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Abstract— Common Public Radio Interface (CPRI) 

is a successful industry cooperation defining the 
publicly-available specification for the key internal 
interface of radio base stations between the Radio 
Equipment Control (REC) and the Radio Equipment 
(RE) in the fronthaul of mobile networks. However, 
CPRI is expensive to deploy, consumes large 
bandwidth, and currently is statically configured. On 
the other hand, Ethernet-based mobile fronthaul will 
be cost-efficient and more-easily reconfigurable. 
Encapsulating CPRI over Ethernet (CoE) is an 
attractive solution, but stringent CPRI requirements 
such as delay and jitter are major challenges that 
need to be met to make CoE a reality. This study 
investigates whether CoE can meet delay and jitter 
requirements by performing FPGA-based Verilog 
experiments and simulations. Verilog experiment 
shows that CoE encapsulation with fixed Ethernet 
frame size requires about tens of microseconds. 
Numerical experiments show that the proposed 
scheduling policy of CoE flows on Ethernet can 
reduce jitter when redundant Ethernet capacity is 
provided. The reduction in jitter can be as large as 
one microsecond hence making Ethernet-based 
mobile fronthaul a credible technology. 

Index Terms—CPRI over Ethernet, 5G, Fronthaul, 
Jitter, Scheduling, Time-Sensitive Networking (TSN). 

I. INTRODUCTION 

xtensive adoption of smart phones and smart devices 
has enormously increased bandwidth consumption in 

cellular networks [1], thus calling for effective ways to 
improve cellular capacity.  For example, 5G bandwidth 
consumption is expected to be 1000x of 4G [1] [2], which 
calls for novel Radio Access Network (RAN) architectures 
that can support much higher bandwidths in a cost-effective 
manner. A popular approach is to split the functionalities of 
4G evolved NodeB (eNB) into a radio equipment (RE), 
consisting of antenna and basic radio frequency (RF) 
functionality, and radio equipment controller (REC), which 
processes the signals from the physical layer and above. 
This solution was originally called Centralized RAN (C-
RAN) as multiple RECs could be consolidated in a single 
centralized location, and single REC can be shared among 
many REs, depending on traffic load. C-RAN can 

significantly increase the cellular coverage density by 
deploying many REs which are lightweight compared to 
full-fledged macro base stations, and thereby reduce 
network cost by using fewer RECs. Recent proposals push 
the REC function into the “cloud” (where the REC is 
“virtualized”), thereby moving from Centralized-RAN to 
Cloud-RAN and Virtualized-RAN (V-RAN) [3]. 

Several ongoing projects, such as the Institute of 
Electrical and Electronics Engineers (IEEE) Standards 
Association 1914.1 working group [4], are striving to define 
an interface (electrical, optical, or wireless) between REC 
and RE. The interface requirements depend on the 
functional split [5] which, as proposed by 3GPP, is the set of 
functionalities that exist in the RE and REC. The split can 
occur at several protocol layers, thus resulting in different 
bandwidth and delay requirements of the mobile fronthaul. 
Our study considers the split at the physical layer of eNB 
(i.e., Option 8 in TR 38.801), which includes the entire layer 
1 and above functions in the REC, whereas RE is a 
lightweight antenna having only RF functionality. In this 
option in-phase quadrature (IQ) samples of the baseband 
signal must be transported between RE and REC. Common 
Public Radio Interface (CPRI) is a well-known radio 
interface developed by several leading telecom vendors to 
transport sampled RF data between RE to REC. CPRI is a 
constant-bit-rate (CBR) interface with line rate options 
ranging from 614.4 Mbps (option 1) up to 24.33 Gbps (option 
10) [6]. CPRI is a product of industry cooperation which is of 
a closed nature, while other interfaces of more open nature 
exist (e.g., Open Base Station Architecture Initiative 
(OBSAI) and Open Radio Equipment Interface (ORI)) [7] [8].  

CPRI is manufactured in low volumes, thus making it 
expensive. It is also extremely difficult to design switching 
equipment for CPRI. Although CPRI mentions that it 
supports several topologies such as tree, ring, and chain [6], 
there is no mention on how these topologies can be 
controlled. CPRI has stringent delay and jitter 
requirements, which can be satisfied only with high-speed 
fronthaul solutions (e.g., optical links) as in [9]. All these 
issues make it imperative to design a cost-efficient and 
reconfigurable mobile fronthaul that supports emerging 
network paradigms.  

