
Neural query system: data-mining from within the NEURON
simulator

William W. Lytton
Depts. of Physiology, Pharmacology and Neurology, SUNY Downstate Medical Center, Brooklyn,
NY 11203, Dept. of Electrical Engineering, Polytechnic University, Brooklyn, NY 11201, July 1, 2005

Abstract
We have developed a simulation tool within the NEURON simulator to assist in organization,
verification and analysis of simulations. This tool, denominated Neural Query System (NQS),
provides a relational database system, a query function based on the SELECT function of Structured
Query Language (SQL), and data-mining tools. We show how NQS can be used to organize, manage,
verify and visualize parameters for both single cell and network simulations. We demonstrate an
additional use of NQS to organize simulation output and relate outputs to parameters in a network
model. The NQS software package is available at
http://senselab.med.yale.edu/senselab/SimToolDB.

Introduction
Neural simulations are complex and difficult to organize. Large single neuron compartmental
model simulations with active dendrites can require tens of thousands of parameters. Although
the computer power is not yet available to organize these massive single neuron models into
large networks, networks of several thousands of cells can be put together using simpler unit
models, each with their own still-large parameter set. In networks, additional parameters arise
from the perhaps millions of synapses with different weights, time constants, delays and
thresholds. These massive parameter sets pose problems of parameter organization and
verification.

Simulation is an experimental endeavor that produces large amounts of data that has to be
organized, analyzed and correlated with associated parameter sets. In addition to being a
producer of simulation data, neural simulation is also a consumer of experimental data. Here
there is a need to compare data sets in order to demonstrate the adequacy of a particular
simulation.

Both on the input side (parameter management) and on the output side (simulation results),
there is a large amount of numerical data which isde facto stored in some sort of data structure,
whether by design or happenstance. With the Neural Query System (NQS), we utilize relational
rectangular tables to store this information. The use of a single tool for both parameters and
data is parsimonious since data visualization tasks are comparable for both, and since these
must be related to one another and to experimental data in the context of a full modeling project.
The use of rectangular tables, inter-table relations, and a query language is a common
framework that is well understood, familiar and easy to use. Where rectangular arrays are not
well suited to a particular neural problems, NQS allows the array to be extended by providing
object pointers. For example, in the case of the dendritic tree (Example 1 below), a row giving
parameter entries for a particular compartment in a compartmental model of the tree can have
a column containing a pointer to that compartment in the simulator’s tree structure.

NIH Public Access
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

Published in final edited form as:
Neuroinformatics. 2006 ; 4(2): 163–176. doi:10.1385/NI:4:2:163.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://senselab.med.yale.edu/senselab/SimToolDB


While parameter sets for simple models can easily be verified with a few print statements, those
for very large models are more difficult to assess. A not-uncommon modeling pitfall is to
complete a series of modeling runs only to look back at the parameter set and discover that
some parameter, left over from a previous modeling effort, was set in a way that is not consistent
with the current project. For this reason it is valuable to be able to assess parameters
interactively, serially and graphically. NQS facilitates directed queries and visualization, the
basic data-mining process, to evaluate parameters. Additionally, NQS makes it easy to store
parameter sets that can then later be explored together with simulation results when looking
for parameter/dynamics correlations.

NQS functionality could of course be offloaded to a standard database program. However,
most database programs are not optimized for numerical processing and do not directly offer
the sophisticated numerical analysis tools available in NEURON. Alternatively, a numerical
analysis programs such as MATLAB could be used. MATLAB offers aDatabase Toolbox that
can be used to interact with a standard database but is not itself a database substitute. Since it
works with a standard database, it uses the basic Structured Query Language (SQL) language
without numerical enhancements. In either of these cases, separate databasing of parameters
would require writing additional code, possibly in a third scripting language, in order to
coordinate fetching and putting and interaction with the simulator. Finally, maintaining on-
line data storage within the simulator will permit more sophisticated applications in the future.
For example, simulation results can be immediately compared to experimental data and
optimization performed using tools such as NEURON’s “multiple run fitter” or other
simulation fitting tools such as are available in the GENESIS simulator (Bower and Beeman
1998).

NQS is compiled into the NEURON simulator as a module. The software is available at
http://senselab.med.yale.edu/senselab/SimToolDB. We illustrate the use of NQS to analyze
existing single neuron simulations (Example 1), to assist in development of network models
(Example 2) and to relate simulation output to parameters (Example 3).

