of the proposed heuristic solutions.
The approximation ratio p(H) of a heuristic algorithm H in
WDM network G can be defined as follows: for any possible
multicast session ms(s, D) in G, let C(H) be the total cost
of the multicast light-forest computed by H and let Cop:
be the total cost of the optimal solution (the solution with
the minimized cost), p(H) is the tight upper bound of the
equation below

Q

(H)
CO pt

Nevertheless, the approximation ratios of heuristic algo-
rithms have not been investigated before. In this section,
we try to deduce the approximation ratios of two classical
light-trees computation heuristics namely Reroute-to-Source
(R2S) and Member-Only (MO) [9]. Define Co,: as the op-
timal cost of the light-trees fulfilling the multicast session
ms(s, D), and let p(-) denote the cost approximation ratio of
a heuristic solution. Specially, we discuss the approximation
ratios of these algorithms in two types of WDM networks:
unweighted one and non-equally weighted one. In the first
case, all the link costs are set to be 1 unit hop-count-cost as
shown in Eqg. (@). While in the latter case, the link cost can
be an arbitrary positive number.

At first, we give the general approximation ratios in un-
weitghted WDM mesh networks and some special topologies.

1< < p(H), Vms(s,D) in G (15)

Lemma 2: Given that WDM network G is unweighted, if
an all-optical multicast routing algorithm AOM R follows the
assumptions in Subsection [lI-Al then its approximation ratio
holds
N-K

|57

K

I1<K<¥%

(16)
S <K<N

mme<{

Proof: In unweighted WDM networks, Theorem [1] gives
both the lower bound and the upper bound for the light-
forest of one multicast session. Obviously, the optimal cost
of a light-forest should be no less than the lower bound K,
while the cost of any light-forest can not be beyond the upper

bound. Hence, the approximation ratio of the algorithm can
not be greater than the value of the upper bound divided by
the lower bound. ]
This theorem is valid for both Reroute-to-Source and
Member-Only algorithms, since they respect the sparse split-
ting constraint and follow the aforementioned assumptions.
It should also be noted that both Reroute-to-Source and
Member-Only algorithms are capable of finding the cost-
optimal light-forest in some special topologies, for instance
a tree, a simple path, and etc.

Lemma 3: Given the WDM network G in which there is
one and only one path between each pair of nodes, the
approximation ratios of Reroute-to-Source and Member-Only
algorithms are equal to 1.

Proof: As there is only one path between each pair of
nodes, any solution will find the identical light-forest to
realize a multicast session. ]

A. Reroute-to-Source Algorithm

Reroute-to-Source algorithm constructs the shortest path
tree rooted at the source, then it checks the splitting capacity
of the branching nodes. If a branching node is an MI node,
the algorithm cuts all but one downstream branch. The af-
fected leaf destinations rejoin the light-tree along a shortest
path to the source on another wavelength.

Theorem 3: Given that WDM network G is non-equally-
weighted, the Reroute-to-Source algorithm [9] provides an
approximation ratio of p(R2S) = K for multicast routing
with sparse splitting constraint.

Theorem 4: Given that WDM network G is unweighted,

(R2S) b= <];I 17)
p(R25) < NZ
7L;(J %’<K<N—1

B. Member-Only Algorithm

According to Member-Only (MO) algorithm [9], the short-
est path between each pair of nodes is precalculated and
stored in a table. Then, the computation of the light-trees
for a multicast request is done iteratively as shown in
Algorithm 1]

MC _SET: includes source node, MC nodes and the leaf
MI nodes. They may be used to span the light-tree LT and,
thus are also called connector nodes in LT.

MI _SET: includes only the non-leaf MI nodes, whose
splitting capability is exhausted. Hence, these nodes are not
able to connect a new destination to the subtree LT.

D: includes unserved multicast members which are nei-
ther joined to the current light-tree LT nor to the previously
constructed multicast light-trees.

