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A Novel Cryptosystem Based on

Gluškov Product of Automata∗†

Pál Dömösi‡ and Géza Horváth§

Abstract

The concept of Gluškov product was introduced by V. M. Gluškov in 1961. It
was intensively studied by several scientists (first of all, by Ferenc Gécseg and
the automata-theory school centred around him in Szeged, Hungary) since
the middle of 60’s. In spite of the large number of excellent publications, no
application of Gluškov-type products of automata in cryptography has arisen
so far. This paper is the first attempt in this direction.
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1 Dedication

This paper is dedicated to the memory of our late colleague, teacher and friend,
Professor Ferenc Gécseg who has been a central figure in modern automata theory.
He established the world famous research school of Szeged University in automata
theory. His death is an irreplaceable loss for the whole research community of
theoretical computer science.

2 Introduction

The connection of certain automata through various communication links leads
to the notion of composition of automata [9]. A substantial body of literature
in this important scientific field has been published by researchers belonging to
the automata-theory school centred around Ferenc Gécseg in Szeged, Hungary [8,
9]. The specific concept of automaton also applied in cryptography, the cellular
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automaton, can also be regarded a special composition of automata, where the
cells functioning as the members of the composition are composed of one and the
same type of elementary automata, and the pattern of the communication links and
connections between these elementary automata is a simple network. Despite the
large number of publications on compositions of automata (authored predominantly
by Hungarian researchers), no cryptographic applications of the results have been
disclosed so far.

Several cryptosystems have been designed on the basis of abstract automata.
Some of them are based on Mealy automata or their generalization (see, for exaple
[1, 14, 20, 21]), some of them are based on cellular automata (see, for example
[12, 13, 16, 23]), while [6] is based on automata without outputs . The best-known
abstract automata based cryptosystems all share the common problem of serious
realization difficulties: some systems are easy to defeat [2, 3, 4, 17, 19, 22], the
technical realization of others result in slow performance [6, 7, 12, 21], and still
others exhibit difficulties in the choice of the key-automaton [5, 16]. These draw-
backs justify the need of novel cryptosystems overcoming these problems. By some
experimental results we will show the security of the proposed system. (Serious
security analysis should be necessary in the future work.) By an example we show
that the technical realization of the novel system is not difficult. Moreover, we give
a method to generate key automata easily.

A Gluškov product of automata [11] is loosely defined as a collection of automata
that each of which changes its state at discrete time steps by a local transition
function of the states and a global input. Moreover, the synchronous action of the
local state transitions defines a global transition on the entire product. Thus a
Gluškov product of automata is also an automaton. Usually it is assumed that the
component automata are connected together according to a directed graph D. The
vertices of D are considered as automata and the edges indicate the existence of
communication links. Thus D has no parallel edges.

An important observation of this paper is that, using the concept of Gluškov
product, we can store certain properties of very large automata such that their
transitions can be computed easily. By this observation, we can built new secure
symmetric block ciphers based on Gluškov product of automata.

3 Preliminaries

We start with some standard concepts and notation. For all notions and notation
not defined here we refer to the monographs [8, 9, 10, 15, 18]. A word (over Σ) is
a finite sequence of elements of some nonempty and finite set Σ. We call the set
Σ an alphabet, the elements of Σ letters. By the free monoid Σ∗ generated by Σ
we mean the set of all words (including the empty word λ) having catenation as
multiplication. We set Σ+ = Σ∗ \ {λ}, where the subsemigroup Σ+ of Σ∗ is said to
be the free semigropu generated by Σ. By an automaton we mean a deterministic
finite automaton without outputs. In more details, an automaton is an algebraic
structure A = (A,Σ, δ) consisting of the nonempty and finite state set A, the
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nonempty and finite input set Σ, and a transition function δ : A × Σ → A. The
elements of the state set are the states, and the elements of the input set are the
input signals. An element of A+ is called a state word 1 and an element of Σ∗

is called an input word. State and input words are also called state strings and
input strings, respectively. If a state string a1a2 · · · as (a1, . . . , as ∈ A) has at least
three elements, the states a2, a3, . . . , as−1 are also called intermediate states. It is
understood that δ is extended to δ∗ : A× Σ∗ → A+ with δ∗(a, λ) = a, δ∗(a, xq) =
δ(a, x)δ∗(δ(a, x), q), a ∈ A, x ∈ Σ, q ∈ Σ∗. In other words, δ∗(a, λ) = a and for
every nonempty input word x1x2 · · ·xs ∈ Σ+ (where x1, x2, . . . , xs ∈ Σ) there are
a1, . . . , as ∈ A with δ(a, x1) = a1, δ(a1, x2) = a2, . . . , δ(as−1, xs) = as such that
δ∗(a, x1 · · ·xs) = a1 · · · as.