NQS functionality
NQS provides access to a variety of numerical tools that can be used for data-mining. Many
of these are vector (array) manipulation tools built in to NEURON. These vector functions
permit convolution, numerical differentiation and integration, and basic statistics. Additional
data-mining tools have been added on by compiling C-language code that can be directly
applied to the numerical vectors used as columns for a table (see Appendix C). Vector-oriented
C-language code is readily available from a variety of sources (Galassi et al. 2003; Press et
al. 1992). Such code can be compiled into NEURON after adding brief linking headers.

NQS handles basic databasing functionality including: 1. creating tables; 2. inserting, deleting
and altering tuples; 3. data queries. More sophisticated databasing functionality such as
indexing and transaction protection are not yet implemented. Databasing commands in NQS
provide 1. selection of specified data with both numerical and limited string criteria ; 2.
numerical sorting; 3. printing of data-slices by column and row designators; 4. line, bar and
scatter graphs; 5. import and export of data in columnar format; 6. symbolic spreadsheet
functionality; 7. iterators over data subsets or over an entire table; 8. relational selections using
criteria across related tables; 9. mapping of user specified functions onto particular columns.
The important NQS commands are listed in Appendix A.

NQS is not a full database management system since it is meant primarily as single-user system
that does not have to handle problems of data-access control and data security. It also does not
presently have the indexing and hashing capabilities of a full database management system,
though these may be added in the future. NQS provides some spreadsheet functionality.

Lytton Page 2

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://senselab.med.yale.edu/senselab/SimToolDB


However, several features characterize it as a database rather than a spreadsheet system: the
presence of a query language; the ability to handle many thousands of records; data structuring;
handling of non-numeric data; capacity for relational organization across database tables.

Among basic databasing functions, querying is the most complex. A query language, although
often regarded as a database component and thereby denigrated as a data-mining tool, is a
critical aspect of data-mining. SQL, because of its commercial antecedents, is less numerically
oriented than is desirable for scientific query. The NQS select command is designed to focus
on numerical comparisons. Due to the importance of geometric information in neuroscience,
inclusion of geometric criteria will be an additional feature that would be desirable in further
development of NQS.

The NQS select() command is similar to the commands related to the WHERE and HAVING
sub-functions of SQL’s SELECT. NQS syntax naturally differs from that of SQL as it must
follow the syntax of NEURON’s hoc language. An NQS database table is a template in hoc.
A new table is created by having an object pointer that is then made to point to a new instance
of an NQS:

tab1 = new NQS("COLA", "COLB",…).

This would create an empty database table named “tab1” with column names given by the
quoted strings provided. (tab1 is a pointer to an NQS instance.) Neuron uses the C/C++ dot-
notation idiom:e.g., tab1.select(…) does a select command on the contents of table tab1.

Having created the table it is then necessary to fill it with data. This typically requires some
programming in order to either provide the data row-by-row using tab1.append() or column
by column with tab1.setcol(). The data manipulation required for filling tables will be discussed
in the examples below.

The NQS select() command takes any number of arguments in sets. Each set consists of a
column name, a comparative operator such as ‘<’ or ‘==’ (listed in Appendix B) and one or
two arguments depending on the operator. Multiple criteria in a single select() statement are
handled with an implicit AND. A flag can be set to use OR on the clauses. A select() command
that begins with a "!" will return the complement of the selected rows. A command can also
begin with "&& " or "||" to return the union or respectively intersection of the selected rows
with previously selected rows (cf. SQL UNION, INTERSECT, MINUS subcommands).
Relational databasing (inner join) is done using the vector oriented EQW operator which
references values previously selected from a column of the same name in a separate table.
Relational databasing is therefore done serially: first selecting from table #1 and then ANDing
the results with a separate select command on table #2.

Although the NQS select() was not designed to replicate the agglutinative syntax of SQL
SELECT, much of this functionality can be replicated by serial application of NQS’s select(),
sort() and stat() functions.

Unlike SQL’s SELECT, whose selected values are printed by default, the NQS selection simply
stores tuples for further manipulation: typically printing, numerical operations or graphing.
Following a select, the user is by default accessing the selected tuples when calling any
subsequent commands (e.g., print, sort, etc.). The tog command toggles back-and-forth
between accessing the entire table and the most recently selected component. As noted above,
multiple select commands can be used to gradually focus on data subsets. Alternatively,
selected records can be exported as a new separate table for further exploration.