At each step i+1, try to find the shortest paths between the
destinations d € D and the connector nodes c € MC _SET
of light-tree LT;, such that they do not involve any TaC
capability exhausted nodes in M1 _SET. Among them, the
constraint-satisfying shortest path SP(d,c) with the small-
est cost is selected. Then generate LT;.1 by adding SP(d,c)
to LT;. In case that no such destination can be found, begin a
new light-tree rooted at the source. Member-Only algorithm
is an adjustment of the famous Minimum Path Heuristic
(MPH) proposed for the Steiner problem. As mentioned in
Section [Tl MPH is able to approximate the Steiner tree
with a ratio smaller than 2. However, by adjusting MPH for
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Algorithm 1: Member-Only Algorithm

Input : A graph G(V, E) and a multicast session
ms(s, Do).
Output: A set of light-trees LT (s, D) with each on a
different wavelength w;, for ms(s, Do).
1 k< 1;// k is the number of a light-tree
2 D+ Dy;
3 while (D # 0) do

4 LTy + {s}, MC_SET <+ {s}, MI _SET «+ ©;

5 forde D and ce MC SET do

6 Try to find the shortest path SP(d, c) which

doest not involve any node in MI_SET;

7 if such a path SP(d,c) is found then

8 LT} (—LTkUSP(d,C);

9 MC SET + MC_SETU{MC in
SP(d,c)}u{d};

10 MI SET <~ MI_SET U {non-leaf Ml in
SP(d,c)};

11 if c is an MI node then

12 MC SET + MC_SET\ {c};

13 L MI SET <+ MI_SET U{c};

14 D + D\ {d};

15 goto step 5

16 else

17 Assign wavelength w; to LTy;

18 k+—k+1;

19 goto step [4] to begin a new light-tree LTy 11;

multicast routing under sparse splitting constraint, Member-
Only algorithm results in different approximation ratios.
Theorem 5: Given any kind of WDM networks G, the
Member-Only algorithm provides an approximation ratio
p(MO) < @ for sparse splitting multicast routing.
Theorem 6: Given that WDM network G is unweighted,
then

HK?+3K) 1<K <A6NH9-T
p(MO) < N-K SR <K<y (18)

N2
Sall] % <K<N-1
VI. ILP FORMULATION

Since minimizing the total cost of the light-forest for a mul-
ticast session is NP-hard, the integer linear programming
(ILP) method is applied to search the optimal solution.

Notations and Variables

w : The wavelengths supported per fiber.
A : A wavelength A € W.
In(m) : The set of nodes leading an edge to node m.

Out(m) : The set of nodes to which m is connected.
Deg(m) : The degree of node m.
link(m,n) : The directed link from node m to node n.
Cm,n : The cost of link(m,n).
Lmn(X) @ Equals to 1 if multicast request ms(s, D)
uses wavelength X on link(m,n), equals to
0 otherwise.
U .(\)  : Equals to 1 if link(m,n) is used on

wavelength X in the lightpath from d to the
source s, equals to 0, otherwise.

The objective of the studied sparse splitting multicast
routing problem is to minimize the wavelength channel cost
of the light-trees built for a multicast session ms(s, D). It
can be formulated as follows:

Minimize : Z Z Z Lnm(N) - cnm

AEW meV neln(m)

(19)

The objective function is subject to a set of constraints, which
are listed below:

A. Multicast Light-tree Constraints
Source Constraints:

S > Las(=0 (20)
AEW neln(s)
1<> Y, LW <ID| (21)

AEW neOut(s)

Constraints (20) and ensure that the light-trees for
multicast session ms(s, D) are rooted at the source node s.
In a light-tree, s must not have any input link, but should
have at least one output link. And the number of outgoing
links from s should not go beyond the number of sink nodes,
i.e., |D|.