Encapsulating CPRI over Ethernet (CoE) is a cost-
efficient solution which can leverage existing Ethernet 
interfaces, and switching equipment, for mobile fronthaul. 
Ethernet has many advantages such as easy upgradability 
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to higher data rates, wide-scale availability, low-cost 
equipment, and ease of scalability. Moreover, Ethernet 
switches can be used to configure a fronthaul into any 
network topology, even on a large network scale. Another 
advantage of utilizing CoE is that current high-speed optical 
networks can also be utilized for mobile fronthaul. In 
particular, 10 Gigabit (10G) Ethernet is fast enough to carry 
high-data-rate sampled IQ signals from REC to RE (e.g., a 
20-MHz single-antenna I/O sampled radio signal can be 
handled by 10G Ethernet interface). Transport options such 
as dedicated fiber, optical transport network (OTN), and 
passive optical network (PON) [10] can support the 
fronthaul by deploying fibers and other optical components 
(e.g., switches, Optical Line Terminals (OLTs) for eNB-to-
eNB communication). However, whether Ethernet can 
support stringent CPRI requirements in terms of delay and 
jitter is under scrutiny as the Ethernet mobile fronthaul 
needs to support delay within 100 µs and jitter within 65 ns 
[6], among other strict requirements of the time-sensitive IQ 
data that is being transmitted. 

An ongoing effort by industry [11] [12] and academia [13-
15] is investigating Ethernet fronthaul solution. The IEEE 
Standard Association (SA) 1914 working group is effective 
since 2015 to standardize Radio over Ethernet (RoE) [4]. In 
particular, IEEE 1914.3 task force is investigating ways of 
transferring IQ user-plane data, vendor-specific data, and 
control and management (C&M) information channels [6] 
over an Ethernet-based packet-switched network. This 
standard focuses on encapsulating data into the Ethernet 
frame payload field with an additional RoE header for 
timing and synchronization purposes. Two types of 
encapsulation are defined in RoE: structure-aware and 
structure-agnostic. Structure-aware encapsulation uses 
knowledge of the encapsulated and digitized radio transport 
format content, whereas structure-agnostic encapsulation is 
a container that encapsulates bits into Ethernet frames 
irrespective of the encapsulated protocol. The applicability 
of Ethernet to mobile fronthaul has been discussed in [11] 
by exploiting the buffers to reduce the jitter of Ethernet 
packets. However there is no experimental or simulative 
study quantifying the jitter in the proposed Ethernet 
fronthaul implementation. Several TSN Ethernet 
techniques (e.g., 802.1Qbu Frame Preemption and 802.1Qbv 
with guard band) for carrying fronthaul data has been 
compared in [12], however, there is no detailed study on 
under which conditions Ethernet with scheduled traffic can 
achieve less than 65 ns. Moreover, to minimize jitter in 
Ethernet fronthaul, scheduling Ethernet frames with fixed 
timeslots to a specific flow has been proposed in [13]. A 
functional split between the REC and RE has been proposed 
in [14] that permits baseband signal transport instead of 
the transport of sampled radio streams, to enable lower-rate 
fronthaul. Such a fronthaul can also make use of Ethernet 
switches, and networking statistical multiplexing gains, as 
it transports relatively bursty data instead of continuous 
radio waveforms. Furthermore, [15] provides experimental 
realization of dynamically reconfigurable CPRI over 
Ethernet, and also provides delay analysis of dynamically 
reconfigurable Ethernet fronthaul. 