The full package consists of over 50 commands. Major commands are shown in Appendix A.
A complete listing is given in the manual provided with the NQS package.

Lytton Page 3

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Example 1: NQS for compartment cell model analysis
Mapping onto a relational database involves a remapping from the native organization of the
data or of the data collection method into a rectangular form. In the case of a dendritic tree,
mapping onto columns and rows obscures the tree relationship which is then implicit in
columns indicating section parent and branch order. We have used NQS to begin to analyze
some of the models available in the ModelDB database at Yale
(http://senselab.med.yale.edu/senselab/ModelDB; Davison et al. 2004; Hines et al. 2004). This
application domain is similar to the neuroanatomical database tools developed by Ascoli et
al. and to NEURON’s “modelview” tool (Ascoli 2002; Ascoli et al. 2001a,b).

In practice, the creation of the database from morphology and conductance values is almost
fully automated. The program first parses the tree to pick up morphological relationships. On
another pass, it scans each compartment for the presence at any conductances available in that
particular model, using a regular expression which looks for a “g” or “p” followed by a “max”
or “bar.” This picks up names such as gbar_naf or pcamaxT. User intervention is only called
for where a model in ModelDB uses a variant name for a particular maximal conductance value
that is not picked up by the standard regular expression. In the following, the construction of
the databases is described step by step to illustrate the features of NQS.

Column headings are typically defined when creating a database table. NEURON’s handling
of the compartmental model of the dendritic tree is unusual in that it organizes the tree into
unbranched sections which can then be further subdivided into individual segments which are
the compartments of the compartmental model. (The rationale is that spatial discretization,
number of compartments, can be easily changed without altering the section naming that
follows the underlying topology.) Because some attributes of a model neuron belong to the
segment while others belong to the section, it makes sense to create separate section and
segment tables, SC and SG respectively. The tables are initially created with the following
commands, which utilize hoc’s object-oriented syntax to create two new objects, each a table:

SC = new NQS("NAME","PARENT","NCHILD", "NSEG", "ORDER", "CODE")

SG = new NQS("NAME", "X", "Y", "Z", "DIST", "DIAM", "SEG#")

The NAME and PARENT columns will be strings and must be declared as such with a strdec
() command. This declaration allows queries on these columns to utilize regular-expression
and string-match operators. The other columns will all take numerical values. For SC, NCHILD
and NSEG will be used to store the number of child branches and number of segments
respectively; ORDER for branch order and CODE reserved for a code to indicate type of section
(eg soma, axon, proximal dendrite, etc.). For SG, X, Y, Z will give coordinates, DIAM will
give segment diameter and SEG# is the segment counter within a section. Section NAME is
used in both tables and can be used for relational joins.

Now that the tables have been created, they must be populated with data. This can be done
either on a row by row basis, by setting individual columns, or by setting row, column cells
individually. In the present case, NEURON’s forall function is used to go through the dendritic
tree. The NQS append() command will add rows corresponding to individual sections or
segments. In this way, we can fill in all but the ORDER and CODE columns, which will be
set subsequently. For example, the first row for SC might be added with:

SC.append("soma", "NONE",4,1,0,0)

(NAME: soma; PARENT: NONE; NCHILD: 4; NSEG: 1; ORDER: 0; CODE: 0)

The CODE column can then be set by utilizing rules to identify certain compartments by
diameters (e.g., a soma is large and an axon small), by location (e.g., the Y location in an
oriented cell indicates the cortical layer) or by other characteristics (e.g., terminal sections have

Lytton Page 4

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://senselab.med.yale.edu/senselab/ModelDB


no children). The ORDER column can be filled in iteratively by setting ORDER to 0 for the
soma and then determining one or two higher-order child sections and an optional continuation
section at each bifurcation. Note that child section identities are not directly available but can
be found by selecting for a particular section in the PARENT column.

Now that the morphology database is built, we can use the select command to explore the data.
For example, we may wish to select for dendrites at a range of 200–400 microns from the soma
which with diameters of greater than 2 microns and then look at their Y locations.