Destinations Constraints:

1§Z Z Lna(\) <|D|, VdeD

AEW neln(d)

(22)

Constraint (22) guarantees that each destination node sinks
at least one incoming light beam. Since some destinations,
which act an intermediate node in a light-tree, will forward
the incoming light beam to successor destinations, a desti-
nation node d can receive at most |D| light beams on all the
wavelength layers. However, this constraint cannot ensure
that destination d is reachable from the source s, which will
be illustrated later.

Input Constraint:

Y Lam( <1,

neln(m)

YA€ W, and Vm € V (23)

Equation (23) indicates that each node (except the source
s) in a light-tree has and only has one predecessor. Never-
theless, this constraint can not guarantee that the resultant
structure is a set of light-trees, due to the fact that loops can
not be avoided (refer to Fig. [2).

Leaf Nodes Constraint:

Yo LanMZ Y Lam®

neOQut(m) neln(m)

YieW,ym eV and m ¢ D

(24)

Constraint (24) ensures that only the destination nodes can
be leaf nodes in a light-tree while the non-member nodes can
not.

Sparse Splitting Constraints:

Y LnaW<Rx Y Lam(d) (25)
neOut(m) neln(m)
YAeW,¥YmeVand m #s
where
R=1, if m is an MI node (26)
R = Deg(m) — 1, if m is an MC node
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Fig. 2. A contradict example with a loop in the result light-tree:
(a) The network topology; (b) The result

Constraint (25) together with constraint (24) indicates the
splitting capabilities of the nodes. If a node m is spanned
in a light-tree, then the number of outgoing links from m is
equal to 1 for an MI node and less than Deg(m) — 1 for an
MC node. Otherwise, it must be 0.

Only with the light-tree structure constraints developed
above [19], [20], one can not guarantee that each light-tree
of the resultant light-forest should be connected and loop
free. An contradictory example is given next. Suppose we
just employ the light-tree constraints formulation to find the
light-trees for a multicast session ms (s, (dv —d4)) in topology
Fig. 2(a). The result in Fig. 2(b) uses some wavelength
A, where Ls,d1 ()\1) =1, LdQ,d;;()\l) =1, Ldg,d4()\1) =1,
La,.4,(A1) = 1 and all the other variables L., »()) are zero.
It is true that all the constraints from (20) to are
satisfied in this result. Besides, the wavelength channel cost
of the result is optimal. Unfortunately, this result has a loop
d2 — ds — ds — d2 and three destinations are separated from
the source node s. Thereby, the proposed light-trees con-
straints are not sufficient to guarantee the resultant light-
tree structure. This is why next the destinations reachability
constraints are introduced to solve these problems.

B. Destination Nodes Reachability Constraints

Source node:

Z UL (A)=0, VreW, andVde D 27)
neln(s)
1<Z Z N <|D|, VdeD (28)

AEW neOut(s)

Similar to constraint (20), Eq. (27) gives the constraint
that no link leading to the source will be employed to serve
destinations in the light-trees.

Equation (28) ensures that all the destination nodes could
be reached from the source node s in the light-trees. By
combining Egs. (23) and (28), the loops can be avoided. Still
refer to the contradictory example aforementioned, the result
in Fig[2(b) does not satisfy constraint (28)), since destination
nodes d2 — d4 can not be reached from the source node s.

Destination nodes autocorrelation:

> Ul.(0)=0, VA€W, andVde D (29)
neOut(d)
> Ui <1, VA€W, andVde D (30)

neln(d)

vd € D

1<) Y Ulaa

AEW neln(d)

) < |D| -1, (31)

Constraint (29) avoids the loops of destinations, such as
that in Fig2{b). Constraints @0) and (@I) make sure that
each destination has one and only one input link in a
light-tree, which are equivalent to constraints (23) and 22)
respectively.

Non-member nodes and destination nodes cross correla-

tion:
S UL =D Ul (32)
n€Out(m) neln(m)
YAeW,¥Vd e D,VYm €V and m # s,d
o> un. <D (33)

AEW neOut(m)
YAeW,Vd e D,Ym €V and m # s,d

The distinct wavelength constraint is illustrated by Eg.
(@2). It ensures that one link can be used at most once on one
wavelength, and will be used at most |D| times to establish
multicast session ms(s, D) on all the wavelengths which is
expressed by Eq. (33).

