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Abstract

Current dominant views hold that perceptual confidence reflects the probability that a deci-

sion is correct. Although these views have enjoyed some empirical support, recent behav-

ioral results indicate that confidence and the probability of being correct can be dissociated.

An alternative hypothesis suggests that confidence instead reflects the magnitude of evi-

dence in favor of a decision while being relatively insensitive to the evidence opposing the

decision. We considered how this alternative hypothesis might be biologically instantiated

by developing a simple neural network model incorporating a known property of sensory

neurons: tuned inhibition. The key idea of the model is that the level of inhibition that each

accumulator unit receives from units with the opposite tuning preference, i.e. its inhibition

‘tuning’, dictates its contribution to perceptual decisions versus confidence judgments, such

that units with higher tuned inhibition (computing relative evidence for different perceptual

interpretations) determine perceptual discrimination decisions, and units with lower tuned

inhibition (computing absolute evidence) determine confidence. We demonstrate that this

biologically plausible model can account for several counterintuitive findings reported in the

literature where confidence and decision accuracy dissociate. By comparing model fits, we

further demonstrate that a full complement of behavioral data across several previously pub-

lished experimental results—including accuracy, reaction time, mean confidence, and meta-

cognitive sensitivity—is best accounted for when confidence is computed from units

without, rather than units with, tuned inhibition. Finally, we discuss predictions of our results
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and model for future neurobiological studies. These findings suggest that the brain has

developed and implements this alternative, heuristic theory of perceptual confidence com-

putation by relying on the diversity of neural resources available.

Author summary

The dominant view of perceptual confidence proposes that confidence optimally reflects

the probability that a decision is correct. But recent empirical evidence suggests that per-

ceptual confidence exhibits a suboptimal ‘confirmation bias’, just as in human decision-

making in general. We tested how this ‘bias’ might be neurally implemented by building a

biologically plausible neural network model, and showed that the ‘bias’ emerges when

each neuron’s degree of inhibition received from neurons with opposing tuning prefer-

ences dictates how it drives decisions versus confidence judgments. We additionally

showed that alternative models lacking this architecture fail to capture known behavioral

effects. These results challenge the dominant model, suggesting that the brain instead cap-

italizes on the diversity of available machinery (i.e., neuronal resources) to implement

heuristic—not optimal—strategies to compute subjective confidence.

1. Introduction

A dominant idea in the study of perceptual decision-making is that confidence judgments

optimally reflect the probability that a decision is correct [1–5]. Several models specifically

stipulate that confidence is calculated via implementation of a diffusion framework: a decision

is made when evidence for a decision reaches a certain threshold, and confidence reflects an

optimal readout of the same information [3–9].

While this optimal ‘probability correct’ account of confidence has enjoyed significant

empirical support, it seems difficult for it to account for cases where task performance and

confidence dissociate [10–18]. Seemingly suboptimal behaviors have also been observed in

post-decisional perceptual judgments other than confidence [19,20], leading these authors to

hypothesize that these suboptimalities may stem from limitations on computational (i.e., neu-

ral) resources or a drive towards self-consistent behavior. One alternative theory of confidence,

therefore, proposes that subjective confidence relies primarily on the magnitude of evidence

supporting an observer’s decision, while ignoring or downplaying evidence supporting alter-

native, unchosen decisions [10,14,16,18,21,22]. In other words, to compute confidence the sys-

tem uses a suboptimal heuristic that overly relies on decision-congruent evidence magnitude

rather than optimal computations. Indeed, a recent study reported evidence for these deci-

sion-congruent evidence confidence computations using human intracranial electrocortico-

graphy [23].

However, to date no biologically plausible mechanism has been proposed that might

explain these dissociations between confidence and performance, or the decision-congruent

confidence computations on which they seem to depend. We therefore developed a simple

dynamic evidence accumulation network model to test a new hypothesis of how these compu-

tations might be implemented. This model extends previous work to incorporate a known

property of perceptual circuitry: tuned normalization [24–26], meaning each neuron is charac-

terized by the specific degree to which it is normalized by surrounding or nearby network

activity [27,28], and specifically by units with opposing tuning preferences. In the present
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work, we use the more general term tuned inhibition to refer to any neural dynamics in which

neurons are preferentially inhibited by other neurons with opposing tuning preferences,

regardless of whether such dynamics are divisive in nature (as normalization processes are typ-

ically characterized to be), since our primary hypothesis concerns the general phenomenon of

tuned inhibition without a particular concern for whether such inhibition is divisive or not.

We hypothesized that each neuron’s degree of tuned inhibition dictates how it differentially

participates in discrimination decisions versus confidence judgments. Specifically, we rea-

soned that strongly inhibited ‘differencing’ neurons encode the balance of evidence for various

perceptual interpretations (e.g. net accumulated evidence for leftwards or rightwards motion

direction), and thus are reasonable candidates for making discrimination judgments. By con-

trast, less inhibited evidence accumulation neurons encode total overall evidence in favor of

one perceptual interpretation (e.g. leftward motion) while ignoring evidence for alternative

interpretations (e.g. rightward motion), and thus are reasonable candidates for implementing

decision-congruent confidence computations. Therefore, the simple design principle that

more inhibited differencing neurons drive decisions and less inhibited accumulator neurons

drive confidence may be sufficient to account for some of the most counterintuitive empirical

findings on confidence in perceptual decision-making.

We tested key predictions of a Differential Tuned Inhibition model instantiating this

hypothesis using computational modeling, with exploratory supplemental results from single

neuron physiology. The computational model simulations show strong support for our

hypothesis: the model reproduces multiple empirical findings when confidence is computed

primarily from less inhibited ‘absolute evidence’ units, but not when computed primarily from

more inhibited ‘differencing’ units. With this approach, we extend previous conceptual

insights to include dynamical evidence accumulation and reaction time effects, while also uni-

fying multiple empirical datasets across multiple paradigms with a single coherent approach.

We also show that meta-d’, a measure of metacognitive sensitivity [29], provides a crucial tar-

get for model comparisons of perceptual confidence. Our results suggest that tuned inhibition

may play a crucial role in how the brain differentially computes perceptual decisions and sub-

jective confidence–thus revealing an important psychological function of this neuronal

property.

2. Methods

2.1. Ethics statement

In S4 Text, we describe exploratory behavioral and electrophysiology results from the superior

colliculus for one male rhesus monkey. Details of the surgical procedures used to implant elec-

trodes are also provided in S4 Text. All experimental protocols were approved by the UCLA

Chancellor’s Animal Research Committee (IACUC, protocol number 2012–043) and com-

plied with and generally exceeded standards set by the Public Health Service policy on the

humane care and use of laboratory animals.

2.2. The Differential Tuned Inhibition model

The model presented here is a dynamic evidence accumulation network with tuned inhibition,

where units with different inhibition tuning differentially contribute to perceptual decisions

and confidence.

To investigate how decision-congruent evidence might be biologically implemented, we

began by considering known properties of perceptual decision-making circuitry. It is well

known that normalization is a canonical neural computation throughout the cortex [27,28,30–

34]. Further, it was recently reported that neurons in primary sensory areas exhibit tuned
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normalization (here called tuned inhibition for generality), i.e. that each neuron possesses a

unique, consistent degree of received inhibition: some neurons are very sensitive to activity of

other units in the network (especially those which have different tuning preferences), while

others operate more independently [24–26]. Previous implementations of evidence accumula-

tion models for perceptual decisions have typically considered how a single level of normaliza-

tion or inhibition—in a single set of units that drive both perceptual decisions and confidence

—can account for behavioral data [3–8,21,35]. However, we now know that a range of inhibi-

tion tuning exists, at least in sensory cortices. We hypothesized that these neuron-by-neuron

variations in inhibition may reflect not noise or measurement error, but meaningful properties

of the perceptual decision-making circuitry [24–26]. We refer to this model as the Differential
Tuned Inhibition model, or the Tuned Inhibition model for short.

But how might tuned inhibition be utilized in a behaving organism? To answer this, we

should consider the tasks an organism must successfully execute in an ecologically valid envi-

ronment. The ability to discriminate among multiple possible stimulus identities is certainly

important, and for this type of task an observer ought to rely on a system that is able to average

out noise, i.e. is less susceptible to random fluctuations in signal. Thus, for these discrimina-

tion-type tasks, a strong degree of inhibition would be desirable, as it has been shown that neu-

rons with stronger tuned inhibition do exhibit weaker pairwise correlations [25,26]. But it is

equally important that an organism also be able to detect a stimulus in the first place, regard-

less of its identity. For these detection-type tasks, such strong inhibition would actually be

undesirable, as minute evidence amounts may be informative; therefore, weakly inhibited neu-

rons ought to play a stronger role in detection-type tasks. As both of these task types are critical

for an organism’s survival, it seems unlikely that a system would only be optimized for one or

the other, which could in theory explain the presence of tuned inhibition.

