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Abstract— Common Public Radio Interface (CPRI)
is a successful industry cooperation defining the
publicly-available specification for the key internal
interface of radio base stations between the Radio
Equipment Control (REC) and the Radio Equipment
(RE) in the fronthaul of mobile networks. However,
CPRI is expensive to deploy, consumes large
bandwidth, and currently is statically configured. On
the other hand, Ethernet-based mobile fronthaul will
be cost-efficient and more-easily reconfigurable.
Encapsulating CPRI over Ethernet (CoE) is an
attractive solution, but stringent CPRI requirements
such as delay and jitter are major challenges that
need to be met to make CoE a reality. This study
investigates whether CoE can meet delay and jitter
requirements by performing FPGA-based Verilog
experiments and simulations. Verilog experiment
shows that CoE encapsulation with fixed Ethernet
frame size requires about tens of microseconds.
Numerical experiments show that the proposed
scheduling policy of CoE flows on Ethernet can
reduce jitter when redundant Ethernet capacity is
provided. The reduction in jitter can be as large as
one microsecond hence making Ethernet-based
mobile fronthaul a credible technology.

Index Terms—CPRI over Ethernet, 5G, Fronthaul,
Jitter, Scheduling, Time-Sensitive Networking (TSN).

I. INTRODUCTION

xtensive adoption of smart phones and smart devices

has enormously increased bandwidth consumption in
cellular networks [1], thus calling for effective ways to
improve cellular capacity. For example, 5G bandwidth
consumption is expected to be 1000x of 4G [1] [2], which
calls for novel Radio Access Network (RAN) architectures
that can support much higher bandwidths in a cost-effective
manner. A popular approach is to split the functionalities of
4G evolved NodeB (eNB) into a radio equipment (RE),
consisting of antenna and basic radio frequency (RF)
functionality, and radio equipment controller (REC), which
processes the signals from the physical layer and above.
This solution was originally called Centralized RAN (C-
RAN) as multiple RECs could be consolidated in a single
centralized location, and single REC can be shared among
many REs, depending on traffic load. C-RAN can

significantly increase the cellular coverage density by
deploying many REs which are lightweight compared to
full-fledged macro base stations, and thereby reduce
network cost by using fewer RECs. Recent proposals push
the REC function into the “cloud” (where the REC is
“virtualized”), thereby moving from Centralized-RAN to
Cloud-RAN and Virtualized-RAN (V-RAN) [3].

Several ongoing projects, such as the Institute of
Electrical and Electronics Engineers (IEEE) Standards
Association 1914.1 working group [4], are striving to define
an interface (electrical, optical, or wireless) between REC
and RE. The interface requirements depend on the
functional split [5] which, as proposed by 3GPP, is the set of
functionalities that exist in the RE and REC. The split can
occur at several protocol layers, thus resulting in different
bandwidth and delay requirements of the mobile fronthaul.
Our study considers the split at the physical layer of eNB
(i.e., Option 8 in TR 38.801), which includes the entire layer
1 and above functions in the REC, whereas RE is a
lightweight antenna having only RF functionality. In this
option in-phase quadrature (IQ) samples of the baseband
signal must be transported between RE and REC. Common
Public Radio Interface (CPRI) is a well-known radio
interface developed by several leading telecom vendors to
transport sampled RF data between RE to REC. CPRI is a
constant-bit-rate (CBR) interface with line rate options
ranging from 614.4 Mbps (option 1) up to 24.33 Gbps (option
10) [6]. CPRI is a product of industry cooperation which is of
a closed nature, while other interfaces of more open nature
exist (e.g., Open Base Station Architecture Initiative
(OBSAI) and Open Radio Equipment Interface (ORI)) [7] [8].

CPRI is manufactured in low volumes, thus making it
expensive. It is also extremely difficult to design switching
equipment for CPRI. Although CPRI mentions that it
supports several topologies such as tree, ring, and chain [6],
there is no mention on how these topologies can be
controlled. CPRI has stringent delay and jitter
requirements, which can be satisfied only with high-speed
fronthaul solutions (e.g., optical links) as in [9]. All these
issues make it imperative to design a cost-efficient and
reconfigurable mobile fronthaul that supports emerging
network paradigms.

Encapsulating CPRI over Ethernet (CoE) is a cost-
efficient solution which can leverage existing Ethernet
interfaces, and switching equipment, for mobile fronthaul.
Ethernet has many advantages such as easy upgradability
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to higher data rates, wide-scale availability, low-cost
equipment, and ease of scalability. Moreover, Ethernet
switches can be used to configure a fronthaul into any
network topology, even on a large network scale. Another
advantage of utilizing CoE is that current high-speed optical
networks can also be utilized for mobile fronthaul. In
particular, 10 Gigabit (10G) Ethernet is fast enough to carry
high-data-rate sampled 1Q signals from REC to RE (e.g., a
20-MHz single-antenna I/O sampled radio signal can be
handled by 10G Ethernet interface). Transport options such
as dedicated fiber, optical transport network (OTN), and
passive optical network (PON) [10] can support the
fronthaul by deploying fibers and other optical components
(e.g., switches, Optical Line Terminals (OLTs) for eNB-to-
eNB communication). However, whether Ethernet can
support stringent CPRI requirements in terms of delay and
jitter is under scrutiny as the Ethernet mobile fronthaul
needs to support delay within 100 us and jitter within 65 ns
[6], among other strict requirements of the time-sensitive IQ
data that is being transmitted.

