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Abstract

Gene regulatory network inference is essential to uncover complex relationships among

gene pathways and inform downstream experiments, ultimately enabling regulatory network

re-engineering. Network inference from transcriptional time-series data requires accurate,

interpretable, and efficient determination of causal relationships among thousands of

genes. Here, we develop Bootstrap Elastic net regression from Time Series (BETS), a sta-

tistical framework based on Granger causality for the recovery of a directed gene network

from transcriptional time-series data. BETS uses elastic net regression and stability selec-

tion from bootstrapped samples to infer causal relationships among genes. BETS is highly

parallelized, enabling efficient analysis of large transcriptional data sets. We show competi-

tive accuracy on a community benchmark, the DREAM4 100-gene network inference

challenge, where BETS is one of the fastest among methods of similar performance and

additionally infers whether causal effects are activating or inhibitory. We apply BETS to tran-

scriptional time-series data of differentially-expressed genes from A549 cells exposed to

glucocorticoids over a period of 12 hours. We identify a network of 2768 genes and 31,945

directed edges (FDR� 0.2). We validate inferred causal network edges using two external

data sources: Overexpression experiments on the same glucocorticoid system, and genetic

variants associated with inferred edges in primary lung tissue in the Genotype-Tissue

Expression (GTEx) v6 project. BETS is available as an open source software package at

https://github.com/lujonathanh/BETS.
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Author summary

We can better understand human health and disease by studying the state of cells and

how environmental dysregulation affects cell state. Cellular assays, when collected across

time, can show us how genes in cells respond to stimuli. These time-series assays provide

an opportunity to identify causal relationships among thousands of genes without per-

forming hundreds of thousands of experiments. However, inferring causal relationships

from these time-series data needs to be fast, robust, and accurate. We present a method,

BETS, that infers causal gene networks from gene expression time series. BETS runs

quickly because it is parallelized, allowing even data sets with thousands of genes to be

analyzed. We demonstrate the performance of BETS compared to 22 other state-of-the-

art inference methods on benchmark data. We then use BETS to build causal networks

from gene expression responses to the widely-prescribed drug dexamethasone. We repli-

cate the estimated causal relationships using gene expression data from the Genotype-Tis-

sue Expression (GTEx) project and from additional experiments with dexamethasone.

We release our software so that BETS can be used to accurately and effectively infer causal

relationships from gene expression time-series assays.

This is a PLOS Computational BiologyMethods paper.

1 Introduction

The recent availability of gene expression measurements over time has enabled the search for

interpretable statistical models of gene regulatory dynamics [1]. These time-series data present

a unique opportunity to use the coordinated transcriptional response to environmental expo-

sure to infer causal relationships between genes. However, there are several challenges to

overcome in the analysis of time-series transcriptomic data. These data are generally high-

dimensional: the number of quantified gene transcripts—approximately 20,000 in human

samples—often dramatically exceeds the number of available time points and samples. Many

classical statistical assumptions fail to hold in this high-dimensional regime [2, 3]. Moreover,

the large number of gene transcripts poses a computational burden, as the number of possible

edges in a gene network grows quadratically. Also, a transcriptional time series often has a

small number of time points, and those time points are often not uniformly spaced; further-

more, because transcriptional time-series data often quantify transcription post exposure, the

time series is not stationary, and genes respond to the exposure and return to baseline at differ-

ent rates [4, 5].

In this work, we develop an approach that uses gene transcription time series following glu-

cocorticoid (GC) exposure to build a directed gene network [6]. GCs play an essential role in

regulating stress response, and are widely used as anti-inflammatory and immunosuppresive

medications [6, 7]. Dexamethasone and other GCs have recently been recommended by the

U.K. Government, U.S. National Institutes of Health, World Health Organization, and Infec-

tious Disease Society of America for treatment of hospitalized COVID-19 patients with severe

disease who are on mechanical ventilation or extracorporeal membrane oxygenation [8–11].

Despite clinical benefits, prolonged exposure to GCs has been linked to increased risk of type 2

diabetes mellitus (T2DM) [12] and obesity [13]. Understanding the immune, metabolic, and

transcriptional effects of GCs may enable the development of improved anti-inflammatory

treatments without metabolic side effects. A recent study assayed A549 lung cells over 12

hours to characterize the effect of GCs on cell state [6]. Here, we develop a method to
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accurately, interpretably, and efficiently infer a directed gene network using the study’s tran-

scription time-series data. We focus our network analysis on immune-related genes, metabo-

lism-related genes, and transcription factors (TFs) to study the inferred coordinated response

of these systems to GCs.

Our method, Bootstrap Elastic net inference from Time Series (BETS), uses vector autore-

gression with elastic net regularization to infer directed edges between genes. Stability

selection, which assesses the robustness of an edge to perturbations in the data, leads to

improvements over baseline vector autoregression methods in this high-dimensional context

[3]. Furthermore, BETS is biologically interpretable because estimated coefficients provide

the direction (sign) and effect size of the causal relationship between a pair of genes. Finally,

BETS’s parallelization enables efficient inference of networks with millions of possible edges in

a computationally tractable way.

We use the causal network inferred by BETS on the GC time-series data to study the rela-

tionships between TFs, immune genes, and metabolic genes. We validate our network using

two approaches: Ten measurements of the same GC system with an overexpressed TF, and an

expression quantitative trait loci (eQTL) study in human primary lung tissue [14]. Although

our framework is motivated by transcriptional response to GC exposure, our approaches are

general, and BETS is able to infer directed networks from arbitrary high-dimensional time-

series data.

1.1 Related work

Several methods have been developed to estimate directed gene networks from transcription

time-series data (S1 Fig) [15–23]. These methods estimate directed networks in which the

directed edges between nodes—representing genes—indicate a cause-effect relationship

between genes. In other words, perturbing expression of the causal gene would lead to changes

in expression of the effect gene [24]. We briefly overview these methods; for detailed discussion,

see the Supplemental Information. Here, we take g0 to be the causal gene and g to be the effect

gene, and we quantify support for a causal edge g0 ! g in the time-series data.

Mutual information (MI) methods assess the MI between the expression of g0 at the previ-

ous time point and the expression of g at the current time point (S1(A) Fig) [25–30]. A causal

edge g0 ! g is included in the network if the MI of the two genes across time exceeds a

threshold.

Granger causality methods determine if including the expression of g0 at the previous time

point improves our ability to predict the expression of g at the current time point beyond

using the expression of g at the previous time point [31]. A common way to implement

Granger causality is through a vector autoregression (VAR) model, which assumes a linear

relationship between all genes’ expression at the previous time point and the expression of g at

the current time point. A causal edge g0 ! g is included in the network when g0 has a statisti-

cally significant coefficient in the VAR.

Ordinary differential equations (ODEs) fit the derivative of the expression of g as a function

of all genes’ expression at a single time point (S1(C) Fig) [15, 32, 33]. ODE methods typically

assume linearity, as small sample sizes make it challenging to infer the parameters of nonlinear

functions. A causal edge g0 ! g is included when g0 has a statistically significant coefficient in

the ODE.

Decision trees (DTs) are a type of nonparametric function based on partitioning the data

[34, 35]. DT methods fall either under VAR or ODE; either the DTs fit the expression of g at

the current time as a function of all genes’ expression at the previous time point (VAR), or

they fit the derivative of the expression of g as a function of all genes’ expression at a single
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time point (ODE) (S1(D) Fig) [36, 37]. A causal edge g0 ! g is included in the network when

an importance score for g0 exceeds some threshold, where importance scores are typically the

reduction in variance of g when g0 is included as a predictor.