There are investigations within IEEE 802.1CM whether 

IEEE 802.1Qbu [16] and IEEE 802.1Qbv [17] using 
preemption and scheduling could be utilized to guarantee 
latency and jitter requirements for Ethernet fronthaul. 
IEEE 802.1Qbu is utilizing frame preemption policies where 
IEEE 802.3br provides the mechanism to implement 
preemption at the media access control (MAC) and below 
layers. IEEE 802.1 Qbv is working on scheduled traffic with 
edge buffer which absorbs variation in packet delay with the 
added delay cost. The works in [18] [19] provide 
enhancements to IEEE 802.1Qbu and IEEE 802.1Qbv 
standards. These studies have shown that (i) by using 
802.1Qbu pre-emption in Ethernet cannot meet jitter 
requirements of 65 ns and (ii) 802.1Qbv using Ethernet 
scheduling can remove jitter in some cases depending on the 
input flows, but not always. 802.1Qbv utilizes guard bands 
to absorb fluctuations in the schedule of Ethernet packets. 
The size of the guard band determines the performance of 
802.1Qbv Ethernet, where small guard band size increases 
packet collisions and large guard band size decreases the 
effective throughput of Ethernet. IEEE 802.1Qbv and IEEE 
802.1Qch address the synchronization problems such as 
latency and jitter in networks where time-sensitive data 
shares capacity along with non-time-sensitive data. In 
particular, IEEE 802.1Qch describes the methods that can 
be adopted to schedule flows at strict time intervals using 
on-off gates for scheduled Ethernet. IEEE 802.1Qbv 
enhances the methods suggested in 802.1Qch to include 
VLAN tags to prioritize time-sensitive traffic such that 
delay/jitter get reduced. Our work assumes that the 
fronthaul network is capable of implementing the methods 
as described by Qch and Qbv. However these standards do 
not explicitly describe any algorithm to minimize jitter in 
Ethernet fronthaul. In this work, we provide a scheduling 
algorithm for CoE data such that jitter remains within 65 
ns for the given CoE data rates, which is not specified in 
Qbv/Qch. We also estimate the Ethernet capacity required 
to achieve tolerable jitter (65 ns) for a given set of CoE flows 
in the Ethernet fronthaul. 

Our study provides a quantitative performance 
evaluation of CoE in terms of delay and jitter. An FPGA 
pre-synthesis evaluation is performed to verify the logical 
functionality of CoE design and encapsulation overhead. 
Moreover, we exploit advances in time-sensitive networking 
(TSN) such as scheduling Ethernet (IEEE 802.1Qbv) to 
devise an exhaustive-search algorithm that returns jitter-
reduced frame scheduling. 

The rest of the study is organized as follows. In Section II, 
we discuss the CoE-based mobile fronthaul architecture. In 
Section III, we give the mapping between CPRI and 
Ethernet frames, where we also evaluate its important 
parameters such as encapsulation delay, Ethernet overhead 
and distance supported by Ethernet fronthaul. Section IV 
discusses jitter-minimization techniques for CoE. We 
propose algorithms that can be programmed in the Ethernet 
switch that reduce jitter in Ethernet fronthaul. In Section V, 
we perform Verilog experiments and simulations to evaluate 
the delay and jitter of CoE-based fronthaul. Section VI 
concludes the study. 
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   Total Ethernet header overhead (T ) is the additional 
delay to transmit Ethernet header (LEH) bytes due to 
Ethernet encapsulation, and it depends on the total number 
of Ethernet frames (NE) utilized to encapsulate the CPRI 
data, which depends on RCPRI and LP: 											 = . / = .                                      (3) 
where LEH is set to a fixed value (i.e., 44 bytes), RE is the 
Ethernet line rate (e.g., line rate of 10G Ethernet: 10 Gbps), 
TEOH is the header overhead per Ethernet frame. 
      Hop (i.e., switch, router) delay (T ) is the delay 
introduced by the Ethernet switch to process the packet 
using a store-and-forward mechanism, when RE and REC 
are in multi-hop configuration [6]. Hop delay can be 
estimated based on the switch forwarding functionality 
which could be store-and-forward or cut-through 
mechanism. This paper considers a worst-case hop delay 
utilizing a store-and-forward switch. Cut-through switch 
reduces the hop delay (to 6.4ns compared to 1µs for store-
and-forward) as only the first 8 bytes are needed to be 
processed before switch forwards the Ethernet packet to the 
respective output port: 																																 = / 	                                               (4) 
where LE is length of Ethernet frame (LP + LEH), expressed 
in multiples of CPRI basic frame length TB (see Fig. 3). 