An ongoing effort by industry [11] [12] and academia [13-
15] is investigating Ethernet fronthaul solution. The IEEE
Standard Association (SA) 1914 working group is effective
since 2015 to standardize Radio over Ethernet (RoE) [4]. In
particular, IEEE 1914.3 task force is investigating ways of
transferring 1Q user-plane data, vendor-specific data, and
control and management (C&M) information channels [6]
over an Ethernet-based packet-switched network. This
standard focuses on encapsulating data into the Ethernet
frame payload field with an additional RoE header for
timing and synchronization purposes. Two types of
encapsulation are defined in RoE: structure-aware and
structure-agnostic. Structure-aware encapsulation uses
knowledge of the encapsulated and digitized radio transport
format content, whereas structure-agnostic encapsulation is
a container that encapsulates bits into Ethernet frames
irrespective of the encapsulated protocol. The applicability
of Ethernet to mobile fronthaul has been discussed in [11]
by exploiting the buffers to reduce the jitter of Ethernet
packets. However there is no experimental or simulative
study quantifying the jitter in the proposed Ethernet
fronthaul implementation. Several TSN  Ethernet
techniques (e.g., 802.1Qbu Frame Preemption and 802.1Qbv
with guard band) for carrying fronthaul data has been
compared in [12], however, there is no detailed study on
under which conditions Ethernet with scheduled traffic can
achieve less than 65 ns. Moreover, to minimize jitter in
Ethernet fronthaul, scheduling Ethernet frames with fixed
timeslots to a specific flow has been proposed in [13]. A
functional split between the REC and RE has been proposed
in [14] that permits baseband signal transport instead of
the transport of sampled radio streams, to enable lower-rate
fronthaul. Such a fronthaul can also make use of Ethernet
switches, and networking statistical multiplexing gains, as
it transports relatively bursty data instead of continuous
radio waveforms. Furthermore, [15] provides experimental
realization of dynamically reconfigurable CPRI over
Ethernet, and also provides delay analysis of dynamically
reconfigurable Ethernet fronthaul.

There are investigations within IEEE 802.1CM whether

IEEE 802.1Qbu [16] and IEEE 802.1Qbv [17] using
preemption and scheduling could be utilized to guarantee
latency and jitter requirements for Ethernet fronthaul.
IEEE 802.1Qbu is utilizing frame preemption policies where
IEEE 802.3br provides the mechanism to implement
preemption at the media access control (MAC) and below
layers. IEEE 802.1 Qbv is working on scheduled traffic with
edge buffer which absorbs variation in packet delay with the
added delay cost. The works in [18] [19] provide
enhancements to IEEE 802.1Qbu and IEEE 802.1Qbv
standards. These studies have shown that (i) by using
802.1Qbu pre-emption in Ethernet cannot meet jitter
requirements of 65 ns and (ii) 802.1Qbv using Ethernet
scheduling can remove jitter in some cases depending on the
input flows, but not always. 802.1Qbv utilizes guard bands
to absorb fluctuations in the schedule of Ethernet packets.
The size of the guard band determines the performance of
802.1Qbv Ethernet, where small guard band size increases
packet collisions and large guard band size decreases the
effective throughput of Ethernet. IEEE 802.1Qbv and IEEE
802.1Qch address the synchronization problems such as
latency and jitter in networks where time-sensitive data
shares capacity along with non-time-sensitive data. In
particular, IEEE 802.1Qch describes the methods that can
be adopted to schedule flows at strict time intervals using
on-off gates for scheduled Ethernet. IEEE 802.1Qbv
enhances the methods suggested in 802.1Qch to include
VLAN tags to prioritize time-sensitive traffic such that
delay/jitter get reduced. Our work assumes that the
fronthaul network is capable of implementing the methods
as described by Qch and Qbv. However these standards do
not explicitly describe any algorithm to minimize jitter in
Ethernet fronthaul. In this work, we provide a scheduling
algorithm for CoE data such that jitter remains within 65
ns for the given CoE data rates, which is not specified in
Qbv/Qch. We also estimate the Ethernet capacity required
to achieve tolerable jitter (65 ns) for a given set of CoE flows
in the Ethernet fronthaul.

Our study provides a quantitative performance
evaluation of CoE in terms of delay and jitter. An FPGA
pre-synthesis evaluation is performed to verify the logical
functionality of CoE design and encapsulation overhead.
Moreover, we exploit advances in time-sensitive networking
(TSN) such as scheduling Ethernet (IEEE 802.1Qbv) to
devise an exhaustive-search algorithm that returns jitter-
reduced frame scheduling.

The rest of the study is organized as follows. In Section II,
we discuss the CoE-based mobile fronthaul architecture. In
Section III, we give the mapping between CPRI and
Ethernet frames, where we also evaluate its important
parameters such as encapsulation delay, Ethernet overhead
and distance supported by Ethernet fronthaul. Section IV
discusses jitter-minimization techniques for CoE. We
propose algorithms that can be programmed in the Ethernet
switch that reduce jitter in Ethernet fronthaul. In Section V,
we perform Verilog experiments and simulations to evaluate
the delay and jitter of CoE-based fronthaul. Section VI
concludes the study.
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II. COE-BASED C-RAN ARCHITECTURE

A. Frame Structure

CPRI sends sampled IQ data in a frame format as shown in
Fig. 1. It uses fixed-bandwidth connections between REC
and RE with different line rates (options 1 to 10) [6]. CPRI
supports 8B/10B and 64B/66B encoding options; without
loss of generality, our study considers 8B/10B encoding.
While CPRI supports topologies such as tree, ring, and
chain, each link between RE and REC is a fixed-bandwidth
time-division-multiplexed (TDM) connection. A single basic
frame duration is 260 ns (1/3.84 MHz) which is compatible
to a Universal Mobile Telecommunications System (UMTS)
chip length. Each basic frame consists of 16 words, and the
word length depends on the CPRI line rate [6]: 256 basic
frames make a hyper frame, and 150 hyper frames make a
radio frame.