Dynamic Bayesian networks (DBNs) search the space of possible directed acyclic graphs

between previous and current expression levels to identify the network structure with the

highest posterior probability of each edge given the data (S1(E) Fig) [38–42]. DBNs typically

assume a linear relationship between previous and current expression. A causal edge g0 ! g is

included in the network when its marginal posterior probability of existence exceeds some

threshold.

A Gaussian process (GP) is a distribution over continuous, nonlinear functions. GPs are

often used in the context of nonlinear DBNs, where GP regression is used to model a nonlinear

relationship between previous expression and current expression (S1(F) Fig) [43, 44]. A causal

edge g0 ! g is included in the network when its posterior probability of existence exceeds

some threshold.

While these approaches produce directed networks that have the flavor of Bayesian net-

works, except for DBNs, none of them produce graphs that are constrained to be acyclic, so

they do not have the same statistical semantics as Bayesian networks.

2 Results

First, we briefly describe the approach that BETS uses to infer a directed gene network. Next,

we compare results from BETS to those from twenty two other methods on the 100-gene time-

series data from the DREAM4 Network Inference Challenge [45]. Then, we describe the net-

work estimated from the GC transcription time-series data. Finally, we validate the inferred

network using two different frameworks: Overexpression experiments on the same system,

and genetic variants associated with inferred edges in human primary lung tissue in the Geno-

type-Tissue Expression (GTEx) v6 project [14].

2.1 BETS: A vector autoregressive approach to causal inference of gene

regulatory networks

Directed networks represent causal relationships among diverse interacting variables in com-

plex systems. We developed a robust, scalable approach based on ideas from Granger causality

to construct these directed networks from short, high-dimensional time-series observations of

gene expression levels.

Let G be the set of all p = |G| genes in the data set and g 2 G be a gene. Let ¬g be G with g
removed. Let t be a single time point, ranging from {1, 2, . . ., T}. Let Xg

t be the expression of

gene g at time t. Let L be the time lag, or the number of previous time point observations; so

L = 2 means that we use two previous time points, t − 1 and t − 2, to predict expression at time

t. These types of autoregressive models work best with similarly-spaced time points, as the data

sets in this paper approximate, and assume stationarity, or the same causal effects across each

time gap.

Definition 2.1 (Granger causality). For lag L, a gene g0 is said to Granger-cause another

gene g if using Xg0
t� 1; . . . ;Xg0

t� L, the expression values of g0 at times t − 1 to t − L, improves pre-

diction of Xg
t , the expression value of g at time t, beyond predicting Xg

t using Xg
t� 1; . . . ;Xg

t� L

alone.

To test for Granger causality from g0 to g, we first preprocessed the gene expression time-

series data (Methods). For every potential effect gene g, we fit all other genes g0 2 ¬g simulta-

neously (Eq 1), echoing ideas from the graphical lasso for undirected network inference [46].

Intuitively, this adapts the idea of Granger causality to conditional Granger causality, where
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we consider how gene g0 Granger-causes g conditioning on the effects of all other genes. This

approach uses the regression:

Xg
t ¼

XL

‘¼1

a
g
‘X

g
t� ‘ þ

X

g02:g

XL

‘¼1

b
g0 ;g
‘
Xg0
t� ‘ þ �t; ð1Þ

where �t � N ð0; 1Þ. For BETS, we set L = 2. To test for an edge, if there is statistical support

for b
g0 ;g
‘
6¼ 0, then we say g0 conditionally Granger-causes g at lag L. We build the directed net-

work by including a directed edge to g from every gene g0 that has been inferred to condition-

ally Granger-cause g.
Robustly building this network is difficult due to the high dimensionality of the problem:

The number of genes that could Granger-cause a given g far exceeds the available time points

and technical replicates. To address this challenge, BETS regularizes the VAR model parame-

ters using an elastic net penalty (Methods, Fig 1A). Elastic net regression encourages sparsity

and performs automatic variable selection on the genes being tested for causal influence [47].

The elastic net penalty, unlike the lasso penalty [48], is able to select groups of correlated vari-

ables and allows the number of selected variables to be greater than the number of samples.

This is important for gene expression assays where gene expression levels are often well corre-

lated, and there are far more genes than samples [2].

In BETS, we fit the same VAR model to a data set in which causal genes have their expres-

sion permuted over time to generate a null distribution of edge coefficients. The coefficients

Fig 1. BETS Algorithm. A) Model fit. The VAR model is fit on both the original and a permuted data set (blue arrows indicate shuffling each gene’s

expression independently across time). Based on the null distribution of coefficients, a threshold is chosen to control the edge FDR at� 0.05. B)

Stability selection. From the original data, 1000 bootstrap samples are generated. For each sample, a network is inferred as in A. Each edge’s selection

frequency across the bootstrapped networks is computed. C) Statistical significance. For both the original and permuted data, a selection frequency

distribution is generated for stability selection as in B. Edges are thresholded to control the stability FDR at� 0.2. See S1 Fig for an overview of network

inference methods.

https://doi.org/10.1371/journal.pcbi.1008223.g001
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are thresholded to produce a causal network with each edge at edge false discovery rate (FDR)

� 0.05 (Fig 1A). We then applied this network inference procedure to multiple (here, 1000)

bootstrapped samples of the original data set (Fig 1B). Each edge has a selection frequency, or

the frequency that the edge appears in networks inferred from the bootstrapped samples.

Inspired by stability selection, this approach assesses if network edges are robust to perturba-

tions of the data [3]. Finally, we ran this overall procedure on a permuted version of the origi-

nal data set to obtain a null distribution of selection frequencies (Fig 1C). The selection

frequency threshold for including each edge is chosen to control the stability FDR�0.2. As a

baseline, we compare BETS against Enet, which runs elastic net regression without stability

selection to produce a causal network with each edge at edge FDR� 0.05 (Fig 1A).

2.2 Leading performance on DREAM Network Inference Challenge

We evaluated BETS against other directed network inference methods. We used the DREAM4

Network Inference Challenge [45], a community benchmark for directed network inference

using gene time-series data. This benchmark consisted of five data sets, each with ten time-

series measurements for 100 genes across 21 time points [45]. Evaluation was previously done

by looking at the average of the area under the precision recall curve (AUPR) or the area under

the receiver operating characteristic (AUROC) over the five data sets [37, 45]. Any method

that provides a ranking of possible network edges could be evaluated in this framework.

We tested BETS and Enet against 22 other methods on the DREAM challenge [36, 37, 40,

49–51]. We ran SWING-RF, SWING-Lasso, CSId, Jump3, CLR, MRNET, and ARACNE in-

house and found our results consistent with those reported in the literature. All 22 methods

reported AUPR, but only 17 reported AUROC.

BETS ranked 7th out of 24 in AUPR with an average AUPR of 0.128 (Fig 2A and S1 Table)

and 4th out of 19 in AUROC with an average AUROC of 0.688 (Fig 2B and S2 Table). BETS

was the top performer of all VAR methods, and Enet was second best. All 24 methods outper-

formed random selection of edges, which achieved an average AUPR of 0.002 and average

AUROC of 0.50 [49]. We also found that BETS and Enet had similar performance to the DBN

methods in AUPR, and outperformed most of them in AUROC. Ranked by the top AUPR of

each class of methods, the best performing class was DT, followed by GP, MI, VAR, DBN, and

ODE [36, 40, 49]. The VAR method used in BETS produces edge signs (indicating excitatory

or inhibitory causal effects) and effect sizes. While other methods based on GPs (e.g., CSId),

MI (e.g., tl-CLR) or DTs (e.g., SWING-RF) had marginally better overall network inference,

they do not provide insight into the causal relationships because they only output a positive

measure of a causal interaction [32, 44, 51].

Next, we compared the speed of BETS and three other top-performing methods:

SWING-RF, CSId and Jump3 (S3 Table). SWING-RF was the fastest at 0.11 hours, while BETS

took 4.8 hours, CSId took 9.8 hours and Jump3 took 45 hours. Thus, while BETS had a lower

AUPR compared to CSId and Jump3, it was substantially faster. BETS had both a lower AUPR

and longer runtime than SWING-RF.