TABLE I 
NOTATIONS 

Length of Basic CPRI Frame[second]  TB 

Length of Ethernet Frame[bit] LE 

Encapsulation Delay[second] Tencap 

Ethernet Payload Size[bit] LP 

CPRI Line Bit Rate[bit per second] RCPRI 

Header Overhead per Ethernet Frame[second] TEOH 

Total Ethernet Header Overhead[second] TtotHOH 

Ethernet Header Size[bit] LEH 

Number of CPRI Basic Frames  NB 

Number of Ethernet Frames in a Radio Frame  NE 
Total CoE Overhead[second] TtotEOH 

Ethernet Rate[bit per second] RE 

Hop Delay[second] Thop 

From Eqs. (3) and (4), total CoE overhead (T ) caused 
by encapsulation of CPRI data on Ethernet is computed as:  																				  =  +                               (5) 
Combining Eqs. (3)-(5), we get: 

 = . /  + /      
where Total Ethernet header overhead (T ) is the 
additional delay to transmit Ethernet header (LEH) bytes 
due to Ethernet encapsulation, and it depends on the total 
number Ethernet frames (NE) utilized to encapsulate the 
CPRI data. Hop (i.e., switch, router) delay (T ) is the delay 
introduced by the Ethernet switch to process the packet 
using a store-and-forward mechanism.   
   Table II shows the computed values of CoE parameters 
based on Eqs. (1)-(5) when 10G Ethernet is used to send 
CPRI line rates from option 1 (614.4 Mb/s) to option 6 
(6144.0 Mb/s) for two Ethernet payloads sizes, LP of 1250 
bytes and 1500 bytes.  Thop values in Table II are for a single 
hop. They are critical to analyze the delay performance of 
CoE. LTE radio frame of 10 ms is divided into 10 sub-
frames, each of 1 ms. A LTE eNB should complete eNB 
processing (uplink CPRI processing, uplink frame decoding, 
ACK/NACK creation, downlink frame creation, downlink 
CPRI processing) within 3 ms after receiving uplink data 
from User Equipment (UE) as the HARQ protocol needs an 

ACK/NACK to be sent in 3 ms for every four LTE sub-
frames. Hence, TtotHOH for transmitting four sub-frames is 
also shown in Table II. Note that TtotEOH is obtained by 
adding TtotHOH for four sub-frames (4 ms) with single Thop. 
From [23], the maximum allowed fiber round-trip time is 
246 μs after removing RF processing time (40 μs), CPRI 
processing time (10 μs), REC processing time (2700 μs), and 
fronthaul equipment processing (4 μs) from 3 ms delay 
requirement. Thus, maximum distance supported (km) 
between REC and RE by CoE is given by:       

    = (246μ − )/10μ /                        (6) 
where 10 μs/km is round-trip fiber propagation delay as the 
speed of light in fiber is 200000km/s. Virtualized RECs can 
move across different REC pools  (hotel of RECs that share 
cooling and housing resources to save energy) according to 
traffic/network requirements. This can lead to a situation 
where fronthaul data traverses different Ethernet switches, 
leading to a multi-hop scenario as explained in CPRI [6], 
where each hop corresponds to an Ethernet switch. 
Experiments conducted in the next section investigate the 
scheduling policies to reduce jitter in Ethernet fronthaul. 

IV. JITTER STUDY OF COE 

Proper scheduling that minimizes jitter is crucial to achieve 
acceptable jitter performance on Ethernet fronthaul. An 
attractive solution to minimize jitter in Ethernet fronthaul, 
is scheduling Ethernet frames by assigning fixed timeslots 
to send packets of a specific CoE flow [13]. Figure 4(a) shows 
an example where three CoE flows (1, 2, 3) of rates 5000 
Mbps, 2500 Mbps, and 1250 Mbps (each of LE = 1000 bytes) 
respectively are multiplexed on an Ethernet interface at 10 
Gbps. Scheduling length is defined as shortest time interval 
where CoE packets are multiplexed whose pattern repeats 
periodically; in Fig. 4, scheduling length is denoted by LS. 

The difference in the inter-arrival time between packets 
is measured as the packet-to-packet jitter [24] [25]. The CoE 
input packets are isochronous meaning packets arrive the 
input of Ethernet switch at regular intervals. Inter-arrival 
jitter is usually taken as the absolute value of the deviation 
from its regular state. For evaluating jitter characteristics 
of fronthaul we take the worst case jitter value for all the 
CoE flows multiplexed as follows: 

delayi,j = arrival time i+1,j – arrival time i,j 
Jitterj = max∀ i delayi,j – min∀ i delayi,j 