In light of this discussion, and of the empirically observed tuned inhibition in cortical areas,

a biologically plausible model of sensory evidence accumulation ought to implement more

than one level of inhibition and consider how such variations in inhibition tuning may affect a

neuron’s role in the circuitry. Further, such stratification of tuned inhibition could provide a

neural mechanism to explain findings that confidence judgments rely on the magnitude of

decision-congruent evidence [10,14,17,18,21–23]. Specifically, the output of less inhibited

‘detection’ neurons could be used to index decision-congruent evidence and therefore be used

for confidence rating. This suggests that inhibition tuning provides a biologically plausible

mechanism to keep track of decision-congruent evidence independently of evidence favoring

other possible choices by relying on the less inhibited portion of the circuitry, while allowing

the system to still capitalize on the beneficial consequences of inhibition by opposingly-tuned

neurons by relying on the more inhibited portion when discriminating among possible stimu-

lus identities. We therefore hypothesized that inhibition tuning might specifically dictate a

neuron’s contribution to discrimination versus confidence judgments in decision-making

circuitry.

We examined this hypothesis by incorporating tuned inhibition [24,25] into a dynamic evi-

dence accumulation network (Fig 1). Intuitively, this network’s architecture can be summa-

rized as follows. Accumulator units tuned to varying stimulus alternatives accumulate

momentary stimulus evidence. Downstream ‘differencing’ units receive excitatory and inhibi-

tory input from accumulator units having opposing tuning preferences, effectively performing

a subtraction to yield the balance of evidence favoring one stimulus alternative over the other.

A discrimination decision is made when a differencing unit with a given tuning preference

reaches a threshold level of evidence.

Following the perceptual decision, additional evidence accumulation occurs in order to

form a confidence judgment [9]. Confidence is then evaluated by comparing accumulator unit
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activity for the chosen stimulus alternative to a set of decision thresholds for rating confidence.

The duration τ of this post-decision evidence accumulation controls metacognitive sensitivity,

i.e. the efficacy with which confidence ratings discriminate correct from incorrect responses,

as measured e.g. by the signal detection theory measure meta-d’ [29]. In general, longer post-

decision accumulation periods yield higher metacognitive sensitivity (consistent with

Fig 1. The Differential Tuned Inhibition model diagram and sample activity traces. (A) In the 2-stage model,

instantaneous evidence from a source Si is accumulated by independent accumulators xi tuned to each stimulus type i.
Differencing units δi then compute the difference in accumulated evidence for each stimulus alternative, implemented

through feed-forward excitation from units with the same preferences and inhibition from accumulator units with

opposing preferences. (B) A decision is made by the model when the activity of one of the differencing units hits a

bound, i.e. when enough relative evidence for one stimulus over another has been accumulated. Confidence in the

main Differential Tuned Inhibition model is then read out after delay τ from the independent accumulator xD

corresponding to the decision D that was made. In an alternative model, we also tested how this framework might

perform if confidence were read out from the differencing unit δD; see Methods for details.

https://doi.org/10.1371/journal.pcbi.1008779.g001
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empirical patterns reported in [36]). When τ = 0 and confidence is determined at the same

instant as the perceptual decision, there is very little variability in perceptual evidence values

(since, by definition, the perceptual decision is made when perceptual evidence in the

differencing units arrives at a fixed threshold value), which has the consequence that meta-d’

� 0 (see e.g. S1C and S1D Fig), meaning confidence is at chance levels of discriminating cor-

rect from incorrect responses. Thus, incorporating a post-decision evidence accumulation

stage with τ> 0 in this kind of evidence accumulation model is important to capture empirical

patterns of metacognitive sensitivity.

For simplicity, we assume that evidence accumulation rates remain constant in the post-

decision stage. This assumption need not imply that the physical stimulus remains available to

perception for the duration of the decision process, as evidence accumulation could depend in

part on internal processes that continue even after stimulus offset. Consistent with this idea,

prior work has demonstrated that for briefly presented and masked stimuli, diffusion models

assuming constant drift rate fit the data better than ones assuming drift rates that vary with

stimulus duration and mask onset, suggesting that evidence accumulation rates can persist

over time even after stimulus offset [37].

Crucially, the roles of these unit types in the perceptual decision making process depends

on their level of inhibition tuning, and this weighting differs for discrimination decisions and

confidence ratings. More inhibited ‘differencing’ units determine discrimination decisions,

since they effectively encode the accumulated balance of evidence for one stimulus alternative

versus the others by virtue of their receipt of inhibition from units with opposing tuning pref-

erences. By contrast, less inhibited accumulator units determine perceptual confidence, since

they effectively encode a “pure” representation of the raw magnitude of independent evidence

supporting each decision alternative, regardless of evidence supporting other possible deci-

sions. Details of model implementation and all simulations follow in the next sections.

2.3. Model specifics

The Differential Tuned Inhibition model consists of two main stages of processing: (1) an ini-

tial evidence accumulation stage, in which independent sensory evidence for different percep-

tual interpretations is independently integrated over time, and (2) a subsequent evidence

comparison stage, in which the independently-accumulated evidence for perceptual alterna-

tives in the previous stage is directly compared by a subtractive (differencing) process which

could be biologically implemented through feed-forward inhibition (Fig 1).

To capture perceptual dynamics in experiments in which an observer must use noisy sen-

sory evidence to decide between two perceptual alternatives (e.g. deciding if a grating is tilted

left or right, if dot motion is moving leftwards or rightwards, etc.), we model two independent

accumulator units (which can be thought of as corresponding to two independent pools of

unnormalized accumulator neurons) corresponding to each perceptual alternative, where each

evolves according to the equation:

xiðtÞ ¼ maxðxiðt � 1Þ þ Si þ εiðtÞ; 0Þ ð1Þ

In this equation, i denotes stimulus alternative, Si denotes instantaneous evidence for stimulus

i (assumed to be constant over time), and εi(t) is a noise term such that εi(t) ~ N(0, σ). The

max operation rectifies the accumulator unit to ensure non-negative values.

At the second stage, the balance of evidence supporting stimulus i relative to stimulus j is

computed as the instantaneous difference between the evidence accumulated thus far for i and
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j:

diðtÞ ¼ maxðxiðtÞ � xjðtÞ þ xiðtÞ; 0Þ ð2Þ

where ξi(t) is a noise term such that ξi(t) ~ N(0, σ). (For simplicity, we assume that noise terms

at each level of processing, εi(t) and ξi(t), are drawn from the same distribution.) Once again,

the results are rectified to ensure non-negative values. Evidence accumulation proceeds until

one of the strongly inhibited ‘differencing’ units δi achieves some threshold value T, at which

point the observer decides upon perceptual interpretation i as their decision D for this trial:

D ¼
i if diðtÞ > T

j if djðtÞ > T
ð3Þ

(

Reaction time tRT is considered to correspond to the value of t at which δD first surpasses T.

After the initial perceptual decision is made, evidence accumulation in the uninhibited

units continues for a fixed number of time steps τ, following previous convention [9]. Once τ
time steps have passed, confidence is read out as the value of evidence in the uninhibited accu-

mulator unit corresponding to the perceptual decision, i.e.

Cx ¼ xDðtRT þ tÞ ð4Þ

Thus, whereas the perceptual decision D depends on the balance of evidence between stimulus

alternatives δD, confidence Cx depends on the total amount of “uninhibited” or “absolute”

accumulated evidence in favor of the perceptual decision, xD. This divergence in the computa-

tion of perceptual decision and confidence embodies the decision-congruent evidence effect

discovered in empirical studies and captures the central phenomenon of interest for this

manuscript.

To directly test the necessity of this model architecture for capturing the behavioral effects

reported in the literature, we also implement an alternative control model consistent with

dominant theory that decisions and confidence judgments are computed from the same units,

i.e.

Cd ¼ dDðtRT þ tÞ ð5Þ

This alternative model is logically consistent with canonical models for computing confidence

from the accumulated balance of evidence (e.g., [3–5]).

It is important at this point to clarify a point of potential misunderstanding. Note that in

both Eq 4 and Eq 5, confidence is read out from a decision unit whose tuning preference

matches the perceptual decision (denoted by the D subscripts in both equations). Thus, on one

possible reading of the term “decision congruent evidence,” one might conclude that confi-

dence depends on decision congruent evidence in both Eqs 4 and 5, since in both cases, confi-

dence is read out from a unit whose stimulus tuning preference matches the perceptual

decision. However, when we use the term “decision congruent evidence” in this manuscript,

consistent with prior usage in the literature, we mean to refer to evidence that supports the

perceptual decision one has chosen, independent of evidence for alternative choices. In this

sense of the term, only Eq 4 qualifies as computing confidence from decision-congruent evi-

dence, since only in this case is confidence insensitive to evidence for the alternative, unchosen

perceptual interpretation(s).