BETS improved upon Enet using stability selection. To quantify this improvement, we com-

pared three other models: Elastic net with lag L = 1, ridge regression with lag L = 2, and lasso

with lag L = 2 (S4 Table). In each case, the stability selection version outperformed the original

version in average AUPR and AUROC. The improvement in average AUPR ranged between

0.016 and 0.03 (+20% to +31%), while the improvement in average AUROC ranged between

0.012 and 0.04 (+1.8% to +6.1%). Thus, our stability selection procedure leads to improved

performance for multiple versions of VAR.
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Fig 2. Algorithm performance on the DREAM community benchmark. A) AUPR scores from 24 methods, averaged across the five DREAM

networks. B) AUROC scores from 19 methods, averaged across the five DREAM networks. Arrows indicate our methods. Stars indicate methods that

we ran in-house; results were consistent with reported results. The bars reach one standard deviation from the average as calculated across the five

DREAM networks; no bar indicates the standard deviation was not reported. See also S1–S5 Tables.

https://doi.org/10.1371/journal.pcbi.1008223.g002
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We also found that stability selection performance is robust to the number of bootstrap

samples (S5 Table). Decreasing the number of bootstrap samples from 1000 to 100 led to

minor decreases of −0.004 in AUPR and −0.008 in AUROC, within the standard deviation

across the networks. It also resulted in a 10-fold decrease in memory usage and 3-fold

decrease in run time, due to a constant-time hyperparameter search. If users face computa-

tional constraints, we recommend that they use 100 bootstrap samples for nearly equivalent

performance.

Finally, we found that BETS’ performance on DREAM is robust to the choice of lag. We

ran BETS with lag L = 1 instead of lag L = 2 (S4 Table). BETS with lag L = 1 achieves an average

AUPR of 0.14 (an increase of 0.012 from lag L = 2) and an average AUROC of 0.686 (a

decrease of 0.002 from lag L = 2, within the standard deviation across networks). BETS with

lag L = 1 still ranks 7th out of 24 in AUPR and 4th out of 19 in AUROC (tied with GP4GRN).

Thus, BETS achieves consistently good performance on DREAM for both lags L = 1 and L = 2.

2.3 Application to gene transcription response to glucocorticoids

To infer the causal relationships in the GC response network, we analyzed RNA-seq data col-

lected from human adenocarcinoma and lung model cell line A549, which consists of two data

sets. In an original exposure data set, cells were exposed to the synthetic GC dexamethasone

(dex) for 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, and 12 hours [6]. In an unperturbed data set, the cells

were first exposed to dex for 12 hours, after which the media was replaced and dex removed,

and then measurements were taken at the same intervals 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, and 12

hours. BETS was fit jointly over the two data sets. In total there were 7 technical replicates (4

from original exposure and 3 from unperturbed). A single VAR was fit on 70 samples: Each of

the 7 replicates had 10 samples, because using a lag L = 2 VAR model turns 12 time points into

10 samples.

We applied BETS to the GC-mediated expression responses to infer a causal network (Fig

3A). Edges with selection frequency (i.e., frequency of appearance among bootstrap networks)

at least 0.097 were declared significant (FDR� 0.2; Fig 3B). The network contained 2, 768

nodes representing distinct genes and 31, 945 directed edges (0.4% of possible edges). Of these,

466 genes were causes (i.e., had an outward directed edge) and all 2, 768 genes were effects

(i.e., had an incoming directed edge). In Granger causality, and dynamical systems more gen-

erally, a causal gene g0 is allowed to have incoming directed edges because g0 may be affected

by the past value of another gene g@, and g0 may have a causal effect on the later value of gene g.
The out-degree distribution was heavy-tailed and skewed right (Fig 3C), while the in-degree

distribution was lighter-tailed and more symmetric (Fig 3D). The network’s edge in-degree

had a heavier left tail and lighter right tail than a normal distribution (Fig 3E). This suggests

that causal genes are relatively rare (only 1/6th of network genes are causes) and a fifth of those

only affect a single gene, whereas genes that are effects tend to have multiple causes. The net-

work was inferred efficiently due to parallelization across genes, taking six days in real time

and 292 days in CPU time to fit 5.5 million elastic net models.

To study the network with respect to the glucocorticoid system, we annotated specific

genes as transcription factors (TFs), immune-related, or metabolism-related [52–55]. First,

we inspected enrichment of each category among the causal genes (Fig 3F). At FDR� 0.05,

we found enrichment for TFs among causes; there were 226 causal TFs, representing 8.2%

of the 2, 768 input genes. 62 of these TFs were causal, representing 13% of all causal genes

(odds ratio (OR) = 2.0, Fisher’s exact test (FET) adjusted p� 2.9 × 10−5). Similarly, we

found an enrichment among immune-related genes as causes: of 109 immune genes, repre-

senting 3.9% of the input genes, 39 of these were causes, representing 8.4% of all causal
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Fig 3. Causal network inferred from glucocorticoid receptor data. A) Causal network clustered by gene type. Edge color indicates the type of the

causal gene: red edge indicates an immune causal edge, blue edge indicates a metabolic causal edge, purple edge (both) indicates an immune and

metabolic causal edge, and tan edge indicates a neither immune nor metabolic other causal edge. B) Significance thresholding for edges, based on the

null distribution of selection frequencies. C) Out-degree distribution of network. For clarity, several high out-degree values with low frequencies are

not shown. D) In-degree distribution of network. E) Quantile-quantile (Q-Q) plot of in-degree distribution against normal quantiles. The in-

degrees have a heavier left tail and lighter right tail than the normal distribution. F) Enrichment of gene classes among network causal genes,

measured by odds ratio. G) Enrichment of edge classes among network edges, measured by odds ratio. See also S6 Table.

https://doi.org/10.1371/journal.pcbi.1008223.g003
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genes (OR = 2.9, FET adjusted p� 2.5 × 10−6). In contrast, there was no enrichment among

metabolism-related genes: there were 120 metabolic genes, representing 4.3% of input

genes; 19 of these metabolism genes were causes, representing 4.1% of all causes (OR = 0.93,

FET adjusted p� 0.66). This suggests that our network is enriched for causal TFs and

immune genes.

To study the interactions among gene classes inferred by our network, we quantified

enrichment for edges between each of the four gene classes—immune, metabolic, TF, and

other gene types (Fig 3G; S6 Table). We found enrichment of 11 of the 16 possible edge types

(FDR� 0.05). The network was enriched for edges from i) causal TFs to immune genes and

other genes; ii) causal immune genes to TFs, immune genes, metabolic genes, and other genes;

and iii) causal metabolic genes to TFs, immune genes, metabolic genes, and other genes. This

suggests that our network is enriched for a broad range of edge types.