SG.select("DIST", "()",200,400, "DIAM", ">",2)

SG.pr("NAME", "Y")

If we wanted to know the branch order of the segments which we just selected, we would need
to use the relational property to connect with the SC table.

SC.select("NAME",EQW,SG) // EQW relates prior select command in SG

SC.sort("ORDER")

SC.pr("NAME", "ORDER")

In this example, we also sorted the output by lowest-to-highest ORDER before printing it.
Here, EQW is the relational operator used to pick out NAME’s in SC that were previously
selected in the SG table.

Selected results can be graphed instead of printed, e.g., to graph distance against diameter for
the selected segments:

SC.gr("DIST", "DIAM")

In addition to the models basic morphology, we add information about voltage-sensitive ion
channel densities in the individual segments to our table. The segment table is augmented to
include columns for maximal sodium and delayed rectifier conductances by using the resize
command:

SG.resize("gna bar", "gkdr_bar")

This is done algorithmically to pick up the 5–20 different channel types present in a typical
compartment model. Maximal conductance values from individual compartments are then
retrieved from the underlying model to populate these new columns. This extended SG table
now contains physiological model information (channel conductances) as well as anatomical
model information.

The complex compartmental model contributed to ModelDB by Poirazi et al. (2003a,b)
includes 17 different conductances scattered over 357 compartments, making it difficult to
understand by code perusal. In Fig. 1, all of the conductance densities for this model are
organized graphically by columns, sorted by distance from the soma with the soma at the
bottom. Horizontal width at a given location indicates conductance magnitude compared to its
magnitude elsewhere in the tree. We can see that many of the conductances take on only one
or two values. In the full graphic, color coding is also used to indicate the absolute conductance
density compared with all of the conductances.

Fig. 1 only represents the starting point for exploration of the model, being a graphical rendering
of the database. We could then go through and confirm certain observations by running
statistics – for example, which channels are single-valued, which two-valued and which take
on a range of values. Certain features of interest that jump out can be explored further – for
example, what is special about the compartments that use nahha2/khha2 compared to the
compartments that use nahha old/khha old. In this context, it might be valuable to connect into

Lytton Page 5

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



separate tables containing abbreviated kinetic information for each conductance, e.g.,
activation and inactivation thresholds with time-constants at threshold.

Example 2: Organizing network wiring
Real brain networks feature a bewildering array of neuron types, differing in dendritic shape
and temporal response properties. The densities of each constituent neuron type is variable and
the wiring between populations differs. Not only are there different neuron types, there are also
different connection types with different signs (excitatory and inhibitory synapses) and
different time courses (e.g., GABAA vs. GABAB synapses). Such complexities make it difficult
to design, implement and firm the wiring diagram for a particular network. If we are designing
a hybrid network of realistic and artificial cells, we add further complexity by representing
some of these neurons with detailed multi-compartment models and the rest as simplified
integrate-and-fire neurons.

The wiring of a simple neural network is typically represented by a connectivity matrix which
gives the weight between units. For example, Fig. 2 would be represented by the following
matrix:

Such matrices usually have many zeros, representing cells that are not connected. For this
reason, the connectivity data is more parsimoniously represented as a sparse matrix, storing
row, column, weight information only for non-zero entries:

ROW COL WEIGHT

POST PRE WEIGHT

0 6 −.5

1 3 −.6

2 0 .4

2 1 −.1

2 5 .2

3 0 .5

3 7 −.8

⋮ ⋮ ⋮

As indicated by the alternate column heading above, individual records identify POSTsynatic
and PREsynaptic cells by number.

This sparse matrix is a 3-column connectivity database table. However, neurons are often
connected via two different synaptic weights (AMPA and NMDA for excitatory connects;

Lytton Page 6

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



GABAA and GABAB for inhibitory connects). Therefore we use an additional column to store
a second weight (Chover et al. 2001). We then use a fifth column to define the location of the
connection on the postsynaptic cell.

Connections table

POST PRE WT0 WT1 LOCATION

4 6 .5 .1 PROXIMAL_APICAL

⋮ ⋮ ⋮ ⋮ ⋮

The LOCATION field indicates the postsynaptic target location in terms of dendritic fields.
Alternatively, this could be used to identify a specific dendritic segment or to identify a distance
form the soma.

The Connections table is related via a unique CELL# to a Cells table. This identifying number
is used in the Connections table to identify PRE and POST -synaptic cells. The Cells table
gives cell type and location. Cell locations (here on a two dimensional grid) are used to calculate
distances to set axonal delays.