For both the main Tuned Inhibition Cx model and the alternative Cδ model, we compare

model outputs to empirical confidence data by converting raw confidence C values to an ordi-

nal rating scale value R by comparing the respective Cs to a series of confidence threshold
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values Ur, as follows:

R ¼ 1þ
PNr� 1

r¼1
ðC > UrÞ ð6Þ

where Nr is the number of rating scale options available (e.g. Nr = 4 on a 4-point confidence

scale), and (C> Ur) is a logical comparison evaluating to 1 if the inequality is true and 0 other-

wise. Thus, R is a simple count of how many of the confidence thresholds Ur are surpassed by

C, with the constant 1 added to set 1 as the minimum confidence rating value.

2.4. Simulations

We tested the model by assessing its ability to capture empirical dissociations between percep-

tual task performance and confidence in three representative data sets: a dissociation between

d’ and meta-d’ (the trial-by-trial correspondence between accuracy and confidence [29])

observed in Maniscalco, Peters, & Lau [14], and dissociations between d’ and mean confidence

observed in Experiments 1A and 2B of Koizumi, Maniscalco, & Lau [10]. Details of the experi-

mental designs and simulation results are discussed below.

For each data set, we fit the Differential Tuned Inhibition model (with confidence com-

puted from absolute evidence accumulators) and the alternative model (with confidence com-

puted from the difference between accumulators) to the data and compared the ability of the

models to capture the relevant dissociations. In connection with Eqs 4 and 5, we call these the

Cx model and Cδ model for short, respectively. We expected that the Cx model would outper-

form the Cδ model in its ability to capture the dissociations, thus lending further support to

the hypothesis that confidence depends primarily on decision-congruent evidence.

We followed a similar approach in fitting the models to these diverse data sets, as outlined

below, though certain details of model fitting were particular to each data set. Full details for

model fitting are provided in S1 Text.

2.4.1. Selecting values for σ and T. First, we arbitrarily set accumulation noise σ = 0.1.

The choice of this parameter value is arbitrary since, if no parameter values are fixed, identical

simulation results can be obtained by a simple scaling of the model parameters. We then set

decision threshold T = 1 to ensure that, even in the absence of stimulus drive S (i.e. S1 = S2 =

0), accumulation of noise alone could reach T within a reasonable number of time steps,

while still ensuring that at least several time steps must pass for this to occur (in 10 repetitions

of simulations with 10,000 trials each, average median RT = 80.6 and average minimum

RT = 7.3). These choices for σ and T formed a fixed reference against which other parameters

of the model could be optimized. We found that similar simulation results occurred when

using different values for T, which can be readily verified using the simulation code available

online.

2.4.2. Fitting S to d’. Next, for each data point in the data set, we found what value of

stimulus drive S would be required to yield the desired value of d’. We did this by performing

simulations at 10 evenly spaced values of S and fitting a quadratic polynomial to the resulting

d’ vs S curve, which provided an excellent fit across a range of d’ values from ~ 0–3 (S1A and

S1B Fig). Using the fitted polynomial equation, we could solve for what value of S yielded the

value of d’ to be fitted.

2.4.3. Fitting Ur to confidence probability distributions and τ to meta-d’. The parame-

ter τ determines how many time steps pass after the initial perceptual decision is made, during

which evidence continues to accumulate before a confidence judgment is formed. Larger val-

ues of τ correspond to more evidence accumulation prior to confidence rating and therefore

higher values of meta-d’ (i.e., confidence ratings that carry more information about task
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accuracy). Thus, empirically observed values of meta-d’ can serve as a guide for appropriate

values of τ.

In each data set simulation, we fit τ to the meta-d’ value of only one representative data

point, and used this value of τ for all subsequent simulations of that data set. This approach

ensured that τ was held constant across all conditions. Importantly, as a consequence, the fit-

ting procedure guaranteed a close fit to meta-d’ in only one data point, and simulated meta-d’

values at all other data points were unconstrained by further parameter fitting and instead

arose as a consequence of the value of τ fitted to the representative meta-d’ value.

To accomplish the fit, we performed simulations at 10 evenly spaced values of τ and fitted a

quadratic polynomial to the resulting meta-d’ vs τ curve, which provided an excellent fit across

a range of meta-d’ values from ~ 0 –d’ (S1C and S1D Fig). Using the fitted polynomial equa-

tion, we could solve for what value of τ yielded the value of meta-d’ to be fitted for the single

fitted data point.

In order to compute meta-d’, continuous confidence values (Cx or Cδ, depending on the

model being used) first had to be converted to a 4-point rating scale (corresponding to the

4-point confidence rating scale used in all three data sets to be fitted), which in turn required

specifying the values of the confidence thresholds Ur. For each simulation, we set Ur such that

the probability distribution of simulated confidence ratings across all trials of all conditions

exactly matched the corresponding empirical probability distribution. More formally, we com-

puted Ur as

Ur ¼ quantileðC;
Pr

i¼1
Pdataðconf ¼ iÞÞ ð7Þ

where C corresponds to Cx or Cδ, depending on the model being used, quantile(C, p) returns

the quantile of the distribution C corresponding to the cumulative probability p, and

Pdata(conf = i) is the empirical probability distribution of confidence ratings.

As noted above, full details of the model fitting procedures are provided in S1 Text.

3. Results

3.1. Simulating data from Maniscalco, Peters, & Lau 2016 [14]

Maniscalco, Peters, & Lau [14] used signal detection theory modeling to predict that, if human

observers do indeed use decision-congruent evidence to judge confidence, then under certain

conditions it should be possible to observe a counterintuitive dissociation whereby metacogni-

tive sensitivity decreases even as perceptual task performance increases. They conducted an

experiment to test the prediction and verified that human observers did indeed exhibit this

surprising dissociation (Fig 4 of [14]; results reproduced in Fig 2), providing strong support

for the decision-congruent evidence model of confidence.

The experiment used a simple 2IFC task in which circular noise patches were presented to

the left and right of fixation on every trial, with a grating embedded in the left or right noise

patch. Subjects had to report which side the grating was on and then rate confidence on a

4-point scale. Crucially, the contrast of gratings presented on one side of the screen was held

constant (call it CS1), while the contrast of gratings presented on the other side could take on

one of 5 possible values CS2. CS2 spanned a range of values below and above CS1, with the inter-

mediate value of CS2 equal to CS1. Briefly, the logic behind the predicted dissociation is as fol-

lows: If subjects rate confidence according to decision-congruent evidence, then it follows

from a two-dimensional signal detection theory model that incorrect “S1” responses should

yield higher mean confidence as CS2 increases. Since CS1 is constant, correct “S1” responses

have a fixed level of mean confidence. Thus, the net effect of increasing CS2 is to increase task

performance (d’) while simultaneously increasing confidence in incorrect “S1” responses but
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not correct “S1” responses, leading to a decrease in metacognitive sensitivity (meta-d’) for “S1”

responses. This predicted pattern in confidence for incorrect “S1” responses is indeed what

was observed (S3 Fig of [14]; results reproduced in S2A Fig). For further discussion, see S2

Text.

To model the data, we structured the model simulations to mirror the experimental design

feature whereby one stimulus (“A,” corresponding e.g. to gratings presented on the left side of

fixation) had constant stimulus strength SA across all simulated trials, whereas the other stimu-

lus (“B,” corresponding e.g. to gratings presented on the right side) could take on one of five

possible values SB,i, with the intermediate value SB,3 defined to be equal to SA. The parameter

controlling meta-d’ (τ) was fit to overall meta-d’ at the intermediate level of task performance

where stimulus strength for A and B was equal and the empirical response-conditional meta-d’

curves intersected (Fig 2A). Full details of model fitting are provided in S1 Text.

In good agreement with the empirical data, simulated response-conditional meta-d’ curves

for the Differential Tuned Inhibition model exhibit an X-shaped cross-over effect, such that

meta-d’ for different response types either increases or decreases as d’ increases. The range of

meta-d’ values exhibited by the model is both plausible and consistent with meta-d’ found in

other empirical studies as well. Notably, since τ was fit only to overall meta-d’ at the single

intermediate level of task performance, the meta-d’ curves at all other data points were not

constrained by an explicit fitting procedure but rather arise naturally as a consequence of the

single set of fitted parameters.