The inferred relationships in BETS are conditionally Granger-causal, meaning that we find

that gene g0 Granger-causes g conditioning on the effects of other genes. Thus, an edge g0 ! g
should be assessed based on g’s residuals after controlling for the effects of other genes and

itself, instead of g’s raw values. Consider the edge KRT6A! NKAIN4 (Fig 4): NKAIN4’s raw

expression values suggest a negative relationship between KRT6A and NKAIN4 (Fig 4A and

4B). However, after controlling for the effects of all covariates besides KRT6A, a positive rela-

tionship between KRT6A and NKAIN4 appears (Fig 4C and 4D). Thus, conditionally Granger-

causal relationships g0 ! g should assess g only after controlling all other effects on g.
Our network identified known biological interactions between genes with immune, meta-

bolic, and TF roles; we highlighted 16 gene pairs with experimentally validated interactions

(Fig 5, S2 Fig, and S7 Table). Known interactions were found using the BIOGRID PPI database

[56]. SOCS1 and SOCS3 bind IRS2 and promote its degradation, leading to reduced insulin sig-

naling [57, 58]; furthermore, SOCS1 represses IL-4-induced IRS2 singling [59]. NR4A1 hetero-

dimerizes with RXRA to activate it in order to promote gene expression under vitamin A

signaling [60]; NR4A1 also inhibits p300-induced RXRA acetylation [61]. Eleven of the 16

edges had the correct interaction direction; the five that were reversed are TNFAIP3! IRAK2,

SOCS3! HIVEP1, ATF3!MDM2, E2F1! CDH1, and FOS! EGFR. These results suggest

that BETS infers biologically meaningful relationships, but transcriptional data, absent other

assays on protein abundance and cellular dynamics, are often underpowered to resolve the

direction of the edge.

2.4 Validation of inferred network on overexpression data

We asked whether our inferred network edges validated on overexpression versions of the

same experimental system, in which each of ten TFs was separately overexpressed over the

same 12 hours of observations. Specifically, we assessed the concordance between inferred net-

work edges g0 ! g and their coefficient in the overexpression data set under a VAR model

(Methods).

We first evaluated how well network edges replicated on individual overexpression data

sets. We performed linear regression of a one-hot encoding of the original network’s edge

sign (i.e., positive versus no edge or negative; negative versus positive or no edge) as the pre-

dictor against the VAR model edge coefficients estimated from each of the overexpression

time series as the response (Fig 6A and 6B, Methods). Of the ten data sets, 9 showed

enriched positive effect sizes among positive edges at FDR�0.2 (CEBPB, CEBPD, FOSL2,

FOXO1, FOXO3, KLF6, KLF9, KLF15, OCT4; Fig 6A). Three data sets showed enriched

negative effect sizes among negative edges (OCT4, TFCP2L1, CEBPD) and four showed

enriched positive effect sizes among negative edges (CEBPB, FOSL2, KLF9, KLF15; Fig 6B).
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Taken together, the positive edges inferred by BETS validate on the overexpression data, but

the negative edges do not, indicating repressive effects may have inconsistent signs or feed-

back loops.

Next, we checked whether the 123 inferred causal edges from the TF TFCP2L1 validated in

the TFCP2L1 overexpression data set (there were only about 10 causal edges from each of the

other 9 TFs). We regressed the original network’s edge sign (+ 1 for positive edges, 0 for no

edge, and −1 for negative edge) as the predictor against the overexpression VAR model edge

coefficients as the response (Fig 6C). We found a positive relationship between the edge sign

and overexpression coefficient (slope 0.17, two-sided t-test p� 5 × 10−5). This shows that

causal edges from TFCP2L1 are enriched for matched effect directions in the TFCP2L1 overex-

pression data.

This validation may be limited by a misspecification of the linear regression model. As a

supplementary analysis, we fit nonstationary GPs to gene trajectories using nsgp; genes that

Fig 4. Conditional Granger causality reveals opposite sign of relationship KRT6A! NKAIN4. A) Time series and B) scatter plot of expression

values from KRT6A and NKAIN4. C) Time series and D) scatter plot of expression values from KRT6A and residual expression values from

NKAIN4 after controlling for the effects of other covariates in NKAIN4. Each y-axis tick in A and C indicates 0.1 unit-variance standardized ln(TPM),

where TPM is Transcripts Per kilobase Million. The grey line marks zero-centered expression. B and D axes are in units of ln(TPM).

https://doi.org/10.1371/journal.pcbi.1008223.g004
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Fig 5. Time-series profiles of experimentally validated causal interactions across gene classes. For each gene pair, their profiles were from either the

original exposure data set or the unperturbed data set. The effects of all covariates beside the causal gene were controlled in the effect gene values to show the

conditional Granger-causal relationship. Colors encode gene classes: pink shows immune genes, dark blue/gray shows metabolic genes, teal shows TFs, and

brown/tan shows other genes. Darker colors show causal genes and lighter colors show effect genes. The grey line marks zero-centered expression. Each y-

axis tick indicates 0.1 unit-variance standardized ln(TPM). See also S7 Table and S2 Fig.

https://doi.org/10.1371/journal.pcbi.1008223.g005
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were differentially expressed in the TF overexpression data compared to the original exposure

data were listed as potential targets of that TF (Supplemental Information). We found that

BETS weakly predicts potential targets of 5 of the 10 over-expression TFs. This approach did

not show substantial improvement above random prediction of potential targets on these data

(FDR� 0.1).

2.5 Validation of network edges through lung trans-eQTLs

We next validated our network edges on an expression quantitative trait-loci (eQTL) study. A

single nucleotide polymorphism (SNP) S is an eQTL for a gene g0 if it is associated with g0’s
expression level within a population. Given a true causal edge g0 ! g, if a SNP S is a local (cis-)

eQTL for g0, Smight also be a distal (trans-) eQTL for g [62]. We used gene expression levels in

primary lung tissue (n = 278) from the Genotype Tissue Expression (GTEx) project v6p [14].

We observed an enrichment of low trans-eQTL association p-values from the directed network

compared to shuffling the variant labels (Fig 7A and 7B). This suggests our network captures

more valid causal effects than expected by chance.

We next inspected specific associations and their corresponding edges. We found 340 trans-

eQTL pairs in lung samples corresponding to 130 network edges (q-value FDR� 0.2). There

are more trans-eQTLs than edges because there are multiple cis-eQTLs for some causal genes

Fig 6. Validation of inferred network on overexpression data. A-B) Regression of one-hot encoding of positive (negative for B) edges as the predictor

against the VAR model edge coefficient from the overexpression data as the response. A 1 indicates that an edge had a positive (in A) or negative (in B)

coefficient in the original inferred network (FDR� 0.2). C) For the 123 causal edges from TFCP2L1, regression of edge sign as the predictor against the

VAR model edge coefficient from TFCP2L1 overexpression data as the response.

https://doi.org/10.1371/journal.pcbi.1008223.g006
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g0. The 340 trans-eQTLs greatly improved upon the 2 identified in primary lung tissue in the

GTEx v6 trans-eQTL study [63], demonstrating the utility of transcriptional time series for pri-

oritizing promising associations. The top trans-associations were rs2302178-CLDN1 (q-value

FDR� 0.095; extended from the cis-association rs2302178-HS3ST6), rs590429-ADAMTS

Fig 7. Network edge validation using known cis- elements from GTEx v6 lung cis-eQTLs. A) Enrichment of trans associations in primary lung tissue

among p-values from edges inferred by BETS compared to p-values from permutations. B) Quantile-quantile plot of validated edges shows signal

enrichment in lung samples when compared to signals from four other tissues in the GTEx v6 study. C) SNPs associated with inferred gene pairs.

Genotype-phenotype plots corresponding to the cis-effect (left column), correlation in the GTEx v6 data between cause (y-axis) and effect (x-axis) gene

pairs (right column).

https://doi.org/10.1371/journal.pcbi.1008223.g007
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(q-value FDR� 0.11; extended from the cis-association rs2302178-OLR1), and rs2072783-

CLIP2 (q-value FDR� 0.11; extended from the cis-association rs2302178-GMPR; Fig 7C).

We searched for validated associations between immune-related genes, metabolic-related

genes, and TFs. One association was OLR1! ITGAV, where the known association between

SNP rs4329754 and OLR1 extends to an association between the same genetic variant and

effect gene ITGAV (q-value FDR�0.13) [14]. OLR1 plays key roles in immunity and metabo-

lism [64, 65]. It is associated with metabolic syndrome [66] and atherosclerosis [66], and mod-

ulates inflammatory and humoral immune responses [67, 68]. Meanwhile, ITGAV plays a key

role in the motility of CD4+ T cells during inflammation [69].