The CPRI radio frame is 10 ms. CPRI line rate
information is sent in Z.Y.W.X format between RE and
REC, where Z is hyper frame number, Y is basic frame
within a hyper frame, W is word number within a basic
frame, and X is byte number within a word. CPRI provides
auto-rate  negotiation  which allows a  dynamic
reconfiguration of the CPRI line rate based on the antenna,
and hence user traffic characteristics [6].

B. Network Architecture

The considered architecture for Ethernet-based C-RAN
and/or V-RAN is shown in Fig. 2 where there are three links
from RE to REC supporting CPRI flows packetized over
Ethernet. The CoE flows from RE to REC pool are switched
using Ethernet switch (SW), where a scheduling policy can
be programmed to provide access control to avoid collision.

This architecture can support network sharing between
multiple vendors and operators as envisioned for 5G
network [20], which should integrate different wireless
standards: 3G, 4G, LTE-advanced, and WiFi. Also, several
physical media can be used based on the demand and
availability of resources such as fiber, cable, DSL, mm-
wave, and free-space optics. The proposed architecture can
jointly optimize resources of different media for fronthaul
and backhaul (the connection between REC pool to core
network), as Ethernet can be the underlying protocol for
each of these platforms. This facilitates network sharing
and common operation and maintenance (OAM) functions.
If large capacity is requested optical infrastructure can be
utilized to support the RAN [21]. Moreover, thanks to
virtualization, multiple operators can share a common
physical infrastructure [22].

III. CPRI-OVER-ETHERNET (COE) MAPPING

CoE encapsulation requires a mapping between CPRI and
Ethernet frames. In this study, we describe a structure-
agnostic mapping of CoE where CPRI flows are sequentially
packetized onto an Ethernet frame without the knowledge
of CPRI data. Several CoE flows can share a common
Ethernet link. Table I shows the notations utilized to
describe the mapping between CPRI and Ethernet frames.
Figure 3 shows the encapsulation of CPRI flows in the
payload of Ethernet frames, considering that the input is at
CPRI line rate and output is at Ethernet link rate. The
CPRI data is framed into Ethernet with additional MAC
and RoE header: preamble (7 bytes), start of frame delimiter

(1 byte), source address (6 bytes), destination address (6
bytes), Ethernet type (2 bytes), RoE header (6 bytes), frame
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Figure 1: Frame structure of CPRI.
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Figure 2: CPRI-over-Ethernet fronthaul architecture for C-RAN.
check sequence (4 bytes), and inter-packet gap (12 bytes). As
n [4], 6 bytes of RoE header further contains different sub-
fields such as: version, packet type, start of the frame, flow
id, timestamp select field, timestamp, and optional extended
RoE header space. Note that optional 802.1Q tag field is not
considered in Ethernet overhead calculations. The CPRI
data in an Ethernet frame is always a multiple of CPRI
basic frame. The CoE mapping parameters such as
encapsulation delay, hop delay, and Ethernet overhead are
discussed below.

CoE encapsulation/de-capsulation is assumed to be
performed at both RE and REC, and the minimum CPRI
data to be encapsulated into Ethernet is one CPRI basic
frame of duration Ts = 260 ns. Thus, Ethernet payload size
Lp is computed as:

Lp = Np *Rcpr; Tp (1)

The value of N for different line rates is chosen such that
the payload value remains close to 1250 or 1500 bytes. Lp is
made multiple of N so the number of CPRI basic frames in
an Ethernet frame remains an integer value, thus basic
frame fragmentation is avoided.

Using Lp, the encapsulation delay Tencap is defined as the
time taken to frame the CPRI data at a specific line rate
into Ethernet payload (i.e., time to receive the CPRI
payload):

Lp
Tencap Repmi =Ng-Tp (2
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Total Ethernet header overhead (Toon) 1s the additional
delay to transmit Ethernet header (Lem) bytes due to
Ethernet encapsulation, and it depends on the total number
of Ethernet frames (Ng) utilized to encapsulate the CPRI
data, which depends on Rcprr and Lp:

Teotron = Ng-Lgn/Re=Ng. Tgon 3
where LgH is set to a fixed value (i.e., 44 bytes), Rk is the
Ethernet line rate (e.g., line rate of 10G Ethernet: 10 Gbps),
Teon is the header overhead per Ethernet frame.

Hop (i.e., switch, router) delay (Tyop) is the delay
introduced by the Ethernet switch to process the packet
using a store-and-forward mechanism, when RE and REC
are in multi-hop configuration [6]. Hop delay can be
estimated based on the switch forwarding functionality
which could be store-and-forward or cut-through
mechanism. This paper considers a worst-case hop delay
utilizing a store-and-forward switch. Cut-through switch
reduces the hop delay (to 6.4ns compared to 1lps for store-
and-forward) as only the first 8 bytes are needed to be
processed before switch forwards the Ethernet packet to the
respective output port:

Thop = Le/Re 4)
where Lk is length of Ethernet frame (Lp + Len), expressed
in multiples of CPRI basic frame length Ts (see Fig. 3).