In the sequel, we will consider the transition of an automaton in this extended
form and thus we will denote it by the same Greek letter δ. If b is the last letter
of δ(a,w) for some a, b ∈ A,w ∈ Σ∗ then we say that w takes the automaton from
its state a into state b, and we also say that the automaton goes from state a into
state b under the effect of w. The automaton B = (B, Y, δB) with B ⊆ A, Y ⊆ Σ
and δB(a, x) = δ(a, x), a ∈ B, x ∈ Y is a subautomaton of A. In particular, if
B ⊆ A and Y = Σ then B is a state-subautomaton of A. Moreover, if B = A and
Y ⊆ Σ then B is an input-subautomaton of A. The automaton C = (C,ΣC , δC)
is isomorphic to A if there are bijective mappings τ1 : C → A, τ2 : ΣC → Σ with
τ1(δC(c, x)) = δ(τ1(c), τ2(x)), c ∈ C, x ∈ ΣC . If ΣC = Σ and τ2(x) = x, x ∈ Σ
then we say that C is state isomorphic to A. In this case, we also say that A is a
state-isomorphic copy of C and vice versa.2

The transition matrix of an automaton is a matrix with rows corresponding to
each input and columns corresponding to each state; the state δ(a, x) is put at the
entry of any row indicated by an input x ∈ Σ and any column indicated by a state
a ∈ A . If all rows of the transition matrix are permutations of the state set then
we speak about a permutation automaton.

Next we prove the following statement.

Proposition 1. Given a permutation automaton A = (A,Σ, δ), for every pair
b ∈ A, x ∈ Σ, there exists exactly one a ∈ A with δ(a, x) = b.

Proof. Assume that there exists no a ∈ A with δ(a, x) = b. Then the row of of the
transition matrix labeled by x does not contain b. But then A is not a permutation
automaton, a contradiction.

Next we assume that there are a1, a2 ∈ A with a1 6= a2 δ(a1, x) = b and
δ(a2, x) = b. Then the row of of the transition matrix labeled by x contains b two
times, a contradiction again.

Let Ai = (Ai,Σi, δi) be automata where i ∈ {1, . . . , n}, n ≥ 1. Take a fi-
nite nonvoid set Σ and a feedback function ϕi : A1 × · · · × An × Σ → Σi for
every i ∈ {1, . . . , n}. A Gluškov-type product of the automata Ai with respect

1The empty word is not considered as a state word.
2Obviously, then the bijective mapping τ1 : C → A unambigously determines the state isomor-

phism of C onto A.
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to the feedback functions ϕi (i ∈ {1, . . . , n}) is defined to be the automaton
A = A1 × · · · × An(Σ, (ϕ1, . . . , ϕn)) with state set A = A1 × · · · × An, input set
Σ, transition function δ given by δ((a1, . . . , an), x) = (δ1(a1, ϕ1(a1, . . . , an, x)), . . . ,
δn(an, ϕn(a1, . . . , an, x))) for all (a1, . . . , an) ∈ A and x ∈ Σ.

We shall use the feedback functions ϕi, i ∈ {1, . . . , n} in an extended sense as
mappings ϕ∗i : A1 × · · · × An × Σ∗ → Σ∗i , where ϕ∗i (a1, . . . , an, λ) = λ,
and ϕ∗i (a1, . . . , an, px) = ϕ∗i (a1, . . . , an, p)ϕi(δ1(a1, ϕ

∗
1(a1, . . . , an, p)), . . . ,

δn(an, ϕ
∗
n(a1, . . . , an, p)), x), ai ∈ Ai, i ∈ {1, . . . , n}, p ∈ Σ∗, x ∈ Σ. In the sequel,