Another association was between the TF SNAI2 and gene PTPN6, where we find that the

known association between genetic variant rs56800165 and SNAI2 extends to an association

between the same SNP rs56800165 and effect gene PTPN6 (q-value FDR�0.17) [14]. SNAI2 is

a direct target of the glucocorticoid receptor GR that regulates cell migration in breast cancer

[70], while PTPN6 is involved in glucose homeostasis via negative regulation of insulin signal-

ling [71]. PTPN6 is also associated with inflammatory phenotypes in multiple diseases [72, 73].

Finally, both SNAI2 and PTPN6 are involved in the cell-cell adherens junctions pathway, as

SNAI2 represses transcription of cadherin, while PTPN6 positively regulates the cadherin-cate-

nin complex [74]. Thus, for several eQTL-validated edges for gene pairs, we find that the genes

are involved in related biological processes, but further experimentation is required to confirm

direct interactions.

As A549 cells are models for lung tissue [75], we quantified enrichment of validated edges

in lung compared to enrichment in four non-lung tissues with similar sample sizes: subcutane-

ous adipose (n = 298), transformed fibroblasts (n = 272), tibial artery (n = 285), and thyroid

(n = 278). We validated 341 unique network edges across the five tissues (FDR� 0.2). 130

edges validated for lung, 4 for subcutaneous adipose, 125 for transformed fibroblasts, 3 for tib-

ial artery, and 82 for thyroid tissues. More network edges validated in primary lung than in

non-lung tissues, suggesting that A549 cells most closely match lung samples among GTEx tis-

sues; this is consistent with their tissue of tumor origin.

3 Discussion and conclusion

We described an approach, BETS, to build directed networks using short time-series observa-

tions of high-dimensional transcription data. BETS combined ideas from elastic net regres-

sion, graphical lasso, stability selection, and VAR models to infer Granger-causal relationships

in high-dimensional transcription time-series data. Our method achieved competitive perfor-

mance on the DREAM4 100-Gene Network Inference Challenge, ranking 7th out of 24 meth-

ods in AUPR and 4th out of 19 methods in AUROC; it was also faster than several methods

with similar or better performance and infers effect size and sign, unlike the other top per-

forming methods. Stability selection resulted in consistent improvement to VAR models

across different hyperparameter settings.

Next, we applied BETS to time-series RNA-seq data from human A549 cells exposed to glu-

cocorticoids and identified a directed network of 31, 945 edges (FDR�0.2), capturing the

causal relationships among genes after exposure to GCs. Despite the intervention of GCs in

this cell line, we expect that many of the causal relationships estimated using these data will

exist across cellular environments in lung cells. In our estimated causal network, we found

enrichment of immune genes and TFs among causal genes. We also found enrichment of 11

specific types of causal edges from TFs, immune genes, and metabolic genes. We validated our

network first in ten overexpression data sets. Edges that were positive in the original network

had an enrichment of positive VAR effect sizes in the overexpression data. However, edges in
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the original network did not predict differential expression of genes in the overexpression

data, as called by nsgp. Validating network edges by searching for trans-eQTLs in GTEx pri-

mary lung tissue samples, we found an enrichment of associations with genetic variants across

network edges. Finally, we discovered 340 trans-eQTLs, a dramatic improvement from the

GTEx v6 trans-eQTL study [63].

While BETS has demonstrated effective inference of causal relationships, there are interest-

ing future directions to explore. All methods that infer networks from transcriptional time

series face several difficulties: i) Transcript levels are sometimes an imperfect proxy for protein

levels, especially when transcript dynamics are changing [15, 76]; ii) the scarcity of time point

samples causes statistical challenges for inferring millions of possible causal interactions

between genes, let alone non-additive interactions among causes [3, 77, 78]; iii) transcription

data do not capture the complete regulatory context including chromatin structure and epige-

netic regulations [15]; iv) transcription relationships are often nonstationary: the relationship

may change over time due to responses from the environment [4, 5]; and v) inferred networks

are often sensitive to the choice of preprocessing and parameter choices [79]. Single-cell data

also implicitly include transcription time-series information when pseudotime is inferred,

making ideas from Granger causality exceptionally relevant. However, recent preprints

suggest some limits to pseudotime’s potential for network inference [80, 81]. Finally, experi-

mental followup is key to establishing causality; BETS only generates promising, interpretable

hypotheses. Indeed, by discovering hundreds more trans-eQTLs than the GTEx study (a

170-fold increase) [63], BETS demonstrates its potential to prioritize biologically meaningful

associations.

4 Methods

4.1 Method details

Bootstrap Elastic net regression from Time Series (BETS). Bootstrap Elastic net regres-

sion from Time Series (BETS) is a vector-autoregressive approach to causal inference from

gene expression time-series data. It is based on the principle of Granger causality [31]: a gene

g0 Granger-causes another gene g if previous information from gene g0 improves our current

predictions of gene g, beyond using previous information from g and from other genes.

BETS first preprocesses the data. BETS fits an elastic net vector autoregression model to

handle the high dimensionality of the time series, inferring a network (Fig 1A). It infers one

network for each of 1000 bootstrapped samples of the original data set and computes each

edge’s selection frequency, or its frequency of appearance among the bootstrapped networks

(Fig 1B) [3]. Finally, BETS includes an edge in the network using the selection frequencies (Fig

1B). Our baseline comparison, Enet, only preprocesses the data and fits an elastic net vector

autoregression model from the original data (Fig 1A; Section 2.2).

Preprocessing temporal time-series data. For a gene temporal profile (i.e., one gene’s

expression values across time for a single replicate), we used zero-mean unstandardized nor-

malization, which centers each gene temporal profile to have mean zero across time. Because

gene temporal profile ranges from staying almost constant to having drastic fluctuations,

BETS uses this approach because a unit-variance normalization would over-represent the

weak causal effects of genes with lower variability.

Vector autoregression model. Let G be the set of all genes in the data, let p = |G| be the

number of genes, and let g be a gene. Let ¬g be G with g removed. Let there be T time points

total, and let t 2 {1, 2, . . ., T} be a single time point. Let there be R replicates of the gene expres-

sion time series.
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Let Xg
t;r be the expression of gene g at time t for replicate r. Let Xg

t ¼ ½X
g
t;1;X

g
t;2; . . . ;Xg

t;R�
T

be the R × 1 vector of gene expression levels of gene g across R replicates at time t. The rest

of the paper does not mention replicates for simplicity, but here we discuss replicates for

completeness.

Let g0 be the gene we are testing to be causal for gene g and let ℓ refer to the time lag of the

causal edge g0 ! g. Let L be the maximum lag. In BETS, L = 2 is the default.

We model each gene g as

Xg
t ¼

XL

‘¼1

a
g
‘X

g
t� ‘ þ

XL

‘¼1

X

g02:g

b
g0 ;g
‘
Xg0
t� ‘ þ �t; ð2Þ

where �t � N ð0; 1Þ. In other words, the expression of each gene g is modeled as a linear func-

tion of its and other genes’ L previous expression values, under independent Gaussian noise.

a
g
‘ represents the (scalar) effect size of gene g’s ℓth previous value, Xg

t� ‘, on its current value, Xg
t .

b
g0 ;g
‘

represents the (scalar) effect size of the ℓth previous value of gene g0 6¼ g, Xg0
t� ‘, on gene g’s

current value, Xg
t . Eq 2 requires that t> ℓ for the ℓth previous value, Xg

t� ‘, to exist.

To demonstrate how our model is fit in practice, we reformulate Eq 2 using matrix nota-

tion. Each row represents one time point for one replicate. There are T − L time points with

t> L and R replicates, so there are R(T − L) samples, or rows, in total. Let N = R(T − L).