                  Jitter = max∀ j Jitterj                                       (7) 
where delayi,j denotes delay at the receiver of REC for 
packet number i in flow j. From Eq. (7) worst case jitter for 
all flows (i.e., max of max) is taken as a quality metric of the 
schedule. For this example, jitter on flow 1 is the difference 
between highest inter-packet delay, i.e., 2.4 µs, and lowest 
inter-packet delay, i.e., 0.8 µs, which is 1.6 µs. However, a 
better scheduling can be done that completely removes 
jitter, as shown in Fig. 4(b), where the jitter is zero since 
there is no variance in inter-packet delay for packets of the 
same flow. In this section, we propose a scheduling policy to 
multiplex several CoE flows on Ethernet such that jitter of 
CoE remains within acceptable level (see Eq. (7)). 
   This scheduling policy can be programmed in the Ethernet 
switch shown in Fig. 2, where multiplexing occurs. CoE 
flows from several REs need to be scheduled at precise 
times to provide least delay variance, and hence tolerable 
jitter. Scheduling Ethernet requires strict (and periodic) 
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    C-FIT takes the schedule produced by basic-offset 
algorithm as input and resolves conflicts. All possible 
permutations of input flow orders are formed, since the 
order in which any two flows are combined using 
matcombine subroutine affects the final jitter. For example, 
if three flows are considered, then the possible flow orders 
are {1 > 2 > 3}, {1 > 3 > 2}, {2 > 1 > 3}, {2 > 3 > 1}, {3 > 1 > 2}, 
{3 > 2 > 1}. For each order, the flows are sequentially 
combined using matcombine. matcombine takes two flows’ 
schedules as input and produces a non-conflicting schedule 
according to this procedure: the flow with higher number of 
packets is kept intact and the other flow is offset by a 
multiple of  to produce a non-conflicting schedule (this 
is called sliding approach). If such a non-conflicting 
sequence is not achieved by using the sliding approach, 
conflicting packets are moved to the nearest timeslot that is 
unoccupied. This approach is followed for all possible flow 
orders and the schedule with lowest amount of jitter is 
selected as the final schedule.  

(a) 

(b) 
Figure 4: (a) An example that shows jitter on flow 1; (b) An example 

that shows how proper scheduling can eliminate jitter. 
  
   The proposed C-FIT algorithm is compared with first-
available-timeslot (FAT) algorithm, namely benchmark 
FAT, which resolves the conflicts produced with basic-offset 
algorithm by moving the conflicting packets to the first 
available timeslot that can accommodate the packet without 
using sliding approach and flow ordering. Algorithm 3 
shows the pseudo code for benchmark FAT.   

TABLE III 
 PARAMETERS FOR COE PACKET SCHEDULING 

Input CoE rate for flow i [bit per second]  

Ethernet rate [bit per second] RE 

Transmission time of flow i packet on Ethernet link 
[second] 

 

Ethernet timeslot size [second] TETS 

# of slots in a schedule length for flow i  

Schedule of CoE flow i on Ethernet link [timevector]  
Number of flows NF 
Total slots in scheduling length NS 
Schedule length [seconds] LS 

  

    For the input flows in Fig. 4, we provide a non-conflicting 
scheduling sequence as an example using a benchmark FAT 
algorithm here. Let us assume that packets arrive at an 
Ethernet switch by time 0. Basic-offset algorithm assigns 
the periodic timeslots to the flows 1, 2, and 3: specifically, it 
assigns to flow 1 timeslots starting at {0, 1.6, 3.2, 4.8} µs, for 
flow 2 at {0, 3.2} µs, and for flow 3 at {0} µs. However, this 
solution results in two conflicts, i.e., at times {0, 3.2} µs. 
These conflicts are resolved by benchmark FAT algorithm, 
by allocating available un-allocated slots to flows involved in 
each of the conflicts. Flow 1 has schedule of {0, 1.6, 3.2, 4.8} 
µs, however by the end of the first timeslot, packets from 
flows 2 and 3 also arrive at the Ethernet switch which 
results in a conflict. Hence, packets from flow 1 remain 
unaffected, whereas the other packets get the next 
unallocated timeslots. The same procedure is applied at 
timeslot 3.2 µs also, thus resulting in the sequence {0, 1.6, 
3.2, 4.8} µs, {0.8, 4.0} µs, and {2.4} µs for the three flows, 
respectively. 
For the same input scenario, C-FIT produces several 
schedules using different flow orders.  For the flow order {1 
> 2 > 3}, the schedule is {0, 1.6, 3.2, 4.8} µs for flow 1, {0.8, 
4.0} µs for flow 2, and {2.4} µs for flow 3, same as FAT 
algorithm. 