ϕ∗i , i ∈ {1, . . . , n} will also be denoted by ϕi.
We can imagine this structure as a working model in the following way. The

product is a collection of automata so that every member of this collection is sup-
plied with a transformer which is a special type of finite state transducer. The
transformers, realizing the feedback functions mentioned above, are able to get an
input vector containing a common external input sign and the state of all com-
ponent automata. They can each transform this input vector into an appropriate
input sign for their component automaton. The product is at work along a discrete
time scale in the following way: all transformers of the product get a common
external input sign x, and simultaneously, all transformers get the value of the
instantaneous states a1, . . . , an of all component-automata as input information.
Induced by this this input vector (a1, . . . , an, x), the transformers produce an input
sign xi = ϕi(a1, . . . , an, x), i ∈ {1, . . . , n} for their component-automata. Then,
these (transformed) input signs take every component-automaton into a new (not
necessarily different) state δi(ai, xi) = δi(ai, ϕi(a1, . . . , an, x)), and then, in the
next time period, the whole process takes place again. We will use several gener-
alizations and several restrictions of this concept. If the transformers are able to
produce not only single input signs but entire input words (strings of input signs),
then induced by the inner input sign x and the value of the instantaneous states
a1, . . . , an they produce a (possibly empty) input word ϕi(a1, . . . , an, x) working
as microprocessors, for their component automata then we get the model of the
generalized product.

If we assume that transformers do not necessarily have access to all the instan-
taneous states of component automata, but only some restricted subset, then we
will get the models of several special types of the products [8, 9].

It is clear that, by definition, a Gluškov product is a parallel working system.
Since parallel working Gluškov product is not appropriate for block cipher, we
define its sequentially working version called sequentially working Gluškov product.

Consider the above defined Gluškov product modifying its transition function
in the following way. Let δ be given by
δ((a1, . . . , an), x) = (δ1(a1, ϕ1(a1, . . . , an, x)), δ2(a2, ϕ2(a′1, a2, . . . , an, x)), . . . ,
δn−1(an−1, ϕn−1(a′1, . . . , a

′
n−2, an−1, an, x)), δn(an, ϕn(a′1, . . . , a

′
n−1, an, x))) for all

(a1, . . . , an) ∈ A and x ∈ Σ, where, in order, a′1 = δ1(a1, ϕ1(a1, . . . , an, x)), a′2 =
δ2(a2, ϕ2(a′1, . . . , an, x)), . . . , a′n−1 = δn−1(an−1, ϕn−1(a′1, . . . , a

′
n−2, an−1, an, x)).

Given a function f : X1 × · · · × Xn → Y, we say that f is really indepen-
dent of its i-th variable if for every pair (x1, . . . , xn), (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

∈ X1×· · ·×Xn, f(x1, . . . , xn) = f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn). Otherwise we say
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that f really depends on its i-th variable.
A (finite) directed graph (or, in short, a digraph) D = (V,E) (of order n > 0) is

a pair consisting of sets of vertices V = {v1, . . . , vn} and edges E ⊆ V ×V. Elements
of V are sometimes called nodes. If |V | = n then we also say that D is a digraph
of order n.

Given a digraph D = (V,E), we say that the above defined Gluškov product
(sequentially working Gluškov product) is a D-product (sequentially working D-
product) if for every pair i, j ∈ {1, . . . , n}, (i, j) /∈ E implies that the feedback
function ϕi is really independent of its j-th variable.

By a key automaton we mean a sequentially working Gluškov product having
the following properties:

- it consists of automata components that are state isomorphic to each other so
that their state sets also coincide with each other,

- it has the same state and input sets which are sets of all strings with a given
length over a fixed alphabet,

- it is a permutation automaton.

4 Encryption and Decryption

Both of the encryption and decryption apparatus use the same key automaton and
they use the same pseudorandom generator. We have to use the same pseudo-
random blocks during the encryption and decryption processes, because otherwise
decryption is impossible, and these pseudorandom blocks have to be secret, oth-
erwise the system is vulnerable. Modern block ciphers create different ciphertext
each time when they encrypt the same plaintext. To reach this goal, we have to
change the seed of the pseudorandom generator each time when we use encryption.
It is not too difficult to satisfy all these properties: we need two blocks, one is
constant, secret and part of the key, let us call it ,,core vector”, and the other block
is changed each time when we use encryption, this one is public, – it is the first
block of the ciphertext, – and let us call it ,,initialization vector”. The recent seed
can be calculated as a function of these two blocks. The most simple solution is
to use the exclusive or (bitwise addition modulo 2) operator. In this way the seed
will be secret, both of the encryption and decryption process calculate the same
seed, they can calculate the same secret pseudorandom blocks, and the seed and
the pseudorandom blocks are changed each time, when we use encryption.