Define Xg
t , an N × 1 vector, as:

Xg
t ¼

Xg
Lþ1;1

..

.

Xg
Lþ1;R

Xg
Lþ2;1

..

.

Xg
Lþ2;R

..

.

..

.

Xg
T;R

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð3Þ

We can similarly write Xg
t� ‘, which is Xg

t with each entry replaced by its ℓth previous value.

Define Xgt� ‘, a N × Lmatrix consisting of the first L previous vectors Xg
t� ‘, i.e., for ℓ ranging in

{1, . . ., L}.

Xgt� ‘ ¼ ½X
g
t� 1 � � �X

g
t� L�: ð4Þ

Let a
g
‘ be a L × 1 vector of the L lagged coefficients.

a
g
‘ ¼

a
g
1

..

.

a
g
L

2

6
6
6
6
4

3

7
7
7
7
5
: ð5Þ

Next, let us formulate Eq 2 involving the genes g0 in matrix notation. Let X:gt� ‘ be a N × L(|G|

− 1) predictor matrix of the vectors Xg0
t� ‘, for g0 6¼ g and ℓ 2 {1, . . . L}. Note the number of
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columns is L(|G| − 1), because there are L previous time points ℓ 2 {1, . . ., L}, and for each ℓ,

there are |G| − 1 genes g0 6¼ g, giving |G| − 1 vectors: Xg0
1

t� ‘; . . . ;X
g0
jGj� 1

t� ‘ .

X:gt� ‘ ¼ Xg0
1
t� 1 � � �X

g0
jGj� 1

t� 1 Xg0
1
t� 2 � � �X

g0
jGj� 1

t� 2 � � � � � �X
g0
jGj� 1

t� L

h i
: ð6Þ

Let b
:;g
‘

be a L(|G| − 1) × 1 vector of the causal coefficients b
g0 ;g
‘

where g0 6¼ g.

b
:;g
‘
¼

b
g0
1
;g

1

..

.

b
g0
jGj� 1

;g

1

b
g0
1
;g

2

..

.

b
g0
jGj� 1
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2

..

.

..

.

b
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We then fit the model:

Xg
t ¼ X

g
t� ‘a

g
‘ þ X

:g
t� ‘b

:;g
‘
þ �t; ð8Þ

where �t is a N × 1 vector with each element �t;n � N ð0; 1Þ. In its most compact form, we can

write

XGt� ‘ ¼ ½X
g
t� ‘X

:g
t� ‘�;

�bg ¼
a
g
‘

b
:;g
‘

" #

: ð9Þ

Note that XGt� ‘ is a N × L|G| matrix and �bg is a L|G| × 1 vector. Thus, the matrix formulation

of Eq 2 is:

Xg
t ¼ X

G
t� ‘

�bg þ �t: ð10Þ

Elastic net penalty. Because of the large number of predictors as compared to the small

number of samples, we use the elastic net penalty, which is a generalization of both ridge and

lasso penalties. The elastic net fits the following objective:

b̂
g
ELASTIC NET ¼ argmin

�bg2RLjGj
kXg

t � X
G
t� ‘

�bgk
2

2
þ lðak�bgk

1
þ ð1 � aÞk�bgk2

2
Þ: ð11Þ

Here k � k1 represents the ℓ1-norm and k � k2 represents the ℓ2-norm.

For the elastic net, we used the following ranges of hyperparameter values: λ 2 {10−4, 10−3,

. . ., 1}, a 2 {0.1, 0.3, . . ., 0.9}. For lasso, we used λ 2 {10−5, . . ., 1}. For ridge, when we used

{10−5, . . ., 1}, we found that the optimal value selected in some cases was the maximum value

of λ = 1. We thus expanded the range to {10−5, . . ., 106} to ensure that we were not missing bet-

ter hyperparameters at larger values. At this point, the optimal λ was found to be 100.
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Hyperparameter tuning. Hyperparameters were selected using leave-one-out cross-vali-

dation (LOOCV). The hyperparameter (or pair of hyperparameters, for elastic net) that mini-

mizes the mean-squared error on the held-out observations is selected. More specifically, we

first fix a hyperparameter (λ, a). Then, for a given gene g and row index i, extract the ith row of

Xg
t and XGt� ‘. We refer to this extracted validation set as ðXg

t Þi (target) and ðXgt� ‘Þi (predictors).
The remaining data is the training set, ðXg

t Þ� i (target) and ðXGt� ‘Þ� i (predictors).
First, let b̂

g
ðl;aÞ;i be the b̂

g
ELASTIC NET that is fit from the training set.

b̂
g
ðl;aÞ;i ¼ argmin

�bg2RLjGj
kðXg

t Þ� i � ðX
G
t� ‘Þ� i

�bgk
2

2
þ lðak�bgk1 þ ð1 � aÞk�b

gk
2

2
Þ: ð12Þ

We then compute prediction error on the validation set, kðXg
t Þi � ðX

G
t� ‘Þib̂

g
ðl;aÞ;ik

2

2
Þ. We

repeat the fit b̂
g
ðl;aÞ;i and error for every row index i of Xg

t and for every gene g. The mean held-

out cross-validation error for (λ, a) is:

MSEðl; aÞ ¼
X

g2G

XN

i¼1

1

N
kðXg

t Þi � ðX
G
t� ‘Þib̂

g
ðl;aÞ;ik

2

2
: ð13Þ

The (λ, a) that minimizes the error in Eq 13 is selected.

Permuted coefficients. We evaluate the significance of any given edge g0 ! g through

permutation. In detail, we remove the time dependency between g0 and g via permutations of

individual gene temporal profiles over time.

We first generate a single permuted data set ~Xg
t . For each gene, we independently shuffle

the temporal profile of each gene g 2 {1, . . ., |G|} across time (Fig 1A). This is done separately

for distinct replicates.

We wish to model the hypothesis of no causal relations from any gene g0 2 ¬g, upon a given

effect gene g. We use the unpermuted values of the effect gene Xg
t and the permuted values of

all other causal genes g0 2 ¬g, as ~X:gt . The effect gene g remains unpermuted, as we do not con-

sider self-regulatory loops.

Permutation-based causal coefficients ~b
g0 ;g
‘ are then fit as

Xg
t ¼

XL

‘¼1

a
g
‘X

g
t� ‘ þ

XL

‘¼1

X

g02:g

~b
g0 ;g
‘

~Xg0
t� ‘ þ �t: ð14Þ

We use these coefficients to perform FDR calibration.

Edge FDR. The result of the elastic net VAR model is a complete network whose edges

are weighted according to the estimated regression coefficients.

For each lag ℓ 2 {1, . . ., L} and effect gene g, we control the edge FDR at�0.05 by finding

the threshold Tg
‘ such that

P
g02:g1fj~b

g0;g
‘ j > Tg‘g

P
g02:g1fj~b

g0 ;g
‘ j > Tg‘g þ

P
g02:g1fjb

g0 ;g
‘
j > Tg‘g

� 0:05: ð15Þ

For each gene pair (g0, g), g0 2 ¬g, a directed edge g0 ! g exists if, for at least one of the lags

ℓ 2 {1, . . ., L}, jb
g0 ;g
‘
j > Tg

‘ .

Stability selection. Stability selection is used to ensure the robustness of BETS to small

sample size. Stability selection is a method for high-dimensional graph estimation that uses

bootstrap samples [82]. While the authors prove finite sample control for the family-wise error

rate (FWER), we are interested in controlling the false discovery rate (FDR).
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This procedure draws B = 1000 bootstrap samples, where each sample consists of N rows

drawn with replacement from output Xg
t and input XGt� ‘ (Eq 10). Let the jth bootstrap sample

from the original data be Xg;j
t and XG;jt� ‘. A set of N row indices, Ij, are sampled with replacement

from [1, 2, . . ., N]. Xg;j
t and XG;jt� ‘ are created by choosing the rows Ij of Xg

t and XGt� ‘. X
g;j
t is an

N × 1 vector and XG;jt� ‘ is an N × L|G| matrix.