For flow order {1 > 3 > 2}, the schedule is {0, 1.6, 3.2, 4.8} 
µs for flow 1, {2.4, 5.6} µs for flow 2, and {0.8} µs for flow 3.  
    For flow order {2 > 3 > 1}, the schedule is {0, 1.6, 3.2, 4.8} 
µs for flow 1, {0.8, 4.0} µs for flow 2, and {2.4} µs for flow 3.  
    For flow order {2 > 1 > 3}, the schedule is {0, 1.6, 3.2, 4.8} 
µs for flow 1, {0.8, 4.0} µs for flow 2, and {2.4} µs for flow 3.  
    For flow order {3 > 1> 2}, the schedule is {0, 1.6, 3.2, 4.8} 
µs for flow 1, {2.4, 5.6} µs for flow 2, and {0.8} µs for flow 3.  
    For flow order {3 > 2> 1}, the schedule is {0, 1.6, 3.2, 4.8} 
µs for flow 1, {0.8, 4.0} µs for flow 2, and {2.4} µs for flow 3. 
All the flow orders in this scenario produced zero jitter, so 
any schedule can be selected. Since C-FIT approach 
considers all possible flow orders, the complexity gets 
exponential. One way to reduce complexity is to stop 
running the algorithm as soon as a flow order produces zero 
jitter. Since the fronthaul consists of a limited number of 
flows multiplexed at the Ethernet switch, the complexity is 
not a big concern.   

ALGORITHM 1: BASIC-OFFSET ALGORITHM             
Input: ,  , LE (Assume flows are synchronized at input) 
Output: Schedule of CoE flows on Ethernet output 
Step 1: Calculate transmission time for flow i packet on  
              incoming Ethernet link as =  

             Calculate Scheduling length  as lowest common  
             multiple of  , i.e.,  = 	( ) 
             Calculate outgoing Ethernet timeslot size  =       

             Calculate number of timeslots in L  for flow i,   L = 	       

Step 2:  initialize: offset_nf = 0;  
                 //starting offset value of next flow is set to zero 

               for i = 1 to NF 

                     mat = comb ;  
                                /* mat is 2-dimensional temporary matrix that  
                               holds the contents of comb  */ 
                     offset = 0;  
                     for j = 1 to L  

                            in a certain flow   
                         mat	(j, 1) = offset + offset_nf;  
                                // mat (j, 1) represents start time of packet j  
                        mat (j, 2) = mat(j, 1) + ;  
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                              // mat	(j, 2) represents end time of packet j 
                        offset = offset + 	T 	; 
                    end  
                     offset_nf = offset_nf + ; 
                     comb = 	mat;  
                               /*  comb  is 2-dimensional matrix that  
                               holds start and end time of each packet in flow i*/ 
                 end  

 
ALGORITHM 2: COMB FITTING (C-FIT) 
Input:   Schedule of CoE flows given by basic-offset algorithm  
Output: Non-conflicting schedule of CoE packets 
Step 1: Form all possible permutations flow orders   
              from 1 to NF (NF! different sequences) denoted  
               by SEQ ,where	m = 1	to	N ! 
Step 2: for each sequence SEQ 	∈ {SEQ }                 
                  for j in SEQ  

                  initialize: matcomb	=  first	element	in	{SEQ } 

                  matcomb = matcombine (comb , matcomb) 
                end 
                Calculate jitter matcomb 
            end 
           Pick matcomb with least amount of jitter 
MATCOMBINE SUBROUTINE    
Input: comb , comb   (any two schedules) 
Output: Combined non-conflicting schedule 
Step 1: Initialize: matcomb as a matrix with length as sum lengths  
              of comb , comb  
Step 2: Take longest sequence out of comb , comb , and add its  
              contents to matcomb, call the other matrix mattemp 
Step 3: Shift mattemp by multiples of 	to form a perfect  
              non-conflicting schedule with matcomb 
Step 4: if success in this procedure 
                  Copy mattemp to matcomb and return matcomb 
Step 5: else  
                  Copy non-conflicting packets of mattemp to matcomb 
                  for all conflicting packets in mattemp 
                      Find nearest open timeslot which can fit the packet  
                       and update matcomb 
                  end 
                  return matcomb 

              end 
 

ALGORITHM 3: FIRST AVAILABLE TIMESLOT (FAT) 
FOR BENCHMARK 

Input:   Schedule of flows given by basic-offset algorithm
Output: Non-conflicting schedule of CoE packets 
Step 1: for i = 1 to NF 