There is a fixed positive integer k which is the number of the rounds (see later).
Before the encryption procedure, the pseudorandom generator gets its initialization
vector as a true random sign r1 . . . rn ∈ Σn, where the pseudorandom alphabet Σ
is also the plaintext and the ciphertext alphabet simultaneously. This initialization
vector will be also the first block of the ciphertext.

The encryption procedure is the following. The apparatus reads the plaintext
block-by-block and, after reading the next plaintext block a1 · · · an ∈ Σn (first the
first block), it generates the second, third, etc. blocks of the ciphertext in the
following way.
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First the random number generator generates a word w1 · · ·wk of pseudoran-
dom sequences, where w1, . . . , wk ∈ Σn. The key automaton A = (Σn,Σn, δA) goes
from state (a1, . . . , an) into state (c1, · · · , cn) = δA((a1, . . . , an), w1 · · ·wk), where
a1 · · · an is the referred next plaintext block. The state (c1, . . . , cn) will be per-
formed sequentially such that, in order, we specify the state δA((a1, . . . , an), w1) by
(a1, . . . , an) and w1, the state δA((a1, . . . , an), w1w2), by δA((a1, . . . , an), w1) and
w2, . . . , the state δA((a1, . . . , an), w1 · · ·wk−1) by
δA((a1, . . . , an), w1 · · ·wk−2) and wk−1, the state (c1, . . . , cn) =
δA((a1, . . . , an), w1 · · ·wk) by δA((a1, . . . , an), w1 · · ·wk−1) and wk.

Let wi = (x1, . . . , xn) where x1, . . . , xn ∈ Σ for some i ∈ {1, . . . , k} and let
us define (d1, . . . , dn) and (e1, . . . , en) by (e1, . . . , en) = δA((a1, . . . , an), w1 · · ·wi)
and (d1, . . . , dn) = δA((a1, . . . , an), w1 · · ·wi−1) if i > 1, moreover, (e1, . . . , en) =
δA((a1, . . . , an), w1) and (d1, . . . , dn) = (a1, . . . , an) if i = 1.

Clearly, then (e1, . . . , en) = δA((d1, . . . , dn), (x1, . . . , xn)).

This transition will be performed sequentially in the following way.

e1 = δ1(d1, ϕ1(d1, d2, . . . , dn, (x1, . . . , xn)),

e2 = δ2(d2, ϕ2(e1, d2, d3, . . . , dn, (x1, . . . , xn)),

. . .

en−1 = δn−1(dn−1, ϕn−1(e1, . . . , en−2, dn−1, dn, (x1, . . . , xn)),

en = δn(dn, ϕn(e1, . . . , en−1, dn, (x1, . . . , xn)).

Applying the above procedure in k round, we finally receive the state
(c1, . . . , cn). Then, concatenating the calculated blocks, we will get the ciphertext
c1 · · · cn.

The decryption procedure is the following. Before the decryption procedure, the
pseudorandom generator gets the first ciphertext block as its initialization vector
r1 . . . rn ∈ Σn.

Then the apparatus reads the ciphertext block-by-block and, after reading the
next ciphertext block c1 · · · cn ∈ Σn (first the second block), it generates the first,
second, third, etc. blocks of the plaintext back in the following way.

First the random number generator generates the same word w1 · · ·wk of pseu-
dorandom sequences as at the encryption. Recall that the key automaton is a
permutation automaton. Therefore, by Proposition 1, it has exactly one state
(a1, . . . , an) from which the key automaton goes into the state (c1, . . . , cn) under the
effect of w1 · · ·wk. Then, applying the transition (c1, · · · , cn) =
δA((a1, . . . , an), w1 · · ·wk) the plaintext block a1 · · · ak can be unambiguously re-
covered.

We specify the state δA((a1, . . . , an), w1 · · ·wk−1) by (c1, . . . , cn) =
δA((a1, . . . , an), w1 · · ·wk) and wk, the state δA((a1, . . . , an), w1 · · ·wk−2) by
δA((a1, . . . , an), w1 · · ·wk−1) and wk−1, . . . , the state δA((a1, . . . , an), w1) by
δA((a1, . . . , an), w1w2) and w2, the state (a1, . . . , an) by δA((a1, . . . , an), w1) and
w1.

