Skip to main content
Log in

Informatics approaches to functional MRI odor mapping of the rodent olfactory bulb

OdorMapBuilder and OdorMapDB

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The present study applies informatics tools to aid and extend fMRI analysis of the coding mechanism of neural signals in the rodent olfactory system. Odor stimulation evokes unique spatial patterns of activity in the glomerular layer of the mammalian olfactory bulb (OB). An open-source software program, OdorMapBuilder, has been developed to process the high resolution anatomical and functional MRI images of the OB and to generate single two-dimensional flat maps, called odor maps, that describe the spatial activity patterns in the entire glomerular layer. Odor maps help identify the spatial activity patterns from the tremendous amount of fMRI data and they serve as ideal representation of space coding for the olfactory signals in the OB in response to a given odor stimulation. Based on the fMRI technology, OdorMapBuilder provides comparable odor maps on the intra-subject basis, a significant step towards the detailed analyses of the effects of odor types and/or concentrations. In addition, a new database, OdorMapDB, is developed to provide a repository for the generated odor maps. Web interfaces to the database are provided for the data entry, modification and retrieval. OdorMapDB is based on the EAV/CR (entity-attribute-value with classes and relationships) architecture and it is integrated with two other SenseLab olfactory databases: the olfactory receptor and odor databases. Both OdorMapBuilder and OdorMapDB should serve as useful tools and resources for the field and help facilitate experimental research in understanding the olfactory system and the mechanism for smell perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, E. D. (1950) Sensory discrimination, with some recent evidence from the olfactory organ. Br. Med. Bull. 6, 330–333.

    PubMed  CAS  Google Scholar 

  • Chicurel, M. (2000) Databasing the brain. Nature 406, 822–825.

    Article  PubMed  CAS  Google Scholar 

  • Fissell, K., Tseytlin, E., Cunningham, D., et al. (2003) Fiswidgets: A graphical computing environment for neuroimaging analysis. Neuroinformatics 1, 111–126.

    Article  PubMed  Google Scholar 

  • Guthrie, K. M., Anderson, A. J., Leon, M., and Gall, C. (1993) Odor-induced increases in c-fos mRNA expression reveal an anatomical “unit” for odor processing in olfactory bulb. Proc. Natl. Acad. Sci. USA 90, 3329–3333.

    Article  PubMed  CAS  Google Scholar 

  • Huerta, M. F., Koslow, S. H., and Leshner, A. I. (1993) The Human Brain Project: an international resource. Trends Neurosci. 16, 436–438.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. B. (1996) Generic data modeling for clinical repositories. J. Am. Med. Inform. Assoc. 3, 328–339.

    PubMed  CAS  Google Scholar 

  • Johnson, B.A., Woo, C.C., Hingco, E.E., Pham, K.L., and Leon, M. (1999) Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb. J. Comp. Neurol. 409, 529–548.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B.A. and Leon, M. (2000) Modular representations of odorants in the glomerular layer of the rat olfactory bulb. J. Comp. Neurol. 422, 496–509.

    Article  PubMed  CAS  Google Scholar 

  • Liu, N., Cigola, E., Tinti, C., et al. (1999) Unique regulation of immediate early gene and tyrosine hydroxylase expression in the odor-deprived mouse olfactory bulb. J. Biol. Chem. 274, 3042–3047.

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts, P., Wang, F., Dulac, C., et al. (1996) Visualizing an olfactory sensory map. Cell 87, 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Nadkarni, P., Brandt, C., Frawley, S.M., et al. (1998) Managing attribute-value clinical trials data using the ACT/DB client system. J. Am. Med. Inform. Assoc. 5, 139–151.

    PubMed  CAS  Google Scholar 

  • Nadkarni, P., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., and Miller, P. (1999) Organization of heterogeneous scientific data using the EAV/CR representation. J. Am. Med. Inform. Assoc. 6, 478–493.

    PubMed  CAS  Google Scholar 

  • Niemeyer, P. and Peck, J. (1997) Exploring JAVA, 2nd ed., O’Reilly & Associates, Sebastopol, CA.

    Google Scholar 

  • Royet, J. P., Sicard, G., Souchier, C., and Jourdan, F. (1987) Specificity of spatial patterns of glomerular activation in the mouse olfactory bulb: computer-assisted image analysis of 2-deoxyglucose autoradiograms. Brain Res. 417, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, B. D. and Katz, L. C. (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Sallaz, M. and Jourdan, F. (1993) C-fos expression and 2-deoxyglucose uptake in the olfactory bulb of odour-stimulated awake rats. Neuroreport 4, 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G. M. (1985) The olfactory system: the uses of neural space for a non-spatial modality. Prog. Clin. Biol. Res. 176, 99–114.

    PubMed  CAS  Google Scholar 

  • Stewart, W. B., Kauer, J. S., and Shepherd, G. M. (1979) Functional organization of rat olfactory bulb analysed by the 2-deoxyglucose method. J. Comp. Neurol. 185, 715–734.

    Article  PubMed  CAS  Google Scholar 

  • Toga, A. W. (2002) Neuroimage databases: the good, the bad and the ugly. Nat. Rev. Neurosci. 3, 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Van Essen, D. C., Lewis, J. W., Drury, H. A., et al. (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res. 41, 1359–1378.

    Article  PubMed  Google Scholar 

  • Wilson, D. A. and Leon, M. (1988) Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats. J. Neurophysiol. 59, 1770–1782.

    PubMed  CAS  Google Scholar 

  • Xu, F., Greer, C. A., and Shepherd, G. M. (2000a) Odor maps in the olfactory bulb. J. Comp. Neurol. 422, 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Xu, F., Kida, I., Hyder, F., and Shulman, R. G. (2000b) Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI. Proc. Natl. Acad. Sci. USA 97, 10601–10606.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Renken, R., Hyder, F., et al. (1998) Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI. Proc. Natl. Acad. Sci. USA 95, 7715–7720.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Xu, F., Marenco, L. et al. Informatics approaches to functional MRI odor mapping of the rodent olfactory bulb. Neuroinform 2, 3–18 (2004). https://doi.org/10.1385/NI:2:1:003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:1:003

Index entries

Navigation