C. Relationship between L,, (\) and U . (\)

In order to avoid loops in the resultant light-trees, vari-
able U ,.(\) is employed to restrict variable L., ,()\). Their
relations are shown in Egs. and (35).

\) < Z UL (\),YA e W, and Vm,n € V (34)
deD
UL w(A) < Linn(\), YA€ W,¥Ym,n €V, andVd e D  (35)

VII.

In this section, simulations are conducted to compute
the multicast light-trees in sparse splitting WDM mesh
networks. ILP formulations are implemented by Cplex [21],
while Member-Only and Reroute-to-Source are conducted
in C++ with LEDA package [22]. Since the proposed cost
bounds and the approximation ratios of Member-Only and
Reroute-to-Source algorithms only correspond to the worst
or extreme cases, they may only appear in special topologies
with special configurations. Hence, here we do not mean to
verify the accuracy of the proposed bounds and approxima-
tion ratios. Instead, the numerical results are used to show
the quality of the resultant light-trees when applying the
Member-Only and the Reroute-to-Source algorithms in some
popular candidate WDM backbone networks like 14 nodes
NSF network [10] and 28 nodes USA Longhaul network [10].

SIMULATION AND NUMERICAL RESULTS

A. Cost Bounds of Multicast Light-trees

Member-Only (MO) and Reroute-to-Source (R2S) algo-
rithms are conducted in unweighted NSF network (maximal
nodal degree is 4) and unweighted USA Longhaul network
(maximal nodal degree is 5). All the links are associated with
an identical cost of 1 hop-count-cost. Since the worst case of
the cost bound occurs when there is no light splitters in the
network, we configure the network without light splitters.
The source and multicast members are assumed to be dis-
tributed uniformly over the topology. The cost bounds of the
multicast light-trees computed by MO and R2S heuristics
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Fig. 3. The Cost Bound of multicast light-trees when the number of destinations K varies

TABLE 11
COMPARISON OF COST BOUNDS IN NSF NETWORK
[D|=K LB | ILP MO | R2S | UB
2 2 3.2 3.2 3.6 24
3 3 4.5 4.6 5.2 33
4 4 5.7 5.7 6.7 40
5 5 6.7 6.9 8.2 45
6 6 8.2 8.5 9.1 48
7 7 8.3 8.5 109 | 49
8 8 8.7 9.3 11.7 | 49
9 9 9.6 10.1 | 12.3 | 49
10 10 | 108 | 11.1 15 49
11 11 | 11.3 | 11.7 | 17.3 48
12 12 12 12 17.3 | 49
13 13 13 13.1 | 18.9 49

are demonstrated in Fig. [3] when the multicast group size
(counting the source node) K + 1 varies from 2 (Unicast) to
the nodes’ number of the network (Broadcast). 5000 multi-
cast sessions are randomly generated for a given multicast
group size, meanwhile, Member-Only and Reroute-to-Source
algorithms are employed to compute the multicast light-
forest for each session. Among 5000 light-forests, the biggest
cost of the light-forests (denoted by R2S-Max and MO-Max)
and smallest cost of the light-forests (denoted by R2S-Min
and MO-Min) are figured out and plotted in Fig. B The
lower bound and the upper bound provided in Theorem[Ilare
compared with the simulation result. According to the figure,
it is observed that the proposed lower bound is covered by
MO-Min since they are almost the same. The lower bound
is also very near to R2S-Min. Meanwhile, the upper bound
is much higher than the biggest costs obtained (MO-Max
and R2S-Max) by the simulation. This can be explained by
the fact that the simulation results depend on the simu-
lation topology. The proposed upper bound is valid for all
the algorithms which complies the three rules mentioned
in Section [[Il As discussed in Subsection [[II-B] given the
network topology in Fig. [4 both the lower bound and the
upper bound can be reached. Moreover, from the numerical
results of Fig. B(a) (b) in two different topologies, we can
also see that the maximal nodal degree does not influence
the quality of cost bounds.