Fig 2. Modeling results for the effects reported by Maniscalco and colleagues [14]. The fitted main Cx model (A) reproduces the X-shaped crossover in response-

conditional meta-d’ that was observed in the empirical data: as d’ increases, response-conditional meta-d’ for “S2” responses increases whereas meta-d’ for “S1” responses

decreases. In contrast, such an X-shaped crossover in response-conditional meta-d’ is not even qualitatively present for the alternative Cδ model (B).

https://doi.org/10.1371/journal.pcbi.1008779.g002
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Importantly, as described in Methods (Sections 2.3 and 2.4), we also tested the importance

of computing confidence from uninhibited evidence accumulation to the data fit by repeating

the above-described simulation procedures, but this time computing simulated confidence

from Cδ rather than Cx, and using the fitted parameter τδ rather than τ. As expected, this alter-

native version of the model using Cδ was not able to capture, even qualitatively, the X-shaped

cross-over dissociation in response-conditional meta-d’ observed in the empirical data from

Maniscalco and colleagues [14] (Fig 2B).

Further simulation results for this experiment are presented in S2 Text. There we compare

empirical response-conditional mean confidence for correct and incorrect responses to the

values produced in the Cx and Cδ model simulations (S2 Fig), and show topographical plots of

distributions of Cx and Cδ to provide further intuition for why the former, and not the latter,

can capture the response-conditional meta-d’ dissociation (S3 Fig). We also point out concep-

tual and computational similarities between the Cx model and the two-dimensional signal

detection theory (2D-SDT) model used by Maniscalco et al. [14] as a theoretical frame of refer-

ence for their experimental design and empirical findings, arguing that these similarities are

precisely what allow the Cx model to capture the dissociation. Finally, in S3 Text and S4–S7

Figs, we demonstrate that a leaky competing accumulator (LCA) implementation [35] of the

tuned inhibition model cannot capture the data as well as the model implementation explored

in the main manuscript, and argue that the LCA model performs worse in part because it does

not map as cleanly onto the 2D-SDT model structure as does the main model.

3.2 Simulating data from Koizumi, Maniscalco, & Lau 2015 [10]

Experiment 1A

Koizumi, Maniscalco, & Lau [10] experimentally controlled stimulus properties to yield condi-

tions where task performance (d’) was similar, yet mean confidence differed. In their Experi-

ment 1A, subjects performed a grating tilt discrimination task. However, stimuli were actually

composed of two superimposed gratings tilting in opposite directions, one with higher con-

trast (“Positive Evidence” or “PE” for short; the correct decision) and one with lower contrast

(“Negative Evidence” or “NE”; the incorrect decision). Subjects had to indicate whether the

higher contrast grating was tilting left or right and then rate confidence on a 4-point scale.

The key experimental manipulation was the introduction of High PE and Low PE condi-

tions, in which the contrast of the NE gratings was set to 0.7�(PE grating contrast) and 0.35�

(PE grating contrast), respectively, and PE grating contrast was controlled by thresholding

procedures to achieve a criterion level of task performance (d’). Due to the distractor NE stim-

ulus being stronger in the High PE condition, a higher level of PE was required to achieve a

given level of d’, with the net effect that d’ was similar in Low PE and High PE conditions,

whereas PE (and NE) were higher in the High PE condition than in the Low PE condition.

Additionally, there were two levels of task difficulty at each level of PE, thus giving rise to four

experimental conditions in all: “High PE, Easy,” High PE, Difficult,” “Low PE, Easy,” and Low

PE, Difficult.” Koizumi et al found that the High PE and Low PE conditions yielded similar

task performance (d’), but mean confidence was higher for High PE stimuli (Fig 1D of [10]).

Similarly to Maniscalco et al 2016 [14], the dissociation effect in Experiment 1A of Koizumi

et al 2015 [10] is thought to arise from observers using decision-congruent evidence to assess

confidence. Thus, we similarly expected that the dissociation between d’ and confidence would

be captured well by simulations using Cx (corresponding to computing confidence from abso-

lute accumulated decision-congruent evidence), but not by simulations using the alternative

Cδ (corresponding to computing confidence from the ‘differencing’ units, i.e. the balance of

evidence).
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To attain a comprehensive understanding of model behavior across all levels of low and

high PE, we exhaustively mapped the behavior of the Cx and Cδ models across different levels

of PE and NE, as follows. Since all stimuli in Koizumi et al. [10] Experiment 1A featured non-

zero levels of positive and negative evidence, we modeled each condition using two stimulus

drive parameters SPE and SNE. In all simulations, we set a constraint such that SNE = α SPE for 0

< α< 1, and further constrained α to be lower in the Low PE condition, i.e. αlow PE < αhigh PE.

We selected αlow PE = 0.1, 0.3, and 0.5 as three representative values of α to explore for the Low

PE condition. For each level of αlow PE, i, we explored a corresponding set of values of αhigh PE,

ij where the αhigh PE, ij values were set as equally spaced values between αlow PE, i + 0.1 and 0.9,

incrementing by steps of 0.1. For each pairing of αlow PE, i and αhigh PE, ij, we fit the model

parameters to the average d’ and meta-d’ values in the Low PE, Easy and Low PE, Difficult con-

ditions and observed how this influenced the difference in mean confidence between the simu-

lated High PE and Low PE conditions (Fig 3A, 3E and 3I).

Simulations results revealed that the main Cx model can capture a wider range of differ-

ences in confidence due to manipulation of PE level, which allows it to capture the observed

magnitude of the (High PE confidence–Low PE confidence) effects across all analyzed choices

of αlow PE, i using relatively small increments in the corresponding αhigh PE, ij (for αlow PE = 0.1,

0.3, and 0.5, the effect of PE level on confidence is captured by setting αhigh PE = 0.2548, 0.3966,

and 0.5525, respectively; Fig 3A, 3E and 3I). By contrast, the alternative Cδ model predicts only

a very small influence of PE level on mean confidence; at αlow PE = 0.1 it can account for the

confidence effect only by positing a massively stronger PE level at αhigh PE = 0.8928 (Fig 3A),

and when αlow PE > 0.1, no value of αhigh PE� 0.9 can account for the magnitude of the effect

(Fig 3E–3I).

To provide a more comprehensive characterization of the model fits to the empirical data,

we also compared empirical and simulated data for the differences in reaction time and meta-

d’ induced by the High PE and Low PE conditions. RT and meta-d’ data were not reported in

Koizumi et al [10]; here we re-analyzed their data set and report the RT and meta-d’ data for

the first time (Fig 4). In the empirical data, meta-d’ increased and RT decreased with increas-

ing d’, but neither was appreciably modulated by PE level.

To assess the effect of PE level on simulated RT, we computed a relative RT effect size ηRT,

defined as

ZRT ¼ ðRThigh PE;med � RTlow PE;medÞ=ðRTlow PE;easy � RTlow PE;difficultÞ ð8Þ

The subscripts “high PE, med” and “low PE, med” denote that these RT values were taken

from simulations of the High PE and Low PE conditions, using Slow PE and Shigh PE values cho-

sen to match mean d’ across difficulty levels in the Low PE condition. The subscripts “low PE,

easy” and “low PE, difficult” denote that these RT values were taken from the simulations of

the Low PE condition, using Slow PE values chosen to match d’ in the Low PE, Easy and Low

PE, Difficult conditions. Thus, ηRT measures simulated change in RT at an intermediate d’

value due to High vs Low PE (the numerator), relative to simulated change in RT in the Low

PE condition due to Easy vs Difficult stimulus settings (the denominator).

Simulation results for (High PE meta-d’–Low PE meta-d’) and ηRT are shown in Fig 3B, 3F

and 3J and Fig 3C, 3G and 3K, respectively. In general, the Cx and Cδ models make differing

predictions about how PE level influences meta-d’, whereas they make the same prediction

about how PE level influences RT (since perceptual decision making is driven by the same

mechanism in both models). Of central interest for our purposes, however, is how these mod-

els predict meta-d’ and RT to behave at the specific values of αlow PE and αhigh PE that yield dif-

ferences in mean confidence matching those observed in the data. These points are marked by
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filled circles and vertical dashed lines in Fig 3. For purposes of comparison to simulated data,

we used linear fits to interpolate the empirical meta-d’ and RT values at d’ = 1.71 (correspond-

ing to the average d’ across the Low PE, Easy and Low PE, Difficult conditions) and computed

the difference in the interpolated values for the High PE and Low PE conditions, yielding

empirical values of High PE meta-d’–Low PE meta-d’ = -0.029 and ηRT = 0.044 (horizontal

dashed lines in Fig 3).