TABLE I

NOTATIONS
Length of Basic CPRI Frame[second] Ts
Length of Ethernet Frame|bit] L
Encapsulation Delay[second] Tencap
Ethernet Payload Size[bit] Lp
CPRI Line Bit Rate[bit per second] Repri
Header Overhead per Ethernet Frame[second] | Tron
Total Ethernet Header Overhead[second] TiotHOH
Ethernet Header Size[bit] Len
Number of CPRI Basic Frames Nz
Number of Ethernet Frames in a Radio Frame | Ng
Total CoE Overhead[second] ThotEOH
Ethernet Rate[bit per second] Re
Hop Delay[second] Thop

From Eqs. (3) and (4), total CoE overhead (Tiygoy) caused
by encapsulation of CPRI data on Ethernet is computed as:

Ttoteon = Trotnon + Thop 5)
Combining Egs. (3)-(5), we get:

Toteon = Ng-Lgn/Rg + Lg/Rg

where Total Ethernet header overhead (Tioyoy) is the
additional delay to transmit Ethernet header (Len) bytes
due to Ethernet encapsulation, and it depends on the total
number Ethernet frames (Ng) utilized to encapsulate the
CPRI data. Hop (i.e., switch, router) delay (Tyqp) is the delay
introduced by the Ethernet switch to process the packet
using a store-and-forward mechanism.

Table II shows the computed values of CoE parameters
based on Egs. (1)-(5) when 10G Ethernet is used to send
CPRI line rates from option 1 (614.4 Mb/s) to option 6
(6144.0 Mb/s) for two Ethernet payloads sizes, Lp of 1250
bytes and 1500 bytes. Thop values in Table II are for a single
hop. They are critical to analyze the delay performance of
CoE. LTE radio frame of 10 ms is divided into 10 sub-
frames, each of 1 ms. A LTE eNB should complete eNB
processing (uplink CPRI processing, uplink frame decoding,
ACK/NACK creation, downlink frame creation, downlink
CPRI processing) within 3 ms after receiving uplink data
from User Equipment (UE) as the HARQ protocol needs an

ACK/NACK to be sent in 3 ms for every four LTE sub-
frames. Hence, Tttnon for transmitting four sub-frames is
also shown in Table II. Note that Titron is obtained by
adding Titron for four sub-frames (4 ms) with single Thop.
From [23], the maximum allowed fiber round-trip time is
246 ps after removing RF processing time (40 ps), CPRI
processing time (10 ps), REC processing time (2700 ps), and
fronthaul equipment processing (4 ps) from 3 ms delay
requirement. Thus, maximum distance supported (km)
between REC and RE by CoE is given by:

Distance = (246us — Tioipon)/10us/km (6)
where 10 ps/km is round-trip fiber propagation delay as the
speed of light in fiber is 200000km/s. Virtualized RECs can
move across different REC pools (hotel of RECs that share
cooling and housing resources to save energy) according to
traffic/network requirements. This can lead to a situation
where fronthaul data traverses different Ethernet switches,
leading to a multi-hop scenario as explained in CPRI [6],
where each hop corresponds to an Ethernet switch.
Experiments conducted in the next section investigate the
scheduling policies to reduce jitter in Ethernet fronthaul.

IV. JITTER STUDY OF COE

Proper scheduling that minimizes jitter is crucial to achieve
acceptable jitter performance on Ethernet fronthaul. An
attractive solution to minimize jitter in Ethernet fronthaul,
is scheduling Ethernet frames by assigning fixed timeslots
to send packets of a specific CoE flow [13]. Figure 4(a) shows
an example where three CoE flows (1, 2, 3) of rates 5000
Mbps, 2500 Mbps, and 1250 Mbps (each of Le = 1000 bytes)
respectively are multiplexed on an Ethernet interface at 10
Gbps. Scheduling length is defined as shortest time interval
where CoE packets are multiplexed whose pattern repeats
periodically; in Fig. 4, scheduling length is denoted by Ls.

The difference in the inter-arrival time between packets
is measured as the packet-to-packet jitter [24] [25]. The CoE
input packets are isochronous meaning packets arrive the
input of Ethernet switch at regular intervals. Inter-arrival
jitter is usually taken as the absolute value of the deviation
from its regular state. For evaluating jitter characteristics
of fronthaul we take the worst case jitter value for all the
CoE flows multiplexed as follows:

delayij=arrival time i+1,j— arrival time i;

Jitterj = maxvi delayij — minv; delayi;

Jitter = maxv;j Jitter; 7
where delayi; denotes delay at the receiver of REC for
packet number i in flow j. From Eq. (7) worst case jitter for
all flows (i.e., max of max) is taken as a quality metric of the
schedule. For this example, jitter on flow 1 is the difference
between highest inter-packet delay, i.e., 2.4 ps, and lowest
inter-packet delay, i.e., 0.8 us, which is 1.6 ps. However, a
better scheduling can be done that completely removes
jitter, as shown in Fig. 4(b), where the jitter is zero since
there is no variance in inter-packet delay for packets of the
same flow. In this section, we propose a scheduling policy to
multiplex several CoE flows on Ethernet such that jitter of
CoE remains within acceptable level (see Eq. (7)).

This scheduling policy can be programmed in the Ethernet
switch shown in Fig. 2, where multiplexing occurs. CoE
flows from several REs need to be scheduled at precise
times to provide least delay variance, and hence tolerable
jitter. Scheduling Ethernet requires strict (and periodic)



>Journal of Optical Communications and Networking<

time schedules (on/off slots) where each CPRI flow’s packets
can be transmitted. Schedule is formed using parameters
such as queue schedule of nodes, transmission delays,
packet lengths, and CoE rates.