TABLE Il
COMPARISON OF APPROXIMATION RATIOS IN NSF NETWORK
[D[=K || /' (MO) [ p(MO) [ o (R2S) | p(R2S)
2 2.50 1.00 2 1.13
3 4.5 1.03 3 1.16
4 7 1.00 4 1.18
5 9 1.03 5 1.23
6 8 1.04 6 1.11
7 7 1.03 7 1.32
8 6.13 1.07 6.13 1.35
9 5.44 1.06 5.44 1.29
10 4.9 1.03 4.9 1.39
11 4.45 1.04 4.45 1.54
12 4.08 1.00 4.08 1.45
13 3.77 1.01 3.77 1.46

B. Approximation Ratio of Multicast Light-trees

In the unweighted NSF network, ILP formulations are
carried out to search the optimal light-trees for each mul-
ticast session. Provided a multicast group size, 20 random
sessions are generated. Hence, each cost is the average
of 20 sessions with the same group size. The cost bounds
(LB and UB) and the approximation ratios of the Reroute-
to-Source and Member-Only algorithms are compared in
Tables [l and [Tl p'(MO) denotes the upper bound of the
approximation ratio given in Theorem [6land p’(R2S) stands
for the upper bound of the approximation ratio in Theorem[4]
while p(MO) and p(R2S) indicate the approximation ratios
obtained by ¢(MO)/c(ILP) and c¢(R2S)/c(ILP) respectively
in the simulations. As shown in Table [ Member-Only
algorithm has a cost close to the result of the ILP solution. In
Table [ITI] it is observed that Member-Only algorithm has a
better approximation ratio than Reroute-to-Source algorithm
in the simulation. However, the approximation ratio gotten
from the simulations is much smaller than that derived from
the proof. This result can be explained as follows. First,
the approximation ratio derived from the proof is the ratio
of the worst case. Second, similar to the cost bound, the
approximation ratio depends also on the network topology.
Finally, the approximation ratios given in Theorems {4 and
are not tight enough.

In fact, another important impact is the characteristic of
unweighted NSF network, which plays an important role in
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TABLE IV
NEW APPROXIMATION RATIOS OF R2S AND MO IN NSF
NETWORK
ID=K || 2 [3[]4]5]|]6[8]9]10] 11 | 12 | 13
pMO) [[25 |3 (|3[|3]3|3[|3] 3] 3] 3] 3
pR2S) [ 2 |33 ]3[3|3[|3] 3] 3] 3|3

helping Member-Only and Reroute-to-Source to get good per-
formances. This can be explained by the following Lemma [4

Lemma 4: Given that WDM network G is unweighted, the
approximation ratios of Member-Only and Reroute-to-Source
are inferior to the diameter of network Diam(G).

Proof: Any shortest path SPs(-) in the network G is
always SPz(-) < Diam(G). Both Reroute-to-Source and
Member-Only algorithm exclusively make use of the shortest
path in the network. Thus, the total cost ¢(LF) of the
resultant light-forest is

¢(LF) < K x Diam(Q) (36)

Besides, there are K destinations in session ms(s, D) and
G is unweighted, the optimal cost of multicast light-trees is
always no less than K. Thus,

p(LF) < K x Diam(G)/K = Diam(G) (37)

]
The diameter of the unweighted NSF network is
Diam(NSF) =3. By taking Theorems [Bl B and Lemma [
into consideration concurrently, pretty better approximation
ratios p(MO) and p(R2S) can be found in Table [V