The vectors wi, (d1, . . . , dn), and (e1, . . . , en) are defined in the same way as it
is done at the encryption procedure. In more details, similarly as previously, let
wi = (x1, . . . , xn) where x1, . . . , xn ∈ Σ for some i ∈ {1, . . . , k} and let us define
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(d1, . . . , dn) and (e1, . . . , en) by (e1, . . . , en) =
δA((a1, . . . , an), w1 · · ·wi) and (d1, . . . , dn) = δA((a1, . . . , an), w1 · · ·wi−1) if i > 1,
moreover, (e1, . . . , en) = δA((a1, . . . , an), w1) and (d1, . . . , dn) =
(a1, . . . , an) if i = 1.

To recover d1 · · · dn, the following equalities are used.
By en = δn(dn, ϕn(e1, . . . , en−1, dn, (x1, . . . , xn)), we can determine dn,
by en−1 = δn−1(dn−1, ϕn−1(e1, . . . , en−2, dn−1, dn, (x1, . . . , xn)), we can
determine dn−1,
. . . ,
by e2 = δ2(d2, ϕ2(e1, d2, . . . , dn, (x1, . . . , xn)),we can determine d2,
by e1 = δ1(d1, ϕ1(d1, d2, . . . , dn, (x1, . . . , xn)),we can determine d1.
Thus we can get the plaintext block in k rounds back.
Therefore, if all of ϕ1, . . . , ϕn can be computed easily, then the proposed system

could be effective.
To sum up, the discussed cryptosystem is a block cipher. Since the key au-

tomaton is a permutation automaton, for every ciphertext there exists exactly one
plaintext making the encryption and decryption unambiguous. Moreover, there is
a huge number of corresponding encoded messages to each plaintext so that several
encryptions of the same plaintext yield several distinct ciphertexts.

5 Example

Next we consider a special key automaton for which the proposed cryptosystem
is effective and secure. We are going to use a sequentially working D-product of
automata for key automaton in this Section.

Let Σ be the set of all binary strings with a given length ` ≥ 1 and let n be a
positive integer.

Let A1 = (Σ,Σ × Σ, δA1
) be a permutation automaton and let Ai =

(Σ,Σ×Σ, δAi), i = 2, . . . , n be state-isomorphic copies of A1 such that A1, . . . ,An

are pairwise distinct.3 Given a digraph D = (V,E) with V = {1, . . . , n}, E =
{(n, 1), (1, 2), . . . , (n − 1, n)} define the Gluškov-type product, called D-product,
AD = A1× · · · ×An(Σn, (ϕ1, . . . , ϕn)) of A1, . . . ,An so that for every (a1, . . . , an),
(x1, . . . , xn) ∈ Σn, i ∈ {1, . . . , n},

ϕ1(a1, . . . , an, (x1, . . . , xn)) = (an⊕xn, x1), where an⊕xn is the bitwise addition
modulo 2 of an and xn,

ϕi(a1, . . . , an, (x1, . . . , xn)) = (ai−1⊕xi−1, xi), i = 2, . . . , n where ai−1⊕xi−1 is
the bitwise addition modulo 2 of ai−1 and xi−1.

Then the sequentially working version of AD is the automaton B = (Σn,Σn, δB),
where for every (a1, . . . , an), (x1, . . . , xn) ∈ Σn, δB((a1, . . . , an), (x1, . . . , xn)) =
(b1, . . . , bn) such that

b1 = δA1
(a1, ϕ1(a1, . . . , an, (x1, . . . , xn))

and ϕ1(a1, . . . , an, (x1, . . . , xn)) = (an ⊕ xn, x1),

3In other words, for every i, j ∈ {1, . . . , n}, i 6= j implies Ai 6= Aj .
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b2 = δA2(a2, ϕ2(b1, a2, . . . , an, (x1, . . . , xn)),
and ϕ2(b1, a2, . . . , an, (x1, . . . , xn)) = (b1 ⊕ x1, x2),
. . .
bn−1 = δAn−1

(an−1, ϕn−1(b1, . . . , bn−2, an−1, an, (x1, . . . , xn)),
and ϕn−1(b1, . . . , bn−2, an−1, an, (x1, . . . , xn)) = (bn−2 ⊕ xn−2, xn−1),
bn = δAn

(an, ϕn(b1, . . . , bn−1, an, (x1, . . . , xn)),
and ϕn(b1, . . . , bn−1, an,(x1, . . . , xn)) = (bn−1 ⊕ xn−1, xn).