At levels of αlow PE and αhigh PE that yield a perfect fit to the effect of PE level on confidence,

the main Cx model also exhibits an accurate fit to the effect of PE level on meta-d’, correctly

predicting that PE level has a negligible effect on meta-d’ (PE effect on meta-d’ = -0.029 in the

data; -0.008, -0.008, and -0.012 in the model for αlow PE = 0.1, 0.3, and 0.5 respectively). The Cx

model incorrectly predicts that RT should be faster under High PE than Low PE, but the pre-

dicted magnitude of this effect is modest compared to the speed-up in RT due to Easy vs Diffi-

cult stimulus settings in the Low PE condition (ηRT = 0.044 in the data; 0.372, 0.281, 0.158 in

the model for αlow PE = 0.1, 0.3, and 0.5 respectively). In the empirical data (RTlow PE, easy—

Fig 3. Comprehensive simulations showing fitting procedures for the main Cx model and alternative Cδ model for Koizumi et al.’s [10] Experiment 1A. Rows show

simulation results for different settings of αlow PE, which determines the relative strength of positive evidence (PE) and negative evidence (NE) in simulations for the Low

PE condition of Koizumi et al., such that SNE / SPE = αlow PE. Columns show performance-matched confidence differences (i.e. differences in confidence when d’ is exactly

matched at the mean d’ value of the low PE condition), performance-matched meta-d’ differences, relative RT effect sizes (ηRT), and model fitting error due to PE

manipulations for Koizumi et al.’s Experiment 1A. For each of the Cx and Cδ models and each PE/NE balance in the Low PE condition (αlow PE), we determined the level

of NE in the High PE condition (αhigh PE) that best matched the observed magnitude of performance-matched confidence differences in the empirical data (dashed

horizontal lines, column 1); these are marked with black circles. We then “read out” the predicted meta-d’ differences and relative RT effect sizes (columns 2 and 3,

respectively) for each of these best-fitting PE/NE levels to get a comprehensive picture of the behavior of the system for both the Cx and Cδ models. Fitting error was

computed for each model simply as the difference between the predicted value and the empirical value for confidence differences, meta-d’ differences, and relative RT

effect sizes (column 4). Across all PE/NE balance levels tested, the Cx model produced comprehensively good fit to the empirical data from Koizumi et al.’s Experiment 1A;

in contrast, the alternative Cδ model must be pushed to extremely high levels of αhigh PE to capture the empirically observed confidence differences due to PE

manipulations, leading to substantial errors in the corresponding fits for meta-d’ and RT.

https://doi.org/10.1371/journal.pcbi.1008779.g003
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RTlow PE, difficult)� 30 ms, which can be used as a reference point for what the empirical and

modeled ηRT effects translate to in terms of (RThigh PE, med—RTlow PE, med). In the empirical

data, ηRT = 0.044 corresponds to an effect of PE level on RT of approximately 0.044�30

ms = 1.3 ms, whereas the equivalent RT effects in the model would be 11.2, 8.4, and 4.7 ms for

αlow PE = 0.1, 0.3, and 0.5 respectively. Thus, the magnitude of the incorrect prediction by the

Cx model for the effect of PE level on RT ranges from about 3.5–10 ms. While it is notable that

the model seemingly makes a qualitatively incorrect prediction here, the magnitude of the

effect is small enough that it does not pose a prohibitive failure. It is also possible that the

apparent lack of an RT effect in the data is a false negative, which could plausibly occur if the

true effect size were 10 ms or less.

Fig 4. Modeling results for the effects reported by Koizumi and colleagues [10] in their Experiment 1A with αlow PE = 0.1 (corresponding to the first row of Fig 3)

and parameter values chosen to best capture the effect of PE level on mean confidence (corresponding to the data points shown in black circles in Fig 3). The fitted

main Cx model reproduces the differential confidence for matched d’ performance for high versus low PE stimuli (A), as well as the overlapping distributions of meta-d’ as

a function of d’ (B). The main Cx model predicts a small different in reaction time as a function of PE (C) not seen in the empirical data, but the magnitude of the RT

difference across PE levels is small relative to the magnitude of the RT difference across difficulty levels (higher d’ leads to much faster RT). In contrast, while the

alternative Cδ model can reproduce the differential confidence as a function of PE level given matched d’ (D), it fails to capture the overlapping relationship between d’ and

meta-d’ (E) and predicts overly large RT differences as a function of PE relative to the impact of d’ on RT (F). Thus, the main Cx model overall produces much closer fit to

the data. Note that in the empirical data, there were only two levels of task difficulty; these correspond to the first and last data point in each linear curve in this plot. The

second data point in each curve corresponds to the mean d’ across difficulty levels in the Low PE condition, which was used for model fitting purposes (see Methods for

details).

https://doi.org/10.1371/journal.pcbi.1008779.g004
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By contrast, at levels of αlow PE and αhigh PE that yield a reasonably close fit to the effect of

PE level on confidence, the alternative Cδ model fares considerably worse in its predictions for

meta-d’ and RT. It incorrectly predicts that meta-d’ should be higher in the High PE condition

(PE effect on meta-d’ = -0.029 in the data; 0.248, 0.181, and 0.114 in the model for αlow PE =

0.1, 0.3, and 0.5 respectively), and vastly overestimates the effect of PE level on RT (ηRT = 0.044

in the data; 2.010, 1.539, 0.980 in the model for αlow PE = 0.1, 0.3, and 0.5 respectively). By the

same logic described above, these model predictions correspond to predicted RT effects due to

PE level in the Cδ model of 60.3, 46.2, and 29.4 ms for αlow PE = 0.1, 0.3, and 0.5 respectively.

This means the magnitude of the incorrect prediction by the Cδ model for the effect of PE level

on RT ranges from 28 to 59 ms—errors 6–10 times larger than those of the Cx model. Such

large effect sizes are also statistically incompatible with observing an effect close to zero in a

reasonably powered sample (Koizumi et al’s data set consisted of 480 trials). Side-by-side com-

parisons of the fitting errors for the Cx and Cδ models at the values of αhigh PE yielding the best

fit the effect of PE level on mean confidence are shown in Fig 3D, 3H and 3L.

To further illustrate model behavior, in Fig 4 we show fits to the mean confidence, meta-d’,

and RT data for the full PE level (High / Low) x task difficulty (Difficult / Easy) design, sepa-

rately for the Cx and Cδ models. Displayed fits are derived from simulations using αlow PE = 0.1

(the only level of αlow PE for which the alternative Cδ model could capture the effect of PE level

on confidence within the explored range of αhigh PE levels) and αhigh PE = 0.2548 (Cx model) or

αhigh PE = 0.8928 (Cδ model), with these αhigh PE values chosen so as to best fit the effect of PE

level on mean confidence (corresponding to black circles in Fig 3). Echoing the more general

results of Fig 3, the results of Fig 4 demonstrate how although both models can achieve good

fits to the effect of PE level on performance-matched confidence, the Cx model is considerably

more accurate in its corresponding predictions for meta-d’ and RT. As a reminder, these dif-

ferences between the Cx and Cδ models regarding the effect of PE level on meta-d’ and RT

stem from the differences between these models in fitted stimulus drive Shigh PE and Shigh NE

(controlled by αhigh PE via the equation Shigh NE = αhigh PE
� Shigh PE) needed to account for the

main d’ and confidence effects.

In summary, these simulations demonstrate that across a comprehensive range of PE and

NE levels, the Cx model provides the best overall account of the data, achieving a fit to the

effect of PE level on confidence that also yields an accurate fit to the effect of PE level on meta-

d’, and a reasonable fit to the effect of PE level on RT. Furthermore, these fits are accomplished

with reasonably small differences in PE levels (i.e. with αhigh PE reasonably close to αlow PE). By

contrast, although the Cδ model can also achieve a close fit to the effect of PE level on confi-

dence, its corresponding fits to the effect of PE level on meta-d’ and especially RT are poor,

and furthermore this fit can only be achieved by positing an implausibly large difference in PE

level.

3.3 Simulating data from Koizumi, Maniscalco, & Lau 2015 [10]

Experiment 2B

In their Experiment 2B, Koizumi et al [10] used an alternative method to that used in Experi-

ment 1A to achieve performance-matched differences in confidence. Stimuli consisted of ran-

dom dot kinematograms with a fraction of the dots moving coherently to the left or right on

each trial. Subjects had to indicate motion direction and then rate confidence on a 4-point

scale. “Positive Evidence” (PE) was defined as the number of coherently moving dots, with this

quantity depending on both the fraction of coherently moving dots and dot density; the

remaining, randomly moving dots constituted sensory noise.
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It is important to note a disanalogy between the structure of Experiments 1A and 2B of Koi-

zumi et al. In Experiment 1A, stimuli consisted of the superposition of Positive Evidence (a

high contrast grating tilting left or right), Negative Evidence (a lower contrast grating tilted in

the opposite direction), and noise (randomly chosen fluctuations for pixel intensities). The PE

component provided perceptual evidence for the correct perceptual choice, the NE component

provided perceptual evidence for the incorrect perceptual choice, and noise systematically

favored neither choice. By contrast, in Experiment 2B, stimuli consisted only of PE (coherent

leftward or rightward motion) and noise (random motion). The analogue of NE in this task

would be weaker coherent motion in the direction opposite to the PE motion, but no such

opposite coherent motion was present in these stimuli. (To preempt a possible confusion, we

note that Koizumi et al. used the term “NE” to refer to the randomly moving dots in Experi-

ment 2B; here we have decided to abandon this usage in favor of reserving the term “NE” spe-

cifically for systematic perceptual evidence for the incorrect perceptual choice.)