A conflicting schedule is defined as one which schedules
more than one packet of different or same flows at the same
time. Finding a non-conflicting schedule of packets is proven
to be NP-complete. Refs. [26] [27] prove that the problem of
producing a non-conflicting schedule to multiplex multiple
flows can be reduced to the classical graph-coloring problem,
which is known to be NP-complete. There are several
algorithms proposed in other network problems that strive
to produce non-conflicting schedule of multiplexed packets
[26] [27]; node-based scheduling and level-based scheduling
are popular ones. But for fronthaul where topologies are not
as complex as other networks, and jitter is much more
stringent, a greedy approach that exhaustively searches the
minimum jitter sequence can be a good choice. Below, we
propose a greedy scheduling algorithm that minimizes jitter
by proper scheduling, and then we compare it with a
benchmark algorithm. We assume that all the flows in the
proposed fronthaul network are CoE flows whose
characteristics such as packet lengths and CPRI rates are
well-determined. We also assume that the network is not
oversubscribed and there is only one switch that is
multiplexing multiple CPRI flows onto Ethernet output

. Tg
Encapsulation
INPUT

Y
CPRI Frames L

i.'

Encapsulation

]

1
1
T

using a tree topology. If there are multiple switches
aggregating flows in the network, a combined schedule
needs to be formed using global information with the help of
Software Defined Network (SDN) controller and pushed into
each of the switches.

When multiple input ports get aggregated into an output
port there is an internal serialization delay in the switch
known as the M:1 delay. The objective of the proposed
scheduling policies is to decrease the maximum jitter among
all the flows as defined in the paper thus providing the
frames with a fair amount of serialization delay.

A. CoE Scheduling Policies

This section introduces the proposed Comb-fitting (C-FIT)
algorithm that schedules flows in Ethernet to reduce jitter.
Basic-offset algorithm provides an initial configuration to be
used by C-FIT, and First Available Timeslot (FAT) serves as
a benchmark algorithm. Table III shows several parameters
which are utilized in the pseudo code of these algorithms.
The basic-offset algorithm (Algorithm 1) schedules CoE
packets such that jitter is temporarily zero (ideal case)
without taking into consideration that the obtained solution
can contain scheduling conflicts (i.e., multiple packets can
be scheduled at the same time). CoE packets are offset by
multiples of Ethernet timeslot sizes Tgys for each flow.
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Figure 3: CPRI encapsulation over Ethernet.
TABLE I1
COE PARAMETERS
Line rate Ethernet Tencap Thop TtotHOH TrotHoH Troteon *2 Distance
[Mb/s] Packets per [us] [us] (for radio (for four sub- (Round supported
Radio Frame frame) frames) Trip) [km]
(Lp =1250 bytes) [us] [us] [us]
614.4 (option 1) 615 16.27 1.00 21.65 8.66 18.32 22.77
1228.8 (option 2) 1229 8.13 1.00 43.26 17.30 35.61 21.04
2457.6 (option 3) 2458 4.06 1.00 86.52 34.61 70.22 17.58
3072.0 (option 4) 3073 3.25 1.00 108.17 43.27 87.54 15.85
4915.2 (option 5) 4916 2.03 1.00 173.04 69.22 139.43 10.66
6144.0 (option 6) 6144 1.62 1.00 216.27 86.51 174.02 7.20
Line rate Ethernet Tencap Thop TtotHOH TrotHoH Tioteon *2 Distance
[Mb/s] Packets per [us] [us] (for radio (for four sub- (Round supported
Radio Frame frame) frames) Trip) [km]
(Lp =1500 bytes) [ps] [ps] [ps]
614.4 (option 1) 512 19.53 1.20 18.02 7.21 15.62 23.04
1228.8 (option 2) 1024 9.76 1.20 36.04 14.42 30.04 21.60
2457.6 (option 3) 2048 4.88 1.20 72.09 28.84 58.87 18.71
3072.0 (option 4) 2560 3.90 1.20 90.11 36.04 73.29 17.27
4915.2 (option 5) 4096 2.44 1.20 144.18 57.67 116.54 12.95
6144.0 (option 6) 5120 1.95 1.20 180.22 72.09 145.38 10.06
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C-FIT takes the schedule produced by basic-offset
algorithm as input and resolves conflicts. All possible
permutations of input flow orders are formed, since the
order in which any two flows are combined using
matcombine subroutine affects the final jitter. For example,
if three flows are considered, then the possible flow orders
are{1>2>3},{1>3>2},{2>1>3},{2>3>1},{3>1>2},
{83 > 2 > 1}. For each order, the flows are sequentially
combined using matcombine. matcombine takes two flows’
schedules as input and produces a non-conflicting schedule
according to this procedure: the flow with higher number of
packets is kept intact and the other flow is offset by a
multiple of Lgrs to produce a non-conflicting schedule (this
is called sliding approach). If such a non-conflicting
sequence is not achieved by using the sliding approach,
conflicting packets are moved to the nearest timeslot that is
unoccupied. This approach is followed for all possible flow
orders and the schedule with lowest amount of jitter is
selected as the final schedule.