Cells table

CELL# TYPE X Y

⋮ ⋮ ⋮ ⋮

4 Layer_5_Pyramid 30 20

5 Basket_Cell 40 30

6 Thalamocortical_Cell 30 30

⋮ ⋮ ⋮ ⋮

The Cells table can then be related to a Neurotransmitter table using the shared TYPE
identifier. This permits identification of the presynaptic neurotransmitter which determines the
receptor model that must be utilized in the postsynaptic cell.

Neurotransmitters table

TYPE IDWT0 IDWT1

Layer_5_Pyramid AMPA NMDA

Basket_Cell GABAA GABAB

⋮ ⋮ ⋮

In this example, the Connections table is joined to the Cells table to identify the presynaptic
cell type: Cell#6 is identified as of TYPE “Thalamocortical_Cell.” The result from this joint
query is then itself joined with the Neurotransmitters table: this reveals that WT0 represents an
AMPA connection and WT1 represents an NMDA connection. At each step, the relational joins
are done using the EQW operator.

The network database can then be used for both network parameter assignment and network
parameter verification. In practice, it is often easiest to consolidate the Connections and
Cells table in order to have immediate access to cell identities without the more complex syntax
required for the relational join. Script-language procedures map to and from the database and
NEURON’s internal network parameters, making it easy to use the database to set synaptic

Lytton Page 7

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



weights based on cellular relations: types of cells, cell locations, types of transmitters, etc.
These manipulations were used to build the simulation discussed in the next example.

Example 3: Relating simulation output to parameters
We have begun to use NQS to evaluate simulation results in complex network models. We
explored a thalamocortical response based on the model of Bazhenov et al. (1998; available at
http://senselab.med.yale.edu/senselab/ModelDB). The simulation was driven with 8 Hz
stimulation to the thalamocortical cells, simulating the effect of strobe stimulation via the
retina. Hundreds of simulations were run in an automated fashion with different parameter sets.
An NQS table was then built with one set of columns giving values of the parameters being
varied and another set of columns giving scalar measures of the results, including time to first
spike after stimulation, number of spikes within various post-stimulation periods, number of
spikes within half-cycle, peak instantaneous frequency, etc. Each measure was assessed
independently for the thalamocortical and cortical cell population as well as for the lumped
excitatory population and for the entire population (all 4 cell types in the model). We also
assessed different sizes of stimulations and then looked at center field, edge field, and out of
field responses independently.

We used the database to explore the relation of parameters to particular attributes of network
behavior and to compare network patterns to those obtained electrophysiologically. In a sense,
we are opening up the black box of an automated parameter search as would be performed
using an optimization routine. By substituting human exploration for the rigidity of a fitness
function, we can come across potentially revealing relationships that would be missed by a
fully automated procedure. This exploration can then provide clues for developing a fitness
function for further automated exploration.

The spr() command was used to combine response measures in order to calculate an overall
oscillation strength score. The object pointers available in NQS were used to provide pointers
to raster plots that gave a quick visual image of overall activity in the network. A lumped score
that was being evaluated was then quickly assessed by visual inspection of the graphics
associated with rows that gave high scores contrasted with those that gave low scores.

Given suitable measures and scores, we identified parameters that covaried with the measures,
considering whether some combination of parameter alterations might best predict the
alteration in a measure. In cases where altering a parameter resulted in an abrupt change from
low to high oscillation, we reexplored with new simulations to look at the intermediate values.
Note that this is the traditional data-mining process: an interactive process of exploration,
repeatedly drilling down, stepping back and assessing different angles. However, the use of
simulation offers a significant advantage over the usual data-mining setting: new data can be
generated on demand. Manual exploration can also be complemented by formal methods such
as principal component analysis to determine combinations of parameters most strongly affect
a given measure.

Fig. 3 shows a summary figure of one measure of oscillation strength with variation in 3
parameters. Response strength is represented by the size of circles in response to changes in
synaptic strength at corticothalamic (x-axis), retinothalamic (y-axis) and thalamocortical
(diagonal axis) locations. This graph demonstrates that oscillatory response requires a certain
minimum input strength to be expressed (the bottom row shows little response while the middle
and top row show similar responses). The oscillation is relatively insensitive to corticothalamic
strength but is graded with increasing thalamocortical strength. This result was confirmed
across several oscillation measures.

