Skip to main content
Log in

Relating fMRI and PET signals to neural activity by means of large-scale neural models

  • Review Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

This article reviews the four ways by which large-scale, neurobiologically realistic modeling can be used in conjunction with functional neuroimaging data, especially that obtained by functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), to help investigators understand the neural bases for sensorimotor and cognitive functions. The conceptually distinct purposes served are: (1) formulating and implementing specific hypotheses about how neuronal populations mediate a task, which will be illustrated using models of visual and auditory object processing; (2) determining how well an experimental design paradigm or analysis method works, which will be illustrated by examining event-related fMRI; (3) investigating the meaning in neural terms of macro-level concepts, which will be illustrated using functional connectivity; and (4) combining different types of macroscopic data with one another, which will be illustrated using transcranial magnetic stimulation (TMS) and PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfors, S. P., Simpson, G. V., Dale, A. M., et al. (1999) Spatiiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. J. Neurophysiol. 82, 2545–2555.

    CAS  Google Scholar 

  • Arbib, M. A., Bischoff, A., Fagg, A. H., and Grafton, S. T. (1995) Synthetic PET: Analyzing large-scale properties of neural networks. Human Brain Mapp. 2, 225–233.

    Article  Google Scholar 

  • Buechel, C., Coull, J. T., and Friston, K. J. (1999) The predictive value of changes in effective connectivity for human learning. Science 283, 1538–1541.

    Article  Google Scholar 

  • Büchel, C., and Friston, K. J. (1997) Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modeling and fMRI. Cereb. Cortex 7, 768–778.

    Article  Google Scholar 

  • Bullmore, E. T., Rabe-Hesketh, S., Morris, R. G., Williams, S. C. R., Gregory, L., Gray, J. A., and Brammer, M. J. (1996) Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4, 16–33.

    Article  CAS  Google Scholar 

  • Dale, A. M., and Buckner, R. L. (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum. Brain Mapp. 5, 329–340.

    Article  Google Scholar 

  • Dale, A. M., and Halgren, E. (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr. Opin. Neurobiol. 11, 202–208.

    Article  CAS  Google Scholar 

  • Fox, P., Ingham, R., George, M. S., et al. (1997) Imaging human intra-cerebral connectivity by PET during TMS. NeuroReport 8, 2787–2791.

    Article  CAS  Google Scholar 

  • Friston, K. J. (1994) Functional and effective connectivity in neuroimaging:a synthesis. Human Brain Mapp. 2, 56–78.

    Article  Google Scholar 

  • Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. J. (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metabol. 13, 5–14.

    CAS  Google Scholar 

  • Friston, K. J., Harrison, L., and Penny, W. (2003) Dynamic causal modelling. Neuroimage 19, 1273–1302.

    Article  CAS  Google Scholar 

  • Funahashi, S., Chafee, M. V., and Goldman-Rakic, P.S. (1993) Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756.

    Article  CAS  Google Scholar 

  • Gevins, A., Smith, M. E., McEvoy, L. K., Leong, H., and Le, J. (1999) Electroencephalographic imaging of higher brain function. Phil. Trans. R. Soc. Lond. B 354, 1125–1133.

    Article  CAS  Google Scholar 

  • Glabus, M. F., Horwitz, B., Holt, J. L., et al. (2003) Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. Cereb. Cortex 13, 1352–1361.

    Article  Google Scholar 

  • Goncalves, M. S., Hall, D. A., Johnsrude, I. S., and Haggard, M. P. (2001) Can meaningful effective connectivities be obtained between auditory cortical regions? Neuroimage 14, 1353–1360.

    Article  CAS  Google Scholar 

  • Grafton, S. T., Sutton, J., Couldwell, W., Lew, M., and Waterm, C. (1994) Network analysis of motor system connectivity in Parkinsons’s Disease: Modulation of thalamocortical interactions after pallidoctomy. Human Brain Mapp. 2, 45–55.

    Article  Google Scholar 

  • Gusnard, D. A., Simpson, J. R., and Raichle, M. E. (2001) Functional differentiation in limbic circuits using complex visual stimuli. J. Cogn. Neurosci. Suppl. (Annual Meeting Prog.) 29.

  • Haxby, J. V., Ungerleider, L. G., Horwitz, B., Rapoport, S. I., and Grady, C. L. (1995) Hemispheric differences in neural systems for face working memory: A PET-rCBF Study. Human Brain Mapp. 3, 68–82.

    Article  Google Scholar 

  • Horwitz, B. (1994) Data analysis paradigms for metabolic-flow data: Combining neural modeling and functional neuroimaging. Human Brain Mapp. 2, 112–122.

    Article  Google Scholar 

  • Horwitz, B. (2003) The elusive concept of brain connectivity. Neuroimage 19, 466–470.

    Article  Google Scholar 

  • Horwitz, B., Friston, K. J., and Taylor, J. G. (2000) Neural modeling and functional brain imaging: an overview. Neural Networks 13, 829–846.

    Article  CAS  Google Scholar 

  • Horwitz, B., Grady, C. L., Haxby, J. V., Ungerleider, L. G., Schapiro, M. B., Mishkin, M., and Rapoport, S. I. (1992) Functional associations among human posterior extrastriate brain regions during object and spatial vision. J. Cogn. Neurosci. 4, 311–322.

    Article  Google Scholar 

  • Horwitz, B., Husain, F. T., Braun, A. R., and Tagamets, M.-A. (2001) Simulating PET/fMRI studies of visual and auditory pattern recognition using biologically realistic large-scale neural models, in: Proceedings of International Joint Conference on Neural Networks 2001, pp. 878–883.