Of course, the values of the feedback functions can be computed easily. By the
encryption procedure, using the transition matrices of the component automata,
we can specify easily the state b1 from a1, an, xn, x1, the state b2 from a2, b1, x1, x2,
. . . , the state bn−1 from an−1, bn−2, xn−2, xn−1, the state bn from an, bn−1, xn−1, xn.
On the other hand, all component automata of the key automaton are permuta-
tion automata. Therefore, by the decryption procedure, using again the transition
matrices of the component-automata, we can specify unambiguously the state an
from bn−1, bn, xn−1, xn, the state an−1 from bn−2, bn−1, xn−2, xn−1, . . . , the state
a2 from b1, b2, x1, x2, the state a1 from an, b1, xn, x1.

6 Avalanche Effect

The avalanche effect is a very important property of block ciphers. We say the
block cipher has avalanche effect when a small change in the plaintext block (or
in the key) results a significant change in the corresponding ciphertext block, and
also small change in the ciphertext block (or in the key) results a significant change
in the corresponding plaintext block after decoding. In section 4 we introduced
a very simple key automaton, which works well, but it has just limited avalanche
effect. Suppose we have a plaintext block a = (a1, . . . , an) ∈ Σn, a pseudorandom
block w1 = (x1, . . . , xn) ∈ Σn and the key automaton B = (Σn,Σn, δB) goes to
the ciphertext block b = (b1, . . . , bn) ∈ Σn from a by the effect of w1. (In short,
δB(a,w1) = b.) Let us define c = (a1, . . . , ai−1, ci, ai+1, . . . , an) ∈ Σn, where ai 6= ci,
1 < i < n, and calculate the d = δB(c, w1) value. We will see that d starts with
b1, . . . , bi−1 so changing ai to ci has no effect for the first i−1 part of the ciphertext
block. However, from the i-th part, we have appropriate avalanche effect. This is
the same with the pseudorandom block, changing xi to ci (xi 6= ci, 1 < i < n)
has no effect for the first i− 1 part of the ciphertext block, but it has appropriate
avalanche effect from the i-th part of the ciphertext. The solution is simple. We
should repeat the encoding procedure twice. First calculate the a′ = δB(a,w1)
block, then calculate the b = δB(a′, w1) ciphertext block.

Unfortunately, the situation during the decoding is worst. Suppose we have the
b = (b1, . . . , bn) ∈ Σn ciphertext block, the w1 = (x1, . . . , xn) ∈ Σn pseudorandom
block and the key automaton B = (Σn,Σn, δB) goes to the ciphertext block b from
the paintext block a = (a1, . . . , an) ∈ Σn by the effect of w1. (In short, δB(a,w1) =
b.) Let us define γB such that γB(δB(a,w), w) = a for each a,w ∈ Σn. In this case
γB(b, w1) = a. Now let us define the d = (b1, . . . , bi−1, di, bi+1, . . . , bn) ∈ Σn, where
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bi 6= di, 1 < i ≤ n. Comparing a and γB(d,w1) we can recognize that changing the
i-th part of the ciphertext block has effect only on the i-th and i− 1-th part of the
plaintext block. This means we can not have appropriate avalanche effect during
decoding using only the above defined γB function. To solve this problem, we have
to use the δB function twice during the decoding process.

Finally, we created the following function, which has 3 parameters, can do
the encoding and the decoding, and – based on experimental results, – it has
appropriate avalanche effect during the encoding and the decoding process:

f(a,w1, w2) = γB(γB(δB(δB(a,w1), w1), w2), w2).

This function first receives the plaintext block a and two pseudorandom blocks
w1 and w2.

Then, it calculates the a′ = δB(a,w1) value.
In the next round, it calculates the a′′ = δB(a′, w1) value.
In the next round, it calculates the a′′′ = γB(a′′, w2) value.
In the next round, it calculates the b = γB(a′′′, w2) value, which is the ciphertext

block.

Decoding done with the same function, but it has different parameters:
f(b, w2, w1). In this case the same f function first receives the ciphertext block
b and the two pseudorandom blocks w2 and w1 in the opposite order.