Flow 1: 5000MI

Flow 2: 2500Mi

For the input flows in Fig. 4, we provide a non-conflicting
scheduling sequence as an example using a benchmark FAT
algorithm here. Let us assume that packets arrive at an
Ethernet switch by time 0. Basic-offset algorithm assigns
the periodic timeslots to the flows 1, 2, and 3: specifically, it
assigns to flow 1 timeslots starting at {0, 1.6, 3.2, 4.8} us, for
flow 2 at {0, 3.2} us, and for flow 3 at {0} us. However, this
solution results in two conflicts, i.e., at times {0, 3.2} us.
These conflicts are resolved by benchmark FAT algorithm,
by allocating available un-allocated slots to flows involved in
each of the conflicts. Flow 1 has schedule of {0, 1.6, 3.2, 4.8}
us, however by the end of the first timeslot, packets from
flows 2 and 3 also arrive at the Ethernet switch which
results in a conflict. Hence, packets from flow 1 remain
unaffected, whereas the other packets get the next
unallocated timeslots. The same procedure is applied at
timeslot 3.2 ps also, thus resulting in the sequence {0, 1.6,
3.2, 4.8} us, {0.8, 4.0} ps, and {2.4} us for the three flows,
respectively.

For the same input scenario, C-FIT produces several

| schedules using different flow orders. For the flow order {1

> 2 > 3}, the schedule is {0, 1.6, 3.2, 4.8} ps for flow 1, {0.8,

>
T,=3.2pus

Flow 3: 1250Mb

4.0} ps for flow 2, and {2.4} us for flow 3, same as FAT
algorithm.

< T- =6.4us
Ls= lem (T, T, T3) = 6.4ps

------

Ethernet output s = T
10Gbps ——t—r 4>

Jitter on flow 1 due to varied delay between consecutive packets

(a)

Flow 1: 5000M

Flow 2: 2500MI

For flow order {1 > 3 > 2}, the schedule is {0, 1.6, 3.2, 4.8}
us for flow 1, {2.4, 5.6} us for flow 2, and {0.8} us for flow 3.
For flow order {2 > 3 > 1}, the schedule is {0, 1.6, 3.2, 4.8}
us for flow 1, {0.8, 4.0} us for flow 2, and {2.4} us for flow 3.
For flow order {2 > 1 > 3}, the schedule is {0, 1.6, 3.2, 4.8}
us for flow 1, {0.8, 4.0} us for flow 2, and {2.4} us for flow 3.
For flow order {3 > 1> 2}, the schedule is {0, 1.6, 3.2, 4.8}

I~ us for flow 1, {2.4, 5.6} us for flow 2, and {0.8} us for flow 3.

For flow order {3 > 2> 1}, the schedule is {0, 1.6, 3.2, 4.8}

>
To=3.2us

Flow 3: 1250Mby

us for flow 1, {0.8, 4.0} ps for flow 2, and {2.4} us for flow 3.
All the flow orders in this scenario produced zero jitter, so

< T, =64ys
Ls= lem (T, T, T3) =6.4ps

Ethernet outpui
10Gbps

an o var was
No jitter on flow 1 due to proper scheduling

(b)
Figure 4: (a) An example that shows jitter on flow 1; (b) An example
that shows how proper scheduling can eliminate jitter.

The proposed C-FIT algorithm is compared with first-
available-timeslot (FAT) algorithm, namely benchmark
FAT, which resolves the conflicts produced with basic-offset
algorithm by moving the conflicting packets to the first
available timeslot that can accommodate the packet without
using sliding approach and flow ordering. Algorithm 3
shows the pseudo code for benchmark FAT.

TABLE IIT
PARAMETERS FOR COE PACKET SCHEDULING

Input CoE rate for flow i [bit per second] Riog
Ethernet rate [bit per second] Re
Transmission time of flow i packet on Ethernet link T}
[second]

Ethernet timeslot size [second] TErs
# of slots in a schedule length for flow i Ly
Schedule of CoE flow i on Ethernet link [timevector] | comb®
Number of flows Nr
Total slots in scheduling length Ns
Schedule length [seconds] Ls

any schedule can be selected. Since C-FIT approach
considers all possible flow orders, the complexity gets
exponential. One way to reduce complexity is to stop
running the algorithm as soon as a flow order produces zero
jitter. Since the fronthaul consists of a limited number of
flows multiplexed at the Ethernet switch, the complexity is
not a big concern.

ALGORITHM 1: BASIC-OFFSET ALGORITHM

Input: Ripz, Rg, Le (Assume flows are synchronized at input)
Output: Schedule of CoE flows on Ethernet output

Step 1: Calculate transmission time for flow i packet on
Lg

Réog

Calculate Scheduling length L as lowest common

multiple of T}, i.e., Ly = lom (T})

incoming Ethernet link as T =

Calculate outgoing Ethernet timeslot size Tgrg = ;—E
E
Calculate number of timeslots in Lg for flow i, Lk = IT“—,S
P

Step 2: initialize: offset_nf = 0;
/Istarting offset value of next flow is set to zero
fori=1to Nr
mat = comb';
/* mat is 2-dimensional temporary matrix that
holds the contents of comb! */
offset = 0;
forj=1to L
in a certain flow
mat (j, 1) = offset + offset_nf;
/l mat (j, 1) represents start time of packet j
mat (j, 2) = mat(j, 1) + Ters;
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// mat (j, 2) represents end time of packet j
offset = offset + T} ;

end

offset_nf = offset_nf + Tgrs;

comb' = mat;

/¥ comb' is 2-dimensional matrix that
holds start and end time of each packet in flow i*/
end

ALGORITHM 2: COMB FITTING (C-FIT)

Input: Schedule of CoE flows given by basic-offset algorithm
Output: Non-conflicting schedule of CoE packets
Step 1: Form all possible permutations flow orders
from 1 to Nr (N¥! different sequences) denoted
by SEQpg, where m = 1 to Ng!
Step 2: for each sequence SEQP: € {SEQPy}
for j in SEQP;:
initialize: matcomb = first element in {SEQP}
matcomb = matcombine (comb’, matcomb)
end
Calculate jitter matcomb
end
Pick matcomb with least amount of jitter

