Skip to main content
Log in

A guide to building image-centric databases

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

There is a paucity of image-centric neuroinformatics infrastructure within the individual investigator’s laboratory despite the obvious need for automation and integration of experimental results. Yet, solutions can often be readily built using off-the-shelf databases and associated tools. Doing so simplifies day-to-day research operation and increases throughput. Proper construction of in-house solutions may also expedite community-wide integration of private and public data repositories. Here we describe neuroinformatics approaches at different levels of functionality, required expertise, and size of image datasets. The simplest approach offers ease of image browsing and rudimentary searching. More sophisticated systems provide powerful search capabilities, a means of tracking analysis, and even automated serial processing pipelines. In this practicum, we provide guidance in selecting among the different options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderle, P., Duval, M., Draghici, S., et al. (2003) Gene expression databases and data mining. Biotechniques Suppl, 36–44.

    Google Scholar 

  • Baldock, R. A., Bard, J. B. L., Burger, A., et al. (2003) EMAP and EMAGE: A framework for understanding spatially organized data. Neuroinformatics 1, 309–326.

    Article  Google Scholar 

  • Boeckmann, B., Bairoch, A., Apweiler, R., et al. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370.

    Article  CAS  Google Scholar 

  • Boguski, M. S., Lowe, T. M., and Tolstoshev, C. M. (1993) dbEST—Database for ‘Expressed Sequence Tags’. Nature Genetics 4, 332–333.

    Article  CAS  Google Scholar 

  • Bowden, D. M. and Dubach, M. F. (2003) NeuroNames 2002. Neuroinformatics 1, 43–59.

    Article  Google Scholar 

  • Brazma, A., Hingamp, P., Quackenbush, J., et al. (2001) Minimum Information About a Microarray Experiment (MIAME)—Toward standards for microarray data. Nature Genetics 29, 365–371.

    Article  CAS  Google Scholar 

  • Consortium, T. G. O. (2000) Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29.

    Article  Google Scholar 

  • Falquet, L., Pagni, M., Bucher, P., et al. (2002) The PROSITE database, its status in 2002. Nucleic Acids Res. 30, 235–238.

    Article  CAS  Google Scholar 

  • Fissell, K., Tseytlin, E., Cunningham, D., et al. (2003) Fiswidgets: A graphical computing environment for neuroimaging analysis. Neuroinformatics 1, 111–126.

    Article  Google Scholar 

  • Gibas, C. and Jambeck, P. (2001) Developing Bioinformatics Computer Skills, O’Reilly & Associates, Sebastopol, CA.

    Google Scholar 

  • Hernandez M. J. (2003) Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Kanehisa, M. (1996) Toward pathway engineering: a new database of genetic and molecular pathways. Science & Technology Japan 59, 34–38.

    Google Scholar 

  • Karp, P. D., Riley, M., Paley, S., and Pellegrini-Toole, A. (2002) The MetaCyc database. Nucleic Acids Res. 30, 59–62.

    Article  CAS  Google Scholar 

  • Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Paley, S., and A. Pellegrini-Toole (2002) The Ecocyc database. Nucleic Acids Res. 30, 56–59.

    Article  CAS  Google Scholar 

  • Lacroix, Z. and Critchlow, T. (2003) Bioinformatics: Managing Scientific Data, Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  • MacKenzie-Graham, A., Jones, E.S., Shattuck, D.W., Dinov, I., Bota, M., and Toga A. W. (2003) The informatics of a C57BL/6 mouse brain atlas. Neuroinformatics 1, 397–410

    Article  Google Scholar 

  • Martone, M. E., Zhang, S., Gupta, A., et al. (2003) The cell-centered database: a database for multiscale structural and protein localization data from light and electron microscopy. Neuroinformatics 1, 379–396

    Article  Google Scholar 

  • Nomenclature Committee of the International Union of Biochemistry and Molecular Biology and (NC-IUBMB) (1992) Enzyme Nomenclature, Academic Press, San Diego, California.

    Google Scholar 

  • Nomenclature Committee of the International Union of Biochemistry and Molecular Biology and (NC-IUBMB) (1999) Enzyme supplement 5. Eur. J. Biochem. 264, 610–650.

    Article  Google Scholar 

  • Rosen, G. D., La Porte, N. T., Diechtiareff, B., et al. (2003) Informatics center for mouse genomics: the dissection of complex traits of the nervous system. Neuroinformatics 1, 327–342.

    Article  Google Scholar 

  • Stoeckert, C. J., Jr., Causton, H.C., and Ball, C. A. (2001) Microarray databases: standards and ontologies. Nature Genetics 32, 469–473.

    Article  Google Scholar 

  • Wain, H. M., Lovering, R. C., Bruford, E. A., Lush M. J., Wright, M. W., and Povey, S. (2002) Guidelines for human gene nomenclature. Genomics 79, 464–470.

    Article  CAS  Google Scholar 

  • Wheeler, D. L., Chappey, C., Lash, A. E., et al. (2000) Database resources of the national center for biotechnology information. Nucleic Acids Res. 28, 10–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Nissanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bug, W., Nissanov, J. A guide to building image-centric databases. Neuroinform 1, 359–377 (2003). https://doi.org/10.1385/NI:1:4:359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:1:4:359

Index Entries

Navigation