  • Horwitz, B., Long, T. W., and Tagamets, M.-A. (1999a) The neurobiological substrate of PET-fMRI functional connectivity. NeuroImage 9, S392.

  • Horwitz, B., and Poeppel, D. (2002) How can EEG/MEG and fMRI/PET data be combined? Human Brain Mapp. 17, 1–3.

    Article  Google Scholar 

  • Horwitz, B., Rumsey, J. M., and Donohue, B. C. (1998) Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc. Natl. Acad. Sci. USA 95, 8939–8944.

    Article  CAS  Google Scholar 

  • Horwitz, B., and Sporns, O. (1994) Neural modeling and functional neuroimaging. Human Brain Mapp. 1, 269–283.

    Article  Google Scholar 

  • Horwitz, B., and Tagamets, M.-A. (1999) Predicting human functional maps with neural net modeling. Human Brain Mapp. 8, 137–142.

    Article  CAS  Google Scholar 

  • Horwitz, B., Tagamets, M.-A., and McIntosh, A. R. (1999b) Neural modeling, functional brain imaging, and cognition. Trends Cogn. Sci. 3, 91–98.

    Article  Google Scholar 

  • Husain, F. T., Nandipati, G., Braun, A. R., Cohen, L. G., Tagamets, M.-A., and Horwitz, B. (2002) Simulating transcranial magnetic stimulation during PET with a large-scale neural network model of the prefrontal cortex and the visual system. NeuroImage 15, 58–73.

    Article  CAS  Google Scholar 

  • Husain, F. T., Tagamets, M.-A., Fromm, S. J., Braun, A. R., and Horwitz, B. (2004) Relating neuronal dynamics for auditory object processing to neuroimaging activity. NeuroImage 21, 1701–1720.

    Article  CAS  Google Scholar 

  • Kaas, J. H., Hackett, T. A., and Tramo, M. J. (1999) Auditory processing in primate cerebral cortex. Curr. Opinion Neurobiol. 9, 164–170.

    Article  CAS  Google Scholar 

  • Kikuchi-Yorioka, Y., and Sawaguchi, T. (2000) Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nat. Neurosci. 3, 1075–1076.

    Article  CAS  Google Scholar 

  • Lee, L., Harrison, L. M., and Mechelli, A. (2003) A report of the functional connectivity workshop, Dusseldorf 2002. NeuroImage 19, 457–465.

    Article  Google Scholar 

  • McIntosh, A. R., Bookstein, F. L., Haxby, J. V., and Grady, C. L. (1996) Spatial pattern analysis of functional brain images using Partial Least Squares. NeuroImage 3, 143–157.

    Article  CAS  Google Scholar 

  • McIntosh, A. R., and Gonzalez-Lima, F. (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Human Brain Mapp. 2, 2–22.

    Article  Google Scholar 

  • McIntosh, A. R., Grady, C. L., Ungerleider, L. G., Haxby, J. V., Rapoport, S. I., and Horwitz, B. (1994) Network analysis of cortical visual pathways mapped with PET. J. Neurosci. 14, 655–666.

    CAS  Google Scholar 

  • McIntosh, A. R., Rajah, M. N., and Lobaugh, N. J. (1999) Interactions of prefrontal cortex in relation to awareness in sensory learning. Science 284, 1531–1533.

    Article  CAS  Google Scholar 

  • Mottaghy, F. M., Krause, B. J., Kemna, L. J., et al. (2000) Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci. Lett. 280, 167–170.

    Article  CAS  Google Scholar 

  • Paus, T., Jech, R., Thompson, C., Comeau, R., Peters, T., and Evans, A. (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J. Neurosci. 17, 3178–3184.

    CAS  Google Scholar 

  • Paus, T., Jech, R., Thompson, C. J., Comeau, R., Peters, T., and Evans, A. C. (1998) Dose-dependent reduction of cerebral blood flow during rapidrate transcranial magnetic stimulation of the human sensorimotor cortex. J. Neurophysiol. 79, 1102–1107.

    CAS  Google Scholar 

  • Rauschecker, J. P., and Tian, B. (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl. Acad. Sci. USA 97, 11800–11806.

    Article  CAS  Google Scholar 

  • Strother, S. C., Anderson, J. R., Schaper, K. A., Sidtis, J. J., Liow, J.-S., Woods, R. P., and Rottenberg, D. A. (1995) Principal component analysis and the Scaled Subprofile Model compared to intersubject averaging and Statistical Parametric Mapping, I. “Functional connectivity” of the human motor system studied with [15O]water PET. J. Cereb. Blood Flow Metabol. 15, 738–753.

    CAS  Google Scholar 

  • Tagamets, M.-A., and Horwitz, B. (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb. Cortex 8, 310–320.

    Article  CAS  Google Scholar 

  • Ungerleider, L. G., and Mishkin, M. (1982) Two cortical visual systems, in Analysis of Visual Behavior, D. J. Ingle, M. A. Goodale, and Mansfield, R. J. W. eds., pp. MIT Press, Cambridge, pp. 549–586.

    Google Scholar 

  • Vitacco, D., Brandeis, D., Pascual-Marqui, R., and Martin, E. (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Human Brain Mapp. 17, 4–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwitz, B. Relating fMRI and PET signals to neural activity by means of large-scale neural models. Neuroinform 2, 251–266 (2004). https://doi.org/10.1385/NI:2:2:251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:2:251

Index Entries

Navigation