                           initialize: fatcomb	= comb ;  
               // fatcomb is temporary matrix that holds contents of comb  

                  fatcomb = fatcombine(comb , fatcomb) 
                end 
                Calculate jitter for fatcomb 

FATCOMBINE SUBROUTINE    
Input: comb , comb  (any two schedules) 
Output: Combined non-conflicting schedule 
Step 1: Initialize: fatcomb as a matrix with length as sum  
              lengths of comb , comb  
Step 2: Take longest sequence out of comb , comb , and add its  
              contents to fatcomb, call the other matrix 	mattemp 
Step 3: Copy non-conflicting packets of fattemp to fatcomb 
              for all conflicting elements in fattemp 

Find nearest open timeslot which can fit the packet  
and update fatcomb 

              end 
             return fatcomb 

  

V. PERFORMANCE EVALUATION AND RESULTS 

This section presents evaluation of CoE performance 
metrics such as delay and jitter in the Ethernet fronthaul 
obtained through Verilog pre-synthesis experiments and 
simulations.  

A. Ethernet Encapsulation Delay  

We present results on the impact of CPRI line rates and 
payload size on the Ethernet encapsulation delay of CoE 
flows. We also show how the delay affects the fronthaul 
distance. An FPGA pre-synthesis verification is performed 
to map CoE and analyze delay performance of the multi-hop 
mobile fronthaul [6]. Pseudo random binary sequence 
(PRBS) data is generated and encapsulated in Ethernet 
frame using Verilog hardware description language (HDL) 
and evaluated utilizing ModelSim as a HDL simulator. 

Ethernet header consists of 24 bytes, which contains 
layer-2 Ethernet MAC header fields such as source address 
(6 bytes), destination address (6 bytes), Ethernet type (2 
bytes), RoE header (6 bytes), frame check sequence (4 
bytes). The generated data is framed at a clock rate (i.e., a 
clock cycle takes 6.4 ns) of 10 Gbps. Thus, generating 
Ethernet header overhead of 24 bytes requires three clock 
cycles which is 19.2 ns (as shown in Fig. 5). The 
experiments are conducted for three payload sizes - 500, 
1000, and 1500 bytes - to study the effect of payload size on 
the encapsulation delay. 
    Figure 5 verifies that Ethernet encapsulation is 
successfully designed and implemented in Verilog HDL. The 
left side of the waveform shows the labels of generated data, 
header fields, Ethernet frame (encapsulating the generated 
data), and inter-frame gap fields, while the right side shows 
the corresponding timing information. data_generation_prbs 
shows the generated data in pseudo-random form. dst_src in 
the pre-synthesis evaluation shows the first part of the 
header containing destination and part of source fields. 
src_len_roe_header field shows the remaining part of the 
source field, Ethernet type, and first part of roe header. 
roe_header_fcs field shows the remaining part of roe header 
and frame check sequence (FCS). roe_payload field indicates 
IQ samples encapsulated in Ethernet payload. Note that the 
data is generated continually at all times including header 
generation time. The markers show layer-2 Ethernet MAC 
overhead for a single Ethernet frame as 19.2 ns. For 615 
Ethernet frames, the delay would be 19.2×615 ns = 11.8 μs 
as shown in Table II (for CPRI option 1). 

Figure 6 shows the encapsulation delay (Tencap) as a 
function of CPRI line rate (RCPRI) options with different 
Ethernet packet payload PE sizes (500, 1000, and 1500 
bytes). As expected, the encapsulation delay decreases as 
RCPRI increases because, higher RCPRI flow takes shorter 
time to fill up the Ethernet packet payload size. Moreover, 
the encapsulation delay decreases as LE size decreases at 
the given RCPRI option, as lower payload gets filled in lesser 
time.  Figure 7 shows the distance of fronthaul (based on 
latency constraints) calculated using Eq. (6), for different 
CPRI line rates (options 1 to 6) and for the number of 
Ethernet switches the packets cross for Ethernet payload of 
1250 bytes. It shows that as the number of hops increase 
(more Ethernet switches crossed), the distance of fronthaul 
decrease due to added delay from the Ethernet switch using 
store-and-forward mechanism. 
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