Then, it calculates the a′′′ = δB(b, w2) value.
In the next round, it calculates the a′′ = δB(a′′′, w2) value.
In the next round, it calculates the a′ = γB(a′′, w1) value.
In the next round, it calculates the a = γB(a′, w1) value, which is the plaintext

block.

For protection against chosen ciphertext attack, we recommend to repeat this
procedure at least twice during the encoding and decoding process, with different
pseudorandom numbers. For example, the ciphertext block b can be calculated
from the plaintext block a by the function f(f(a,w1, w2), w3, w4), with four pseu-
dorandom number blocks w1, w2, w3, w4, and then, we can decipher the plaintext
block a from the ciphertext block b using the function f(f(b, w4, w3), w2, w1).

7 Experimental Results

We have been developed some practical tests using 16 bytes (128 bits) long input
blocks, output blocks and pseudorandom blocks. It has been done for the cases
when both of the encryption and decryption algorithms in Chapter 4 have been
modified as it is formulated in Chapter 6.

7.1 Keyspace Size

Using the above mentioned parameters with 256 possible states, (1 byte long states,)
we need 16 automata, having a transition matrix 216 = 65536 lines and 28 = 256
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columns. Each cell of the automaton contains 1 byte long data. (One state.) The
size of the matrix is 16 megabytes, and the number of possible matrices is 256!65536,
where the exclamation mark means the factorial operation. This is much more
than good enough protection against brute-force attack. When we use isomorphic
automata, this huge number should be further increase to have 256!65536 ∗ 256!15 =
256!65551 possible keys.

7.2 Speed Test Results

The practical tests of the encoding and decoding algorithm were done on an average
table PC, (3,1 GHz Intel Core I3-2100 processor, 4 Gigabyte RAM). The program
we used was a well written C# implementation. The results of the speed tests of
the 8 bit version can be seen in the table 1.

Table 1: Results of the speed tests

size (bytes) encoding time decoding time encoded bytes per second
131104 00.0169140 00.0164919 7751212
524336 00.0572925 00.0573531 9151913
1048656 00.1111786 00.1098338 9432175
33556496 03.8841316 04.0200288 8639382
134225936 16.0446227 16.1320934 8365789

The results of the speed tests show that using an average PC, the encoding time
is more than 7 megabytes per second, and decoding time is about the same.

7.3 Effectiveness of the Avalanche Effect

We used to test the avalanche effect in the following way. We chose 1000000 ran-
dom plaintext blocks, encoded them, and then we changed 1 bit in each plaintext
block, encoded again, then we calculated the number of the different bytes in the
ciphertext blocks pair-wise. The opposite case has been also tested, namely there
were chosen 1000000 random ciphertext blocks, we decoded them, and then we
changed 1 bit in each ciphertext block, decoded again, and calculated the number
of the different bytes in each plaintext blocks pair-wise. The results can be seen in
the table 2.

Table 2: Results of the avalanche effect of encoding and decoding

different characters in one block encoding decoding
0-12 0 0
13 24 32
14 1771 1743
15 58851 59028
16 939354 939197
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When we change only one bit in the plaintext block, the difference between the
corresponding ciphertext blocks will be really huge in the majority of the cases.
The same effect can be seen in the opposite case, changing one bit in the ciphertext
block results huge difference in the plaintext block as well.

We created another table as well. In this table we calculated the optimal
avalanche effect. We had choosen 2×1000000 completely random blocks, and then
calculated the difference between them pair-wise. The results can be seen in the
table 3.

Table 3: Results of the avalanche effect of complete random blocks

different characters in one block
0-12 0
13 32
14 1693
15 58681
16 939594

By our experimental results, we can conclude that the algorithm has the optimal
avalanche effect, and an appropriate speed (more than 7 megbyte/s). Of course the
speed of the algorithm depends on the hardware and the programming language /
program code as well.

8 Conclusion and Future Work

This paper is devoted to propose a novel cryptosystem based on Gluškov product
of automata. By a simple example, its utility is shown. The avalanche effect tests
show good results. Moreover, some experimental results show the effectiveness.
However, serious security analysis and rigorous machine-independent investigation
should be necessary in the future work.
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In: Fülöp, Z., Gécseg F., eds., Proc. 22nd Int. Coll. On Automata Languages
and Programming - ICALP’95, Szeged, Hungary, July 10-14, 1995, LNC 944,
Springer-Verlag, Berlin, 1995, 147-158.



370 Pál Dömösi and Géza Horváth
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