MATCOMBINE SUBROUTINE

Input: combl, comb’ (any two schedules)
Output: Combined non-conflicting schedule
Step 1: Initialize: matcomb as a matrix with length as sum lengths
of comb', comb’
Step 2: Take longest sequence out of comb!, comb/, and add its
contents to matcomb, call the other matrix mattemp
Step 3: Shift mattemp by multiples of Tgrg to form a perfect
non-conflicting schedule with matcomb
Step 4: if success in this procedure
Copy mattemp to matcomb and return matcomb
Step 5: else
Copy non-conflicting packets of mattemp to matcomb
for all conflicting packets in mattemp
Find nearest open timeslot which can fit the packet
and update matcomb
end
return matcomb
end

ALGORITHM 3: FIRST AVAILABLE TIMESLOT (FAT)
FOR BENCHMARK

Input: Schedule of flows given by basic-offset algorithm
Output: Non-conflicting schedule of CoE packets
Step 1: fori=1 to Nr

initialize: fatcomb = comb';

/I fatcomb is temporary matrix that holds contents of

comb’

fatcomb = fatcombine(comb', fatcomb)

end

Calculate jitter for fatcomb

FATCOMBINE SUBROUTINE

Input: comb!, comb’ (any two schedules)
Output: Combined non-conflicting schedule
Step 1: Initialize: fatcomb as a matrix with length as sum
lengths of comb!, comb’
Step 2: Take longest sequence out of comb!, comb/, and add its
contents to fatcomb, call the other matrix mattemp
Step 3: Copy non-conflicting packets of fattemp to fatcomb
for all conflicting elements in fattemp
Find nearest open timeslot which can fit the packet
and update fatcomb
end
return fatcomb

V. PERFORMANCE EVALUATION AND RESULTS

This section presents evaluation of CoE performance
metrics such as delay and jitter in the Ethernet fronthaul
obtained through Verilog pre-synthesis experiments and
simulations.

A. Ethernet Encapsulation Delay

We present results on the impact of CPRI line rates and
payload size on the Ethernet encapsulation delay of CoE
flows. We also show how the delay affects the fronthaul
distance. An FPGA pre-synthesis verification is performed
to map CoE and analyze delay performance of the multi-hop
mobile fronthaul [6]. Pseudo random binary sequence
(PRBS) data is generated and encapsulated in Ethernet
frame using Verilog hardware description language (HDL)
and evaluated utilizing ModelSim as a HDL simulator.

Ethernet header consists of 24 bytes, which contains
layer-2 Ethernet MAC header fields such as source address
(6 bytes), destination address (6 bytes), Ethernet type (2
bytes), RoE header (6 bytes), frame check sequence (4
bytes). The generated data is framed at a clock rate (i.e., a
clock cycle takes 6.4 ns) of 10 Gbps. Thus, generating
Ethernet header overhead of 24 bytes requires three clock
cycles which is 19.2 ns (as shown in Fig. 5). The
experiments are conducted for three payload sizes - 500,
1000, and 1500 bytes - to study the effect of payload size on
the encapsulation delay.

Figure 5 verifies that Ethernet encapsulation is
successfully designed and implemented in Verilog HDL. The
left side of the waveform shows the labels of generated data,
header fields, Ethernet frame (encapsulating the generated
data), and inter-frame gap fields, while the right side shows
the corresponding timing information. data_generation_prbs
shows the generated data in pseudo-random form. dst_src in
the pre-synthesis evaluation shows the first part of the
header containing destination and part of source fields.
src_len_roe_header field shows the remaining part of the
source field, Ethernet type, and first part of roe header.
roe_header_fcs field shows the remaining part of roe header
and frame check sequence (FCS). roe_payload field indicates
1Q samples encapsulated in Ethernet payload. Note that the
data is generated continually at all times including header
generation time. The markers show layer-2 Ethernet MAC
overhead for a single Ethernet frame as 19.2 ns. For 615
Ethernet frames, the delay would be 19.2x615 ns = 11.8 ps
as shown in Table II (for CPRI option 1).

Figure 6 shows the encapsulation delay (Tencap) as a
function of CPRI line rate (Rcpri) options with different
Ethernet packet payload Pr sizes (500, 1000, and 1500
bytes). As expected, the encapsulation delay decreases as
Rcpri increases because, higher Rceri flow takes shorter
time to fill up the Ethernet packet payload size. Moreover,
the encapsulation delay decreases as Lg size decreases at
the given Rcpri option, as lower payload gets filled in lesser
time. Figure 7 shows the distance of fronthaul (based on
latency constraints) calculated using Eq. (6), for different
CPRI line rates (options 1 to 6) and for the number of
Ethernet switches the packets cross for Ethernet payload of
1250 bytes. It shows that as the number of hops increase
(more Ethernet switches crossed), the distance of fronthaul
decrease due to added delay from the Ethernet switch using
store-and-forward mechanism.
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The measured values of switch delay are in concurrence
with the calculated values (hop delay) as in Table 1. Higher
line rates also support lower fronthaul distances due to
larger number of Ethernet packets that need to be
generated for a single 10-ms radio frame. The distances
supported using CoE are good for access and metro network
coverage distances. Figure 8 shows that a larger Ethernet
payload leads to lower CoE overhead, thus supporting
longer fronthaul distance.