Lytton Page 8

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://senselab.med.yale.edu/senselab/ModelDB


Discussion
NQS provides a general tool for the myriad data-management tasks that are a major part of the
simulation endeavor. Parameter management has been emphasized in the examples given. NQS
can form the substrate for development of stereotyped model representations that could be used
to move a given model from one simulator to another. As compared to the use of a model
metalanguage such as that of Goddard et al. (2001) a database format would be less flexible
but would provide more rapid access and exploration through data-mining tools. In addition
to parameter management, NQS is also a useful tool for management of simulation output and
comparison with experimental data. This would be particularly useful for running large
network simulations with immediate matching to a database of physiological results.

Traditional data flow in current scientific methodology goes from experiment to data storage
to data-mining, with the loop closing as data-mining insights are used to develop hypotheses
that suggest new experiments. In this view, simulation would be considered as just another
data-mining tool. An alternative view would regard realistic simulation as a tool apart since it
alone can provide causal explanation rather than just correlation. From this perspective, NQS
could serve as a central resource for organizing data in an
experiment→simulation→hypothesis→experiment loop.

Acknowledgments
The author wishes to thank Mike Hines and Ted Carnevale for continuing assistance with NEURON; Tom Morse for
suggestions and help with SimToolDB; Richard Adams for reading the manuscript; Mark Stewart and Dan Uhlrich
for use of physiological data; and 3 anonymous reviewers for many helpful comments. This research was sponsored
by NIH (NS045612 and NS032187).

Appendix A: Basic NQS commands

FUNCTION USAGE DESCRIPTION

append append(TUPLE) append tuple

setcol setcol("A",VEC) copy contents of VEC into COL A

apply apply("FUNC", "A", "B",…) apply FUNC to vectors for each COL

cp cp(DB) copy table

delect delect() move values from selected back to main table
(used after manipulating selected tuples)

fill fill("A",x1, "B",x2,…)
fill("A",vec1,…)
fill("A", "Z",…)

fill COLs with corresponding values
copy vec1 to COL A
copy COL Z to COL A

fillin fillin("A",x1, "B",x2,…) fill in-place after select(−1…)
(avoids large data copies)

gr gr("A")
gr(A"A A", A"B A")
gr(…,[OPTIONS])

plot COL A against sequential integers
plot COL A (y) vs. COL B (x)
choose color, line type, superimpose on graph

map map("FUNC", "A", "B",…) call FUNC with vectors for all COLs

pr pr("A", "B",…[,MAX]) print selected COLs through tuple MAX

qt qt(&x1, "A",&x2, "B",…) iterate through tuples setting x1,x2 scalars

rd rd("FILENAME") read table from file

remove remove(TUPLE) remove selected tuple

select select([OPTIONS])
select(−1,[OPTIONS])

see text
select in-place instead of copying tuples
(−1 option avoids large data copies; see fillin)

Lytton Page 9

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FUNCTION USAGE DESCRIPTION

sort sort("COL") sort all tuples using numeric order of COL

spr spr([COMMAND STRING]) see text

stat stat("COL")
stat("COL", "min")

print out mean,min,max,stdev for selected COL
print out min for selected COL

strdec strdec("A","B",…) declare that these COLs contain strings

sv sv("FILENAME") save table or selected tuples to file

tog tog() switch between full table and selected

Appendix B: Selection criteria available for NQS select

NAME SYMBOL action

Numeric

NEG <0 numeric less than 0

POS >0 numeric greater than 0

NOZ !=0 numeric non-zero

GTH > greater than given value

GTE >= greater than or equal to given value

LTH < less than given value

LTE <= less than or equal to given value

EQU == equal to given value

NEQ != not equal to given value

IBE [ ) within closed/open interval

EBI ( ] within open/closed interval

IBI [ ] within closed/closed interval

EBE ( ) within open/open interval

String

SEQ =~ string identity

RXP ~~ regular expression matching

Vector

EQV equal values in two columns

EQW value present in a given vector

Appendix C: Implementation notes
The Neural Query System is written as a module for the NEURON simulation system. Its
implementation consists of two parts. First, interpreted code in NEURON’s hoc language
implements the routines called by the user. Second, compiled C code provides the array
functions needed to allow select() and sort() to execute rapidly. Compiled code also allows
rapid vector-based calculations for data-mining. Further vector-based algorithms written in C
can be easily added. For example, a back-propagation artificial neural network algorithm was
ported from C code and made available as an ANN tool that does not use the neural simulation
engine of NEURON itself (Lytton 2002).