Now consider the permuted output and input, ~Xg
t and ~XG

t� ‘, constructed from ~Xg
t (Eq 10).

Let the jth bootstrap sample from the permuted data be ~Xg;j
t and ~XG;j

t� ‘.
~Xg;j
t and ~XG;j

t� ‘ are created

by choosing the rows Ij of ~Xg
t and ~XG

t� ‘.

Thus, the jth bootstrap sample for both the original and permuted data sets use the same

row indices Ij.
For each of the 1000 bootstrap samples, we infer a network using the elastic net fit and edge

FDR procedure described earlier. Each edge g0 ! g’s selection frequency, πg0, g (the frequency

of g0 ! g among the 1000 bootstrap networks) is computed (Fig 1B).

Stability FDR. To determine the appropriate cutoff for the selection frequency of each

edge (πg0, g), we generate a null distribution of selection frequencies using permutations. First,

we generate a second permuted data set X̂g
t in which we again independently shuffle the tem-

poral profile of each gene g 2 {1, . . ., |G|} across time. This is done separately for distinct

replicates.

We run the stability selection procedure on X̂g
t as if it were Xg

t , using the same set of

row indices Ij to generate the bootstrap samples, and using ~Xg
t to generate the permuted

coefficients.

After running for all B = 1000 bootstrap samples, we obtain the null selection frequency of

each edge, p̂g0 ;g .

We control the stability FDR at 0.2 by finding the threshold Tb such that

P
g02:g1fp̂g0 ;g > Tbg

P
g02:g1fp̂g0 ;g > Tbg þ

P
g02:g1fpg0 ;g > Tbg

� 0:2: ð16Þ

Because the maximum lag is 2, each edge g0 ! g has two possible lags and thus two selection

frequencies. The lag with larger absolute value of average coefficient across the 1, 000 networks

is considered in both the permuted and the real empirical distributions. So, if jb
g0 ;g
1
j exceeds

jb
g0 ;g
2
j, the lag is said to be 1 and the selection frequency p1

g0;g is used.

Network inference performance metrics. Refer to every network edge inferred by a

method as a positive and every missing edge as a negative. Let TP be True Positives, FP be

False Positives, TN be True Negatives, and FN be False Negatives. Let TPR be True Positive

Rate, (i.e., recall), and FPR be False Positive Rate. Then, we have

TPR ¼
TP

TP þ FN

FPR ¼
FP

FPþ TN

Precision ¼
TP

TP þ FP

In the DREAM benchmark, each network inference method is evaluated by comparing the

true network (i.e., the network used to generate the synthetic data) with the inferred network
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at different thresholds for edge inclusion. The two main evaluation metrics are Area Under the

Receiver Operating Characteristic curve (AUROC) and Area Under the Precision-Recall curve

(AUPR). AUROC plots TPR on the y axis and FPR on the x axis. AUPR plots precision on the

y axis and recall on the x axis. When the number of negatives greatly exceeds the number of

positives, as with gene networks, which are typically sparse, AUPR is a more relevant metric

[83].

4.2 Software

BETS is available for download on Github at https://github.com/lujonathanh/BETS. The soft-

ware is licensed under the terms of the Apache License, version 2.0. The analysis code is avail-

able at https://zenodo.org/record/4009546#.X5XEh0JKg1g.

4.3 Data sets and processing

DREAM Network Inference Challenge. There were five data sets in the DREAM4 Net-

work Inference Challenge, each consisting of ten time series of 21 time points and 100 genes

[45, 84]. For the first half of the time series, a “drug perturbation” was applied; this affected

about 1/3 of genes. For the second half, the perturbation was removed and the system was

allowed to relax back to the wild-type state.

Glucocorticoid gene expression data. We analyzed RNA-sequencing data from a set of

experiments developed to study glucocorticoid receptors (GRs) in the human adenocarcinoma

and lung model cell line, A549 [6]. There was an original exposure data set of 4 replicates in

which cells were stimulated by the glucocorticoid dexamethasone (dex), and gene expression

was profiled at {0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12} hours of dex stimulation. There was also an

unperturbed data set of 3 replicates in which cells were exposed to dex for 12 hours, after

which the conditioned media was replaced and dex removed. Gene expression was profiled at

{0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12} hours after dex removal. We integrated the original exposure
and unperturbed data into a joint data set with 7 replicates. The original exposure data set is

available at the Gene Expression Omnibus (GEO), with reference numbers listed for the rows

that list “RNASeq” as the Assay under the column “Experiment_GEO_Series” in Supplemen-

tary Table 3 of [6]. The GEO accession numbers for time points {0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8,

10, 12} of the original exposure data set are GSE91305, GSE91198, GSE91311, GSE91358,

GSE91303, GSE91243, GSE91281, GSE91229, GSE91255, GSE91284, GSE91222, and

GSE91212, respectively. The unperturbed data set is available at GEO accession number

GSE144662.

We selected 2768 genes for analysis, which had average expression > 2 Transcripts Per kilo-

base Million (TPM) and were differentially expressed in the original exposure data. A gene

was called differentially expressed if its expression at any time point differed from its expres-

sion at time 0, ascertained by running edgeR (FDR� 0.05) [6]. We added NR3C1, which

encodes the glucocorticoid receptor (GR). NR3C1 was not found to be differentially expressed

at FDR� 0.05.

After genes were selected, gene expression TPM were log-normalized and corrected for sur-

rogate variables using SVAseq [85]. Each gene’s temporal profile was centered to have mean

zero across time. In the original exposure data, all replicates besides replicate 1 had a measure-

ment for each time point. Replicate 1 was missing time points 5 and 6 hrs, so we imputed these

values using a linear interpolation from time points 4 and 7 hrs in the log-transformed, surro-

gate-corrected space.

Overexpression transcriptional time-series data. There were ten overexpression data

sets, in which each of the transcription factors CEBPB, CEBPD, FOSL2, FOXO1, FOXO3,
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KLF6, KLF9, KLF15, POU5F1, and TFCP2L1 was separately overexpressed across 12 hours of

dex stimulation. Each overexpression data set had three replicates; gene expression was pro-

filed after {0, 1, 4, 8, 12} hours of dex stimulation. The same 2768 genes were selected and the

same normalization and SVAseq correction as earlier was performed. The overexpression data

sets are available at the Gene Expression Omnibus at GEO accession number GSE144660.

4.4 Application of methods to the data

DREAM benchmarking. We ran the methods BETS, Enet, CSId [44], Jump3 [36], CLR

[27], MRNET [28], ARACNE [29], SWING-RF [51], and SWING-Lasso [51] on the DREAM

challenge. In BETS, inferred edges were ranked by their selection frequency for calculating

AUPR and AUROC. In Enet, edges were ranked by the absolute value of their coefficient. The

Python3 version of CSId was run after obtaining it from correspondence with Dr. Penfold.

Jump3 required setting the “systematic noise” and “observational noise” parameters. We

used Dr. Huynh-Thu’s settings on the DREAM challenge, with systematic noise at 1e − 4 and

observational noise at 0.01 times the value of the gene’s expression. ARACNE, MRNET, and

CLR were run using the minet R library. BETS, Enet, CSId, and Jump3 were run on a single

node without parallelization. The node had 28 cores, 128 GB of memory, and 2.4 GHz processor

speed. ARACNE, MRNET, and CLR were run on a 4 GB RAM, Intel Core i5 1.3 GHz laptop.