The key experimental manipulation in Experiment 2B was the introduction of High PE and

Low PE conditions; the fraction of coherently moving dots was equal across conditions, but

dot density was twice as high in the High PE condition, thus yielding a higher absolute number

of coherently moving dots. Additionally, there were two levels of task difficulty at each level of

PE, thus giving rise to four experimental conditions in all: “High PE, Easy,” High PE, Diffi-

cult,” “Low PE, Easy,” and Low PE, Difficult.” Koizumi et al [10] found that the High PE and

Low PE conditions yielded similar task performance (d’), but mean confidence was higher for

High PE stimuli (Fig 4A of [10]).

As with the previous data sets, we predicted that the dissociation between d’ and confidence

in this experiment would be better captured by the main Cx model than the alternative Cδ

model, and tested this prediction by comparing model fits to the data. However, unlike the

experimental results discussed above (Koizumi et al.’s [10] Experiment 1A), in this case the

effect of performance-matched confidence was not driven by PE / NE manipulations; coherent

motion always occurred in one direction only (PE), without any simultaneous coherent

motion in the opposite direction (NE). Thus, it was necessary to use an alternative modeling

strategy to the one used to model Koizumi et al.’s [10] Experiment 1A.

In the High PE condition of Experiment 2B, d’ was similar to the Low PE condition due to

having the same fraction of coherently moving dots, whereas confidence was higher due to

having a higher absolute number of coherently moving dots. Thus, we reasoned that these data

could be well modeled by supposing that the High PE condition has both stronger stimulus

drive (more coherently moving dots) and stronger noise (more randomly moving dots); the

increase in both stimulus strength and noise allows for signal-to-noise ratio (and hence d’) to

be similar, even as the same increases in signal and noise lead to higher absolute values of sen-

sory evidence (and hence higher confidence). Indeed, previous work has demonstrated that

increases in signal strength and noise can yield performance-matched increases in confidence

under the assumption of fixed decision criteria [38], an assumption that is supported empiri-

cally in cases where the experimental conditions modeled with lower and higher variance in

sensory evidence are randomly interleaved across trials [17]. We implemented this idea in the

modeling by positing that the parameter controlling standard deviation of instantaneous sen-

sory evidence, σ, would take on a larger value in the High PE condition.

To fit the Cx and Cδ models to the data of Koizumi et al.’s [10] Experiment 2B, we adopted

a similar model fitting approach as described above for their Experiment 1A, as detailed

below.

To attain a comprehensive understanding of model behavior across different levels of sen-

sory evidence variability, we fixed σlow PE = 0.1 in the Low PE condition (the same value for σ
used in all simulations described above) and explored model behavior when using values of
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σhigh PE = 0.11, 0.12, . . ., 0.2 in the High PE condition (i.e. ranging from 10% to 100% increases

in σ). For each pairing of σlow PE and σhigh PE, we fit the model parameters to the average d’ and

meta-d’ values in the Low PE, Easy and Low PE, Difficult conditions and observed how this

influenced the difference in mean confidence between the simulated High PE and Low PE

conditions (Fig 5A).

Simulations results revealed that the main Cx model can capture a wider range of differ-

ences in confidence due to manipulation of σ, which allows it to capture the observed magni-

tude of the (High PE confidence–Low PE confidence) effects using a relatively small

increment in the corresponding σhigh PE (for σlow PE = 0.1, the effect of PE level on confidence

is captured by setting σhigh PE = 0.1087; Fig 5A). By contrast, the alternative Cδ model predicts

only a comparatively small influence of σ on mean confidence, requiring a value of σhigh PE =

0.1679 to account for the confidence (Fig 5A). Thus, to achieve the same effect on perfor-

mance-matched confidence, the Cx model posits only a ~9% increase in sensory noise, whereas

the Cδ model requires a much more substantial ~68% increase in noise.

To provide a more comprehensive characterization of the model fits to the empirical data,

we also compared empirical and simulated data for the differences in reaction time and meta-

d’ induced by the High PE and Low PE conditions. RT and meta-d’ data were not reported in

Koizumi et al. [10]; here we re-analyzed their data set and report the RT and meta-d’ data for

the first time (Fig 6). In the empirical data, meta-d’ increased and RT decreased with increas-

ing d’. Additionally, PE level appeared to have a modest effect on both meta-d’ and RT, with

the high PE condition having slightly lower meta-d’ and faster RT.

Simulation results for (High PE meta-d’–Low PE meta-d’) and ηRT are shown in Fig 5B and

5C, respectively. As before, the point of main interest is how these models predict meta-d’ and

RT to behave at the specific values of σhigh PE that yield differences in mean confidence match-

ing those observed in the data. These points are marked by filled circles and vertical dashed

lines in Fig 5. For purposes of comparison to simulated data, we used linear fits to interpolate

the empirical meta-d’ and RT values at d’ = 0.99 (corresponding to the average d’ across the

Low PE, Easy and Low PE, Difficult conditions) and computed the difference in the interpo-

lated values for the High PE and Low PE conditions, yielding empirical values of High PE

meta-d’–Low PE meta-d’ = -0.129 and ηRT = 0.898 (horizontal dashed lines in Fig 5).

At the level of σhigh PE that yields a perfect fit to the effect of PE level on confidence (black

circles in Fig 5A), the main Cx model incorrectly predicts that meta-d’ should be higher under

High PE, although the magnitude of this incorrect prediction is modest (PE effect on meta-d’

= -0.129 in the data; 0.095 in the model). Conversely, the Cx model correctly predicts that RT

should be faster under High PE than Low PE, and the predicted magnitude of this effect is

comparable to the empirically observed effect (ηRT = 0.898 in the data; 1.252 in the model).

In the empirical data (RTlow PE, easy—RTlow PE, difficult)� 10 ms, which can be used as

a reference point for what the empirical and modeled ηRT effects translate to in terms of

(RThigh PE, med—RTlow PE, med). In the empirical data, ηRT = 0.898 corresponds to an effect of

PE on RT of approximately 0.898�10 ms = 8.98 ms, whereas the equivalent RT effect in the

model would be 12.52 ms. Thus, the error in the the Cx model’s prediction for the effect of PE

level on RT amounts to about 3.5 ms.

By contrast, at the level of σhigh PE that yield a perfect fit to the effect of PE level on confi-

dence, the alternative Cδ model fares considerably worse in its predictions for both meta-d’

and RT. Like the Cx model, the Cδ model incorrectly predicts that meta-d’ should be higher in

the High PE condition, but the magnitude of this incorrect prediction is 5 times as large as in

the Cx model (PE effect on meta-d’ = -0.129 in the data; 0.518 in the model); indeed, the pre-

dicted meta-d’ in the High PE condition is considerably higher than d’, which violates a theo-

retically expected, and commonly empirically observed, constraint such that meta-d’� d’ [29].
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Similarly, the Cδ model vastly overestimates the effect of PE level on RT (ηRT = 0.898 in the

data; 5.530 in the model). By the same logic described above, this ηRT value corresponds to a

predicted effect of PE level on RT of 55.3 ms. Thus, the magnitude of the incorrect prediction

by the Cδ model for the effect of PE level on RT is about 45 ms—an error over 10 times larger

than that of the Cx model (3.5 ms). Side-by-side comparisons of the fitting errors for the Cx

and Cδ models at the values of σhigh PE yielding the best fit the effect of PE level on mean confi-

dence are shown in Fig 5D.