VIIlI. CONCLUSION

In this work, the problem of all-optical multicast routing is
studied theoretically. On one hand, the bounds of wavelength
channel cost used by a multicast session is investigated
in unweighted WDM mesh topologies and rings. On the
other hand, the performance of two famous AOMR heuristic
algorithms, namely Reroute-to-Source and Member-Only [9],
are mathematical evaluated by deriving the approxima-
tion ratio, which is a crucial factor of heuristic algorithms.
Numerical results in candidate WDM backbone networks
demonstrate that the cost bounds and approximation ratios
of the Member-Only and the Reroute-to-Source algorithms
are far away from those of the worst cases. In addition, the
light-forest computed by the Member-Only algorithm uses
less cost than that of the Reroute-to-Source algorithm.

In practice, Ml nodes and MC nodes have different costs,
which is ignored in this paper. One possible future direction
can be to develop efficient AOMR heuristic algorithms while
take into account the cost associated with the usage of dif-
ferent OXCs. Moreover, incorporating the maximum degree
of MC nodes in the network may help to get more precise
approximation ratios.

APPENDIX A
A. Proof of Lemmall]

Proof: According to Eq. (@), all the k subsets of des-
tinations D;, ¢ € [1,k], are disjoint. Based on the third
assumption in Subsection[[I-Al at least & — 1 destinations are
not included in a light-tree. The number of nodes in a light-
tree is consequently no more than N — (k — 1). Furthermore,

() (b) ©

Fig. 4. (a) The best case; (b) The worst case when K < %; (c) The
worst case when K > % All the branching nodes are MI nodes.

if no other nodes are included in the j*" light-tree except the
source s and the destinations in D; (i.e. {vjv € LT};(s,D;)}
= {s} U D, ), then the number of nodes in the ;" light-tree
is minimal and equals K; + 1. Hence, the cost bounds of a

light-tree can be obtained as
Kj <¢(LTy(s, D)) <N —k (38)

B. Proof of Theorem[I]

Proof: According to Lemma [Il and Eq. (@), the total cost
of the light-trees built for a multicast session ms(s, D) holds

k

C(ms(s,D)) < > (N—k)
i=1
< k(N —k) (39)
N, N?
< (k== i
< —h— 5P+
Regarding & is an integer and 1 < k < K, we obtain
K(N-K), K<Z%
C(ms(s, D)) < { 22, K > % and N is even (40)
Nri;l, K > % and N is odd
Moreover, according to Lemma [d] it is also true that
k
C(ms(s,D)) > ZKi =K (41)
1=1

In the following, we prove that the cost bounds in
Theorem [1] are tight. It is not difficult to imagine that the
case with the minimal cost appears when all and only all
the destinations are involved in the light-tree computed for
multicast session ms(s, D), as shown in Fig. @(a). That is
to say {vlv € LT} = {s} U D. It is obvious that the lower
bound K is tight. The worst case depends on the relationship
between K and N. In case that K < &, the worst case may
happen when the network topology is like that in Fig. [4(b),
where K lightpaths on different wavelengths are needed to
serve K destinations to the source. Here, it is observed that
the cost of the optimal light-trees equals K(N — K). When
K > % the worst case may take place in the topology of
Fig. E(c). In this topology, L%J lightpaths from the source to
each of the destinations at the bottom are required to serve
all the group members. The K — | 5] destinations in the
middle can be served in any one of them. As each lightpath
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Fig. 5. The gaps in a WDM ring

has a cost of [£], an exact total cost of LNTQJ should be
consumed to establish the multicast session ms(s, D). This
example verifies the accuracy of the upper bound given in
Theorem [1l [ |

C. Proof of Theorem

Proof: Beginning from the source node s, we index the
destination nodes from d; to dx in a clockwise manner. Let
g1 denote the length of the gap between the source s and d;,
g: be the length of the " gap, i.e., the gap between d;_, and
d;, and gk 1 be the gap between source s and dx as shown
in Fig. Bl In a WDM ring of N nodes, we obtain