Hence, CoE can be implemented for different CPRI line
rates by compromising a few kilometers in the fronthaul
(i.e., from a minimum of 1 kilometer to a maximum of 10
kilometers as a function of the CPRI line rate, and the
Ethernet packet payload size as shown in Figs. 7 and 8).

b’ ENCAPSULATION
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Figure 5: FPGA pre-synthesis simulation of CoE encapsulation.
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Figure 8: Fronthaul distance supported in multi-hop scenario with
Lk =1500 bytes.

B. Jitter for CoE on Scheduled Ethernet

This section evaluates the performance of C-FIT
algorithm, and compares it with the benchmark FAT
algorithm. An event-driven simulator built in-house in
matlab is used to evaluate both algorithms. The following
indexes are considered to evaluate the performance of the
algorithms: Load to Ethernet ratio (LER) is defined as the
ratio between sum of input CoE-flow rates and the Ethernet
rate, and jitter measured at the REC. Over 5000 random
combinations of input rates are generated and scheduled
over Ethernet and the experiment is repeated 10 times. The
value of jitter for particular LER is averaged and plotted.
Each plot (Figs. 9-12) simulates random CoE rates derived
by encapsulating CPRI flows from line rates uniformly
selected from 1 to x (x < 9). Uniformly-distributed random
number of flows are multiplexed on an Ethernet link.

Figures 9-10 show the effect of increasing line rates while
keeping the number of flows in constant range, whereas
Figs. 11-12 show the effect of number of flows multiplexed
while keeping the range of line rates constant. Figure 9
shows the value of jitter vs. increasing LER for C-FIT
algorithm compared to benchmark FAT algorithm. The CoE
rates are uniformly picked from option 1 to option 9, and the
number of flows multiplexed are randomly picked from 2 to
5. It can be seen that jitter for C-FIT remains zero until load
ratio of 0.3 and then increases. We call the LER until which
jitter remains zero and then increases to non-zero value as
the inflection point; hence, 0.3 is inflection point in this
case. The marked 0.35 LER value shows the maximum
allowed jitter of 65 ns. The trend of jitter vs. LER is not only
dependent on LER, but also the periodicity of the flows,
since more flows that are multiples of each other can form
jitter-free schedules without resulting in conflicts. However,
if LER 1s low, there is enough room for the flows to fit in
perfectly without conflicts, hence leading to zero jitter.

Figure 10 shows jitter vs. load ratio for CoE rates with
range from option 5 to option 9 and number of flows from 2
to 5. We see that the trend is similar till LER of 0.2
(inflection point); then jitter increases. Jitter is below 65 ns
until LER of 0.25 for C-FIT. Red dots in the Figs. 9-12
represents 65 ns inflection point. C-FIT shows a
monotonically increasing jitter behavior, but benchmark
FAT does not. This is because C-FIT explores all possible
flow orders and takes the least jitter schedule, but
benchmark FAT considers only the given input sequence
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which can largely affect the jitter values making the
relation with LER not as pronounced as expected.

Figures 11-12 show the effect of number of flows
multiplexed on the Ethernet switch. Figure 11 has 1-3 flows
multiplexed on Ethernet. We see that inflection point is 0.3
and jitter is acceptable until LER of 0.35. Figure 12 shows 4
to 6 flows multiplexed on Ethernet. The inflection point is
0.3 with acceptable jitter until LER of 0.36, and there is
monotonic increase in the jitter with higher load ratios. We
see from Figs. 11-12 that jitter using FAT algorithm is
higher when higher number of flows (i.e., 4 to 6) are
multiplexed. This is because, as fronthaul topology gets
larger (more number of flows), the number of conflicts
increases.

Although results indicate that only 30% of the average
amount of Ethernet bandwidth can be used if we want to
satisfy jitter requirement to multiplex CoE flows, there are
certain flow combinations which can achieve very low jitter
with much higher Ethernet utilization. In fact, input flows
that are multiples of each other are found to achieve higher
Ethernet utilization while guaranteeing tolerable jitter of 65
ns. Moreover, it is worth noting that the redundant
Ethernet capacity could be utilized to send other non-time-
sensitive data, as in [28] where fronthaul, midhaul,
backhaul can share Ethernet capacity.

The encapsulation delay of CPRI packets decreases as
line rate increases as shown in Table II; however, jitter
increases as LER increases. Hence, there is a need to make
a careful choice of Ethernet rate for a given CoE topology
(rates).
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Figure 9: Jitter vs. Load to Ethernet Ratio for number of flows 2 to
5 and line rates 1 to 9.
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Figure 10: Jitter vs. Load to Ethernet Ratio for number of flows 2 to
5 and line rates 5 to 9.
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Figure 11: Jitter vs. Load to Ethernet Ratio for number of flows 1 to
3 and line rates 1 to 9.
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Figure 12: Jitter vs. Load to Ethernet Ratio for number of flows 4 to
6 and line rates 1 to 9.

VI. CONCLUSION

Ethernet fronthaul is expected to provide many benefits to
mobile networks such as 5G. CPRI over Ethernet (CoE) can
be a cost-efficient alternative to CPRI fronthaul, as
Ethernet is easily available, and can be a stepping stone to
many useful applications. In this study, we showed that
CoE encapsulation and switching introduces a slight delay
which can compromise a few kilometers in the multi-hop
mobile fronthaul. Moreover, jitter was studied in terms of
load to Ethernet ratio (LER), number of flows, and flow
combination. For a given topology, a scheduling method that
completely eliminates jitter can be provided by using certain
Ethernet rate with the proposed comb-fitting (C-FIT)
scheduling.  Proposed  C-FIT  scheduling performs
considerably well compared to benchmark first-available-
timeslot (FAT) algorithm. In particular jitter reduction as
big as units of microseconds can be achieved.
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