To further illustrate model behavior, in Fig 6 we show fits to the mean confidence, meta-d’,

and RT data for the full PE level (High / Low) x task difficulty (Difficult / Easy) design, sepa-

rately for the Cx and Cδ models. Displayed fits are derived from simulations using σlow PE = 0.1

and σhigh PE = 0.1087 (Cx model) or σhigh PE = 0.1679 (Cδ model), with these σhigh PE values cho-

sen so as to best fit the effect of PE level on mean confidence (corresponding to black circles in

Fig 5). Echoing the more general results of Fig 5, the results of Fig 6 demonstrate how although

both models can achieve good fits to the effect of PE level on performance-matched

Fig 5. Comprehensive simulations showing fitting procedures for the main Cx model and alternative Cδ model for

Koizumi et al.’s [10] Experiment 2B. As in the analysis of Koizumi et al.’s Experiment 1A in Fig 3, we examined

performance-matched confidence differences, performance-matched meta-d’ differences, and relative RT effect sizes as a

function of PE level. (A) For each of the Cx and Cδ models, we determined the level of sensory evidence noise in the High PE

(σhigh PE) condition that best matched the observed magnitude of confidence differences in the empirical data (dashed

horizontal line), marked with black circles. We then “read out” the predicted meta-d’ differences (B) and relative RT effect

sizes (C). (D) We also computed fitting error for each model as the difference between the simulated and empirical confidence

differences, meta-d’ differences, and relative RT effects (D). As with Experiment 1A, the Cx model produced a good fit to the

empirical data across the entire spectrum of measures considered, whereas the alternative Cδ model produced substantial

errors for predicted meta-d’ and RT when made to match the empirically-observed confidence differences.

https://doi.org/10.1371/journal.pcbi.1008779.g005
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confidence, the main Cx model is considerably more accurate in its corresponding predictions

for meta-d’ and RT. Here, as above, differences in meta-d’ and RT between the Cx and Cδ

models result from differences in fitted stimulus drive SPE for each model, which was needed

to account for the main d’ and confidence effects.

In summary, these simulations demonstrate that across a comprehensive range of σ levels,

the main Cx model provides the best overall account of the data, achieving a fit to the effect of

PE level on confidence that also yields a reasonably close fit to the effect of PE level on meta-d’

(albeit one that goes in the wrong direction), as well as a close fit to the effect of PE level on

RT. Furthermore, these fits are accomplished with a small (~9%), and therefore plausible,

increase in σ. By contrast, although the alternative Cδ model can also achieve a close fit to the

effect of PE level on confidence, its corresponding fits to the effect of PE level on meta-d’ and

Fig 6. Modeling results for the effects reported by Koizumi and colleagues [10] in their Experiment 2B with parameter values chosen to best capture the effect of PE

level on mean confidence (corresponding to the data points shown in black circles in Fig 5). As for their Experiment 1A, the fitted main Cx model reproduces the

differential confidence for matched d’ performance for high versus low PE stimuli (A) and the relatively overlapping distributions of meta-d’ as a function of d’ (B),

although somewhat less well than for experiment 1. However, in contrast to Experiment 1A the main Cx model now correctly predicts the relationship between RT

differences a s function of d’ and PE (C) much better than for Experiment 1A. In contrast, while the alternative Cδ model can reproduce the differential confidence as a

function of density level given matched d’ (D), it again badly fails to capture the overlapping relationship between d’ and meta-d’ (E)–this time predicting an implausibly

high meta-d’ value. The alternative Cδ model also again predicts overly large RT differences as a function of density level, while predicting almost zero impact of d’ on RT

(F). Thus, as with Experiment 1A, the main Cx model overall produces much closer fit to the data. Note that in the empirical data, there were only two levels of task

difficulty; these correspond to the first and last data point in each linear curve in this plot. The second data point in each curve corresponds to the mean d’ across difficulty

levels in the Low PE condition, which was used for model fitting purposes (see Methods for details).

https://doi.org/10.1371/journal.pcbi.1008779.g006
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RT are both very poor, and its prediction for meta-d’ in the High PE condition is implausibly

high. Furthermore, the fit to the confidence effect can only be achieved by positing a relatively

large increase (~68%) in σ.

4. Discussion

How the brain calculates subjective decision confidence is still a topic of active debate [1,2,39–

43]. Although dominant models suggest that confidence reflects an optimal readout of the

probability that a decision is correct [1–9], it appears challenging for such models to account

for counterintuitive behaviors in which confidence and accuracy dissociate

[10,11,13,14,16,17,44]. An alternative hypothesis suggesting that confidence reflects a heuristic

reliance on decision-congruent evidence [10,14,16,18,21] captures many of these behaviors,

and is supported by human intracranial electrophysiology [23].

Here, we considered how decision-congruent computations of perceptual confidence

might be biologically implemented based on known properties of perceptual circuitry. We

hypothesized that tuned inhibition (a generalization of the concept of tuned normalization)

[24–26] differentially influences a neuron’s role in perceptual decision-making and confi-

dence, such that more inhibited units (corresponding to the net evidence for a perceptual

choice) drive decisions and less inhibited units (corresponding to decision-congruent evi-

dence) drive confidence. We developed the Differential Tuned Inhibition model to test this

hypothesis. Our results show that such a network can explain counterintuitive behaviors

reported in the literature [4,10,12–14,16–18,44,45]. We further demonstrate that the model’s

special property of weighting less inhibited units more heavily in computing confidence is the

key to capturing empirical findings, since control simulations demonstrate that the model fails

to reproduce these findings when instead more inhibited units drive confidence. This provides

preliminary but converging evidence that decision-congruent confidence computations may

be implemented via tuned inhibition.

It might be argued that some over-simplified optimal diffusion-type models [6,7,9] should

not be expected to account for counterintuitive behaviors due to their simplicity. A recent

modification of these optimal diffusion-type models suggests that the optimal perceptual con-

fidence readout must also depend on the time it took for evidence to accumulate [3–5].

Although it has been suggested that neurons in lateral intraparietal cortex (LIP) may encode

elapsed time [46–48], these neurons’ activity has not yet been causally or directly linked to sub-

jective confidence (see also [49]). This suggests that how this time-dependent diffusion frame-

work might be biologically implemented is nontrivial, inspiring the work presented here.

We employed a two-stage evidence accumulation model [9] in which, after the initial per-

ceptual decision is triggered by accumulated evidence surpassing the decision threshold, accu-

mulation continues for τ additional time steps. As τ increases, confidence ratings become

more diagnostic of task accuracy, and thus meta-d’ increases (S1C and S1D Fig). This model

structure thus has the considerable benefit of naturally lending itself to fitting meta-d’, which

(in our experience) sometimes proves a difficult task for dynamic evidence accumulation

models.

We adopted a simple but powerful approach for model fitting and model comparison. After

fixing sensory noise σ and decision threshold T to a priori values, stimulus drive S could be

chosen to exactly match all empirical d’ values, and (given the fitted value of τ), confidence

thresholds Ur could be chosen to exactly match overall empirical distributions of confidence

ratings (i.e. P(conf = i) where 1� i� 4 for a 4-point rating scale). Against this backdrop

(which already perfectly captures much of the data), our general strategy was to fit τ to the

meta-d’ value at a single data point and, using this fitted value of τ in all other conditions,
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observe what patterns emerged in the confidence data across all other data points as a conse-

quence of the structure of the simulation (i.e., the differing stimulus strengths for the “B” stim-

ulus in the simulations of Maniscalco et al [14]; the differing levels of positive and negative

evidence in the simulations of Koizumi et al [10] Experiment 1A; the differing levels of sensory

evidence noise in the simulations of Koizumi et al [10] Experiment 2B). Our key emphasis was

thus not to derive exact fits for every data point, but rather to assess qualitative patterns in the

fits that emerged from a simple modeling approach and compare how the fits differed for the

main Differential Tuned Inhibition model (i.e. the Cx model) and the alternative Cδ model.

The counterintuitive empirical findings of Maniscalco et al [14], which show that in some

conditions metacognitive sensitivity can decrease in spite of increasing task performance, pro-

vide a strong test for models of perceptual confidence, since such models usually naturally pre-

dict that metacognitive sensitivity and task performance positively correlate (and indeed, such

positive correlations are widely observed in empirical data). We found that simulations of this

data set unambiguously favored the main Cx model over the alternative Cδ model, as only the

former was capable of reproducing the distinctive X-shaped dissociation in response-condi-

tional meta-d’ curves, whereby meta-d’ for “S1” responses decreases and meta-d’ for “S2”

responses increases with increases in d’ (Fig 2).

In the same paper as modeled here, Maniscalco and colleagues [14] also examined the

effects of feedback on metacognitive sensitivity (meta-d’). They found that feedback on task

accuracy and confidence judgments led to the near-disappearance of the X-shaped crossover

effect in response-conditional meta-d’, instead producing results resembling those of the Cδ

model presented here (our Fig 2B, their Fig 7). These observations suggest that decision-con-

gruent evidence biases in perceptual confidence can change fluidly depending on training or

other factors, suggesting promising avenues for future studies testing the Differential Tuned

Inhibition model with paradigms designed to manipulate response-conditional meta-d’. We

note that our model formulation does not explicitly specify whether the confidence readout

mechanism may be innate or learned through the lifetime, and therefore is not committed to

viewing the readout as inflexible or hardwired versus the possibility of accommodating

changes due to learning or other factors. Future research could investigate an expanded ver-

sion of the model in which the confidence readout mechanism, and its potential change as a

function of learning, is explicitly modeled, as well as exploring whether it may rest on innate

versus learned mechanisms.