K+1

>a-w
=1

The cost of the optimal multicast light-tree for multicast
session ms(s, D) can be determined by

(42)

C(ms(s,D)) =N-—- max g;

43
1<i<K+1 (43)

In order to obtain the cost bound of the light-tree, we have
to determine the value range of max;<i<x+1 gi- Note that all
g; are positive integers and satisfy Eq. (42). We obtain the
following inequality

max
1<i<K+1

gi > [ 1 (44)

K+1
This result corresponds to the case that multicast members
are evenly distributed in a WDM ring. Thus we obtain

N
- 45
el (45)
Besides, if all the multicast group members stick together
one by one, the optimal light-tree thus only consists of the
source and the destinations. Then, we can obtain the lower
bound

C(ms(s,D)) <N -

(46)
[

C(ms(s7 D)) > K.

APPENDIX B
A. Proof of Theorem
Proof: Let r..... be the cost of the shortest path from the
furthest destination to the source s, i.e.

Tmax = g}ggc[sp(s7 dl)} (47)
Obviously, we have

COpt 2> Tmaz (48)

9
Fig. 6. [lllustration of Theorem [3l
Hence, we can obtain
p(R2S) = C(R2S)/Copt
< Y e(SP(s,di))/Copt
d;eD
S |D‘ * Tmazx /Tmaz (49)
< K

Next, we will show that p(R2S) may tend to be K in a non-
equally-weighted topology like Fig. [6 where r is a positive
integer denoting the distance from s to d; and ¢ is a very
small non-negative number. We can see the optimal solution
for multicast communication ms(s,d; — dk) is the lightpath
s = di — da... = dk, while the shortest path tree is the set
of direct paths from s to each destination. Then,

C(R2S) = K (r + Kz_ 1) (50)
Copt =7+ (K —1)(1+9) (51)
Thus, the approximation ratio of R2S algorithm is
1
p(R2S) = K <1 - - T ) (52)
(K—1)(1+29) + 1+26

Since G is non-equally weighted and K is inferior to N, r
can be arbitrarily large and independent of K and N. Thus,
for any K € (1,N), when & — oo and 6 — 0, we obtain
p(R2S) = K. ]

Discussion:

Obviously, Theorem B i.e. p(R2S) < K is true for both
unweighted and non-equally-weighted networks G. However,
it should be noticed that p(R2S) = K is not valid for
all possible 1 < K < N in unweighted WDM networks,
especially when K is very close to N. Take the same example
in Fig. 6l if G is unweighted, r is always below N — K and
§ =0, thus = < 22X will never reach co when K is close
to N. As a result, Eq. (2) can not tend to K any more, and
a better ratio should be found in this case.

B. Proof of Theorem [4]

Proof: As proved in Theorem [3 that p(R2S) < K is
always true for any WDM networks. Combining this with
Lemma [2 the proof follows. [ ]

C. Lemmalg

Lemma 5: In Fig. [Z} suppose P is a node in the shortest
path SP(A, B) from node A to node B, and C'is connected to
P by the shortest path. Define I xy as the cost of the shortest
path SP(X,Y), and we obtain

1
lep < §(lAB +lac +1Bc) (53)
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Proof: Since node P is in SP(A, B), both paths AP and

BP are the shortest paths, then
lap =lap +1Bp (54)

As a result the graph in Fig. [7] is a distance network, where
the triangle inequality is valid. Then,

lep <lac+lapr (55)
lep <lpc +lsp (56)

Adding Eq. (B5) to Eq. (56) gives
2lcp < (lap +1p) +lac +l5c (57

By substituting Eq. (&4) into the above equation, Lemma [B]
follows. n

D. Proof of Theorem [

Proof: We use the proof by induction. Let l,,,. be the
cost of the shortest path between the furthest two members
in a multicast session ms(s, D), i.e.