Network analysis: Gene annotations. We considered genes with three possible labels:

immune system, metabolism, or transcription factor. Immune genes were labeled as such

using two sources. The first source is the Gene Ontology (GO) annotation “Immune”

(GO:0002376) [52]. We applied this label when the evidence codes were one of EXP, IDA, IGI,

IMP, IPI, IC, TAS. The second source is the Gene Ontology Consortium’s curated, ranked list

of immune-related genes based on multiple databases and experimental evidence [54]. For the

GO annotation, we selected all genes with score� 7. This resulted in 616 immune genes over-

all, and 109 immune genes in our list of 2768 genes.

Metabolic genes were called using two sources. The first source is the GO annotation “car-

bohydrate metabolic process” GO:0005975 [52]. We applied this label when the evidence codes

were EXP, IDA, IGI, IMP, IPI, IC, TAS. The second source is the Gene Set Enrichment Analy-

sis (GSEA)-curated list of metabolic-related genes [53]. We searched only among those with

experimental evidence: the Canonical, KEGG, BIOCARTA, and Reactome pathways. We used

the following four search queries: “gluconeogenesis OR (glucose AND metabolism) OR glycol-

ysis,” “lipid AND metabolism,” “Diabetes,” “Obesity.” This resulted in 544 metabolic genes

overall, of which 120 were in our gene list. 65 genes were both immune and metabolic overall;

12 of these were in our gene list.

Transcription factors (TFs) were called using the Bioguo database of human TFs [55].

There were 1463 TFs overall, of which 226 were present in our gene list.

Experimental interactions. We created a list of experimentally validated interactions

from the BIOGRID Homo sapiens Protein-Protein Interactions database [56]. Proteins were

mapped to genes using BioMart from Ensembl 94 [86]. Among genes in our gene list, there

were 17, 990 BIOGRID interactions.

Validation on overexpression data. The overexpression data had four time points with 1

to 4 hour time gaps, unlike the original 12 time points with 0.5 to 2 hour time gaps. On the

overexpression data, we used a VAR model that regressed each effect gene’s expression level

on its previous expression level and the causal gene’s previous expression level, assuming nor-

mal noise �t � N ð0; 1Þ:

Xg
t ¼ cgX

g
t� 1 þ dg

0;gXg0
t� 1 þ �t: ð17Þ
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No regularization was included, and ordinary least squares was used to fit the equation. The

expression Xg0
t� 1 of a causal gene g0 is fit as a single predictor without the other expression. Lag

1, not 2, is used due to the larger time gaps.

Validation on lung trans-eQTLs in GTEx v6. Trans-eQTLs were discovered using the

Genotype Tissue Expression (GTEx) v6 data [14, 63]. First, we mapped our genes from hg38 to

hg19. For every edge g0 ! g, we tested the set of genetic variants within 20 kilobases of g0 for

trans-eQTL association with g [87]. Specifically, we computed the p-value for linear association

of each variant with the corresponding effect gene g using MatrixEQTL [88]. A null distribu-

tion was generated by taking every edge g0 ! g, permuting the effect gene g’s expression values,

and repeating the linear association test. FDR over test statistics was calculated using q-value

[89]. Because not every causal gene g0 had a cis-eQTL, only 26,839 edges (84% of the original

31,945 edges) were tested.

5 Supporting information

S1 Fig. Overview of gene regulatory network inference methods. Panels show each inference

method applied to a cause gene g’ (blue, solid) and an effect gene g (blue, dotted). A) Mutual

information is computed between the cause and effect. B) The effect’s expression is fit as an

autoregression from the cause’s past expression. C) The effect’s expression is fit as a differential

equation from the cause’s current expression. D) The effect’s expression is fit as a decision tree

function of the cause’s past expression. E) The space of dynamic causal networks is searched,

with linear relationships between cause and effect. F) The space of dynamic causal networks is

searched, with nonlinear relationships between cause and effect.

(PDF)

S2 Fig. Causal gene expression and effect gene residuals from experimentally validated

interactions. On the y-axes are the effect gene residual expression values after subtracting the

effects of all other covariates. Axes are in units of ln(TPM). Related to Fig 5 and S7 Table.

(PDF)

S1 Table. DREAM4 100-gene network inference results, AUPR. DBN is dynamic Bayesian

network, DT is decision tree, GP is Gaussian process, MI is mutual information, ODE is ordi-

nary differential equation, VAR is vector autoregression. The references that reported ebdbnet,

ScanBMA, and LASSO did not provide AUPR values for individual networks. Algorithms that

were run in-house were ARACNE, BETS, CLR, CSId, Enet, Jump3, MRNET, SWING-Lasso,

and SWING-RF. Where reported literature values were available, they were consistent with

these values. Values for CSIc, G1DBN, GCCA, GP4GRN, TSNI, VBSSMa and VBSSMb were

taken from [49]. Values for ebdnet, LASSO and ScanBMA, were taken from [40]. Values for

dynGENIE3, GENIE3, OKVAR-Boost and tl-CLR were taken from [37]. Values for Inferelator

and Jump3 were taken from [36]. Related to Fig 2.

(DOCX)

S2 Table. DREAM4 100-gene network inference results, AUROC. DBN is dynamic Bayesian

network, DT is decision tree, GP is Gaussian process, MI is mutual information, ODE is ordi-

nary differential equation, VAR is vector autoregression. The references that reported ebdbnet,

ScanBMA, and LASSO did not provide AUROC values for individual networks. Algorithms

that were run in-house were ARACNE, BETS, CLR, CSId, Enet, Jump3, MRNET, SWIN-

G-Lasso, and SWING-RF. Values for CSIc, G1DBN, GCCA, GP4GRN, TSNI, VBSSMa and

VBSSMb were taken from [49]. Values for ebdnet, LASSO, and ScanBMA, were taken from

[40]. Related to Fig 2.

(DOCX)
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S3 Table. Results of in-house algorithms on DREAM4 100-gene network inference. AUPR,

AUROC, and Time indicate average AUPR, AUROC, and time over the five networks, respec-

tively. BETS and Enet are in bold to indicate that they are our own developed methods, based

on vector autoregression. SWING-RF [51] and Jump3 [36] are decision tree methods. CSId is

a Gaussian process method [44]. CLR [27], MRNET [90], and ARACNE [29] are mutual infor-

mation methods. SWING-Lasso is a vector autoregression method [51]. Related to Fig 2.

(DOCX)

S4 Table. Improvement on DREAM4 100-gene network inference from bootstrap. For each

AUROC or AUPR column, the average is the listed value and the standard deviation is listed

in parentheses. “Coefficient” denotes the result when ranking edges by their fitted coefficient,

as in the original method. “Bootstrap” denotes the results when ranking edges by the frequency

by which they appear in the bootstrap networks.

(DOCX)

S5 Table. Dependency of BETS performance on bootstrap samples. DREAM results

reported for running BETS on both 100 and 1000 bootstrap samples. All values in the columns

are averages and the parenthetical values as standard deviations across the 5 DREAM4 Net-

works. The 1000 samples row is bolded because 1000 samples are the default settings. These

use zero-mean normalization, lag 2, and the elastic net penalty. Related to Fig 2.

(DOCX)

S6 Table. Enrichment of edges between specific gene classes in inferred causal network. A

Fisher’s Exact Test was performed, where the rows of the contingency table were whether or

not an edge was of the edge type, and the columns were whether or not the edge was part of

the inferred network. Related to Fig 3.

(DOCX)

S7 Table. Gene pair information from Fig 5. Shown Data Set indicates whether the gene tem-

poral profiles in Fig 5 are taken from the original exposure data or unperturbed data. The edge

type indicates the gene class of the causal and effect gene; for example, I!M indicates an

edge from an Immune causal gene to a Metabolic effect gene. I = Immune; M = Metabolic;

T = Transcription Factor; A = Any gene. Related to Fig 5.
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