Lytton Page 10

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Each column of the table is represented internally by a vector (array) whose ordered values
represent the numerical values for the associated row in that column. String functionality is
provided by using the vectors to store numeric pointers to a linked list of strings (List object
in NEURON).

After parsing its arguments, the select command calls a C-coded slct command that runs
through all the rows of the columns of interest doing the appropriate comparisons and building
an index vector of rows matching all criteria (AND; matching any criterion for OR). This index
vector is then used to make a separate table of all columns for these selected rows.

Although adequate in speed and size for current purposes, there are areas where the current
implementation falls short. Although NQS databases can be stored and re-read, the data being
used currently is stored in memory rather than on disk. Accessing large databases in this way
requires highly inefficient memory swapping. An improved design would use a variety of
secondary indices to allow rapid access to records on disk and only load them into memory as
needed.

The combination of vector-oriented numerical operations and database functionality is
comparable to MATLAB’s DATABASE TOOLBOX. However, the MATLAB product does not provide
an internal select function but constructs SQL queries which are sent to the connected database.

References
Ascoli G, Krichmar J, Scorcioni R, Nasuto S, Senft S. Computer generation and quantitative

morphometric analysis of virtual neuron. Anatomy & Embryology 2001a;204:283–301. [PubMed:
11720234]

Ascoli G, Krichmar J, Nasuto S, Senft S. Generation, description and storage of dendritic morphology
data. Phil. Trans. R. Soc. Lond. B 2001b;356:1131–1145. [PubMed: 11545695]

Ascoli G. Neuroanatomical algorithms for dendritic modelling. Network-Computation in Neural Systems
2002;13:247–260.

Bazhenov M, Timofeev I, Steriade M, Sejnowski T. Computational models of thalamocortical
augmenting responses. Journal of Neuroscience 1998;18:6444–6465. [PubMed: 9698334]

Bower, J.; Beeman, D. The Book of Genesis. Vol. 2nd ed.. New York: Springer; 1998.
Chover J, Haberly L, Lytton W. Alternating dominance of NMDA and AMPA for learning and recall: a

computer model. Neuroreport 2001;12:2503–2507. [PubMed: 11496138]
Davison A, Morse T, Migliore M, Shepherd G. Semi-automated population of an online database of

neuronal models (ModelDB) with citation information, using PubMed for validation.
Neuroinformatics 2004;2:327–332. [PubMed: 15365194]

Galassi, M.; Davies, J.; Theiler, J.; Gough, B.; Jungman, G.; Booth, M.; Rossi, F. Gnu Scientific Library:
Reference Manual. Vol. 2nd ed.. Cambridge, MA: Network Theory; 2003.

Goddard N, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D. Towards NeuroML: model
description methods for collaborative modelling in neuroscience. Phil. Trans. R. Soc. Lond. B
2001;356:1209–1228. [PubMed: 11545699]

Hines M, Morse T, Migliore M, Carnevale N, Shepherd G. Modeldb: a database to support computational
neuroscience. J Comput Neurosci 2004;17:73–77.

Lytton, W. From Computer to Brain. New York: Springer Verlag; 2002.
Poirazi P, Brannon T, Mel B. Arithmetic of subthreshold synaptic summation in a model ca1 pyramidal

cell. Neuron 2003a;37:977–987. [PubMed: 12670426]
Poirazi P, Brannon T, Mel B. Pyramidal neuron as two-layer neural network. Neuron 2003b;37:989–999.

[PubMed: 12670427]
Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W. Numerial Recipes in C: The Art of Scientific

Programming. Vol. 2nd ed.. Cambridge: Cambridge University Press; 1992.

Lytton Page 11

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Graphical representation of columns showing maximal conductance values for model from
Poirazi et al. (2003a,b)

Lytton Page 12

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Ball and stick representation of a simple neural network

Lytton Page 13

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Oscillation strength with parameter variation in 3 dimensions

Lytton Page 14

Neuroinformatics. Author manuscript; available in PMC 2009 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