c[SP(mi,mj)] (58)

max
mg,m; €esuD

l'maw =

Member-Only algorithm starts the multicast light-tree
LT from the source s and spans the light-trees iteratively.
Let I, denote the cost of the shortest path that connects
the destination d; to the current LT, and []" be its upper
bound. In other words, the cost of LT increases by I; after
spanning d;, and at most /;". In the following, we are trying
to determine the worst case of the upper bound ;" for each I;

10

by applying the triangle inequality in Lemma[Bl As shown in
Fig.[8l the nearest destination node d; to the source s is first
added to LT. Now, the cost of LT is 1 < ljmae and i7" = lnaz.
Then in the second step, the nearest destination ds to LT
is added using the shortest path. If d» is spanned via d;
or s, then obviously I3 < [,,q,. It should be noted that the
worst case appears when ds is spanned via an intermediate
node (say Az) in SP(s,d1). If this happens to be the case, we
obtain I < 2lmae and 15" = 21,4, according to LemmaBl In
the third step, the nearest destination ds is added using the
shortest path. It is evident that [5* is the largest when ds
is spanned via an intermediate node (say As) in SP(Az,d2).
This can be explained as follows. If ds is spanned via any
member node (i.e., s, di or dz), then obviously I3 < lnaz-
Otherwise, d3 must be connected via an intermediate node
in the shortest path SP(s,d1) or SP(Az,dz2). According to
Lemma B I3 < %lmaz if d3 connects to LT through a node
in SP(s,d1). In case that ds connects to LT through a node
in SP(Az,dz), the cost of SP(As,ds) should be calculated
before using the triangle inequality. Similar to SP(A2,d>),
c[SP(AQ, dg)} < 13*. Then, go back to I3, and we obtain:

1
l3 S 2(0[5P(A2,d3)} +C(SP(d2,d3)) +l2)
1.m
S 5(12 + lmaz + 12) (59)
1
< 2 aimax
< U gl
Hence,
m m 1
l3 = lz + il'maz (60)

Suppose that Eq. (1) is obtained by applying Lemma [B]

l:Lm = l:ril + %l'maw (61)
Next, we try to prove that it is also true for the case
of I7},. Since a Member-Only multicast light-tree is only
consisted of the shortest paths, each node in the light-tree
must be in the shortest path between two member nodes or
between a destination and a joint node of two shortest paths.
And, [7" is monotonically increasing. Consequently, the worst
case of [}, occurs when d;;; connects to LT through an
intermediate node in the shortest path between d; and a joint
node A;. According to Lemma Bl ¢[SP(A;, dip1)] < 1" also
holds. Then, applying the triangle inequality again in the
distance network of G(A;,d;,d;) leads to,

1
lit1 < 2<C[SP(Ai7di+1)] +C(SP(di7di+1)) +lz>
1.m
= i(lz + lmaz + lz) (62)
1
< lm 7lmaz
S G+ 5
So, it is always valid for all the steps during the span
of a light-tree that I}, = [* + 1lm... Hence, we have
" = “llnes. Assuming k light-trees are constructed for
multicast session ms(s, D), and |D;| destinations are unique
served in the i*" light-tree. This also means that |D;| steps
are processed in the i*" light-tree. Thus, the total cost of the
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i'" light-tree is upper bounded by

|D; |
>
i=1
2

< Yo
=1

S Z(|Dz‘ +3|Dz|)lmaz

C(LTL) =

(63)

Then, the total cost consumed by ms(s, D) using Member-
Only algorithm is

M~

C(MO) o(LT))

1

.
Il

(1Dil* + 31Di)lmaz

IA
Mw
e

1

k
(3|D| + Z |D'L|2)lmam

=1

1
< BIDI+ D) lmas

.
Il

< (64)

N

As Copt > lmaz, the following inequality can be obtained

p(MO) = C(MO)/Cop
< C(MO)/lmax (65)

1 2

< JBK+E)
n

E. Proof of Theorem

Proof: By merging the approximation ratios in Lemma 2l
and Theorem [B the proof follows. [ |
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