At first glance, the simulation results for Koizumi et al [10] Experiments 1A and 2B were

more equivocal, since both the Cx and Cδ models could capture the dissociations in these data

whereby some conditions exhibit different levels of mean confidence in spite of having similar

task performance (Figs 4A, 4D, 6A and 6D). However, the alternative Cδ model required

implausible stimulus manipulations many times stronger than those required by the main Cx

model to capture the performance-matched confidence effects. Furthermore, the parameter

settings that allowed the Cδ model to achieve this fit also entailed predicted effects of reaction

time and meta-d’ that were strongly incorrect, with error magnitudes many times as large as

the corresponding predictions for the Cx model (Figs 3–6), including an implausibly large pre-

dicted value for meta-d’ such that meta-d’ > d’ (Fig 6E). By contrast, the Cx model fits to meta-

d’ and RT, while not perfect, were all reasonably close to the empirically observed data—a find-

ing made more impressive by the fact that the model structure and parameter values were not

chosen in any way so as to provide reasonable fits to meta-d’ and RT, but rather these fits natu-

rally “fell out” of the simulation structure intended to match salient features of experimental

design and parameter values intended to fit the d’ and mean confidence data. Thus, on balance,

the results of the Koizumi et al [10] simulations strongly favored the main Cx model.
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Thus, we found that by considering the models’ ability to capture a comprehensive set of

behavioral data—including d’, RT, mean confidence, and meta-d’—we were better able to dis-

tinguish the effectiveness of competing models in capturing those data. We especially wish to

highlight the utility and power of metacognitive sensitivity (as measured here by meta-d’ [29])

as a target for model fitting. In addition to capturing task performance, reaction time, or mean

confidence within an aggregate of trials, any successful model of perceptual confidence should

also be able to account for metacognitive sensitivity—i.e., the trial-by-trial correspondence

between confidence and accuracy. As we have shown here, assessing fit to metacognitive sensi-

tivity data can be an incisive tool for model evaluation and comparison—yet the vast majority

of extant studies on dynamic decision making models of perceptual confidence do not con-

sider patterns of metacognitive sensitivity in the data or how the model can (or cannot)

account for them. The simulations of the Koizumi et al [10] experiments in the present study

are instructive in that the competing models appeared equal in their ability to account for per-

formance-matched confidence, but yet could be distinguished by their relative ability to

account for meta-d’.

Notably, although we only performed model simulations for three sets of experimental

results, the simulation findings apply more broadly to any experiments using similar manipu-

lations. Several other studies have used manipulations of positive and negative evidence to

achieve performance-matched confidence of the sort employed by Koizumi et al [10] Experi-

ment 1A [15,16,45]. The simulations of Koizumi et al [10] Experiment 2B are perhaps even

more broadly informative, insofar as they may shed light on any experimental design that can

be modeled as influencing task performance and confidence by means of altering the variabil-

ity of sensory evidence—including studies employing stimulus manipulations [5] but also

manipulations of attention [13] and direct intervention on neural activity [11,12]. A recent

model with similar flavor to ours proposed a competing accumulator framework in which

both confidence and decision were read out from the same units, but these units were only

partially inhibited [21]; this model captured effects wherein confidence appeared to rely more

on decision-congruent evidence, but decisions on a balance of evidence between decision-con-

gruent and decision-incongruent evidence. However, in that paper the authors did not explore

whether such a model could capture meta-d’—and as we have shown here the summary behav-

iors of d’ and confidence can be explained by an alternative model in which the same units

drive decisions and confidence but, critically, meta-d’ could not be captured by such a model.

Future work should explore the degree to which strength of feed-forward inhibition might

produce more nuanced behaviors, as our goal with the current model was to provide a proof of

concept that tuned inhibition in sensory circuits can provide a biologically plausible mecha-

nism for implementing decision-congruent confidence computations.

Our results suggest a potential adaptive consequence for the presence of tuned inhibition

[24–26] within a behaving organism: the presence of both more and less inhibited neurons

within a perceptual decision-making circuit may allow an organism to better solve both fine-

grained discrimination and detection tasks. When making fine-grained discrimination or

identification judgments about an object or stimulus (“What is that thing?”), a useful strategy

would be to rely on a system that is not as sensitive to random fluctuations, i.e. a more strongly

inhibited system. But when making detection decisions (“Is there something out there?”), such

strong inhibition would be highly undesirable, so a useful strategy would be to rely on less

inhibited parts of the network. Both of these tasks are important for an organism to execute,

and so it seems beneficial that a system might retain elements that can preferentially contribute

to each task rather than implementing only one.

The question then becomes why the system would recruit the ‘detection’ portions of its cir-

cuitry to compute confidence, specifically relying on the magnitude of decision-congruent
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evidence. One reason may simply be heuristic, that the detectability and identifiability of a

stimulus are often correlated in the real world; although in laboratory conditions these can cer-

tainly be dissociated, in real-world conditions they often go hand in hand. Indeed, it has been

noted that the width of the posterior distribution in a probabilistic population code [42,50]

covaries with the overall firing rate of a population [51]; less inhibited ‘detection’ neurons

would more readily affect a population’s overall firing rate, suggesting a potential neural sub-

strate for this heuristic. Perhaps due to this strong statistical coincidence in naturalistic envi-

ronments, the system did not need to evolve away from such a heuristic, which also

conveniently minimizes the need to retain information about unchosen stimulus identity pos-

sibilities once a perceptual inference has been made [23] and therefore might be computation-

ally efficient. Indeed, such over-reliance on decision-congruent evidence—i.e., a

“confirmation bias” [52]—has also been observed in other post-decisional (non-metacogni-

tive) perceptual judgments [19,20], value judgments [53–58], and metamemory [59,60], sug-

gesting it may be a domain-general strategy that serves also to reduce cognitive dissonance and

improve self-consistency.

Using the absolute strength of decision-congruent evidence to judge confidence could also

indicate that a confidence judgment attempts to infer the possible cause of the signals that led

to the perceptual inference as externally- or internally-generated [61–63]: Are these signals

strong enough to indicate an external stimulus, or are they likely to simply reflect internal

noise fluctuations? A mechanism that keeps track of the absolute amount of evidence, regard-

less of the balance, would be critical to successfully solving such a causal inference problem by

allowing the system to differentiate between strong versus weak signals even when the signals

themselves are equally ambiguous (i.e., equally favor one versus another possible stimulus

identity). And finally, that ‘detection’ circuitry might contribute to metacognitive judgments is

also supported by reports of neurons coding for the detectability (or lack thereof) of a stimulus

in prefrontal cortex [64], an area known to be involved in metacognitive computations

(including judgments of ‘visibility, i.e. awareness) in perception and memory [39,65–75].

Because the above results are suggestive in nature, confirmation that tuned inhibition is uti-

lized in perceptual decisions versus confidence judgments as hypothesized here will critically

depend on experiments designed to reveal the biological mechanism in awake, behaving ani-

mals. As an initial exploratory test, however, we capitalized on an existing dataset consisting of

electrophysiological recordings in Rhesus macaque superior colliculus, a subcortical area

involved in perceptual decision-making [76–79] and containing the type of evidence accumu-

lation neurons typically assumed to be involved in perceptual decision-making

[3,6,7,9,35,40,80] (S4 Text); previously, tuned inhibition (tuned normalization) has only been

reported in areas not involved in evidence accumulation [24–26]. Using catch trials from those

data, we see preliminary support for one of our model’s critical predictions: that evidence

accumulation neurons in perceptual decision-making areas ought also to exhibit tuned inhibi-

tion. Additional detail is provided in S4 Text and S8 Fig. Future work should extend these pre-

liminary analyses and design specific experiments to test and arbitrate among our model and

competing models of perceptual confidence [3–9].

Here we demonstrated that inhibition tuning provides a biologically plausible mechanism

for implementing confidence computations that demonstrate an over-reliance on decision-

congruent information. Our findings lead to testable hypotheses about the role of tuned inhi-

bition in a neuron’s contribution to a decision versus a confidence judgment: activity of more

inhibited units should reflect an observer’s objective decisions more than confidence judg-

ments, while the opposite should be true for less inhibited neurons. Future electrophysiological

studies should further explore the extent to which this hypothesis can be verified in the neuro-

biology of perceptual decision-making circuitry. It has also been reported that tuned inhibition
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is spatially ‘clumped’, i.e. that nearby neurons have more similar inhibition profiles than neu-

rons separated by longer distances [25]. The present findings thus pave the way for noninva-

sive neuroscience techniques, such as spatially coarser functional MRI in humans, to clarify

the role of inhibition tuning in perceptual and cognitive decisions and metacognitive evalua-

tions of these choices.
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