
Acta Cybernetica 25 (2022) 781–795.

Report on the Differential Testing of

Static Analyzers∗

Gábor Horváthab, Réka Kovácsac, and Péter Szécsiad

Abstract

Program faults, best known as bugs, are practically unavoidable in today’s
ever growing software systems. One increasingly popular way of eliminating
them, besides tests, dynamic analysis, and fuzzing, is using static analysis
based bug-finding tools. Such tools are capable of finding surprisingly sophis-
ticated bugs automatically by inspecting the source code. Their analysis is
usually both unsound and incomplete, but still very useful in practice, as they
can find non-trivial problems in a reasonable time (e.g. within hours, for an
industrial project) without human intervention.

Because the problems that static analyzers try to solve are hard, usually
intractable, they use various approximations that need to be fine-tuned in
order to grant a good user experience (i.e. as many interesting bugs with as
few distracting false alarms as possible). For each newly introduced heuristic,
this normally happens by performing differential testing of the analyzer on
a lot of widely used open source software projects that are known to use
related language constructs extensively. In practice, this process is ad hoc,
error-prone, poorly reproducible and its results are hard to share.

We present a set of tools that aim to support the work of static ana-
lyzer developers by making differential testing easier. Our framework includes
tools for automatic test suite selection, automated differential experiments,
coverage information of increased granularity, statistics collection, metric cal-
culations, and visualizations, all resulting in a convenient, shareable HTML
report.

Keywords: static analysis, symbolic execution, Clang, testing

∗The project has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00002)

aDepartment of Programming Languages and Compilers, Eötvös Loránd University, Budapest,
Hungary

bE-mail: xazax@caesar.elte.hu, ORCID: 0000-0002-0834-0996
cE-mail: rekanikolett@caesar.elte.hu, ORCID: 0000-0001-6275-8552
dE-mail: ps95@caesar.elte.hu, ORCID: 0000-0001-9156-1337

DOI: 10.14232/actacyb.282831

mailto:xazax@caesar.elte.hu
https://orcid.org/0000-0002-0834-0996
mailto:rekanikolett@caesar.elte.hu
https://orcid.org/0000-0001-6275-8552
mailto:ps95@caesar.elte.hu
https://orcid.org/0000-0001-9156-1337
https://doi.org/10.14232/actacyb.282831


782 Gábor Horváth, Réka Kovács, and Péter Szécsi

1 Introduction

Any significant change to an open-source static analysis tool (also simply called
an analyzer) is preceded by a discussion about its possible effects. The minimum
typical requirement is the comparison of analysis results and performance on a few
software projects before and after applying the changes.

Fulfilling this requirement is hard for various reasons. Developers often have a
bias towards a set of projects they are familiar with, which might tempt them to
avoid the challenge of finding a set of test projects that most effectively exercise
the changed parts of the analyzer. In case of a long-lasting open-source review
process [16] (developers often have to wait half a year before their contributions get
accepted), changes need to be re-based on top of the latest version of a continuously
evolving code base, and the analysis of all test projects needs to be re-run to ensure
that the feature still works correctly. Analysis results also have to be processed
and summarized to be easily understandable for the reviewers.

Note that, for our explanations throughout the paper, we use the term author
to refer to the person who implements a change to the open-source application
(this comes from being the author of the patch, a textual form of the set of actual
modifications to the source code). This person has to justify the changes and prove
to reviewers that there will be no unwanted regressions in the software’s behavior.
By reviewers we mean those fellow developers who audit and approve the changes.

Ideally, reproducing an analysis should be painless, and it should be possible
to present results in an easily shareable and digestible format. This format should
be simple to archive or embed in documentation, so that major design decisions
can be easily re-evaluated later. This is important, since the decisions that make
perfect sense today might be less adequate tomorrow.

In this paper, we present our toolchain that we call the Clang Static Analyzer
Testbench (or CSA Testbench)1, designed for the Clang Static Analyzer [1] and
Clang-Tidy [2], two open-source static analysis tools built on top of the Clang [11]
compiler for C family languages. The Clang Static Analyzer uses symbolic execu-
tion [10] to find bugs, while Clang-Tidy is a collection of syntactic checks. We are
long-term contributors to these tools, and would like to share the principles of the
differential testing infrastructure we have built with a wider community.

Our framework aims to enhance the open-source review process by supporting
reviewers and authors (as defined earlier) in the following ways:

• help authors select a set of relevant projects for testing,

• help authors run static analysis on the selected projects,

• aggregate statistics about the analysis (e.g.: how often a cut heuristic is
triggered while building the symbolic execution graph),

• aggregate the results of the analysis, i.e. the reported warnings,

• help authors and reviewers evaluate and share the results,

1The code is open-source, licensed under the MIT License, and can be downloaded from https:

//github.com/Xazax-hun/csa-testbench.

https://github.com/Xazax-hun/csa-testbench
https://github.com/Xazax-hun/csa-testbench


Report on the Differential Testing of Static Analyzers 783

• help reviewers reproduce the results and suggest changes to the test setup,

• help authors maintain the tests.

The input of the toolset is a single and easy-to-interpret configuration file in
JSON format. Since the format is textual, reviewers can comment on the test setup
using conventional review tools and it can also be embedded in documentation.
Moreover, it is convenient to store such files in version control systems. The output
is a customizable HTML report with useful information, various plots, and a record
of the input configuration, including the version numbers, to ensure reproducibility.
The goal is to store all the information required to repeat the experiment.

Our principles can be reused by developers of other static analyzers, and we
also describe some alternative use cases for our framework.

The paper is structured as follows. Section 1 gives an overview of the difficul-
ties faced during an open-source review process that requires differential testing.
Section 2 introduces the principles behind the framework we built to tackle these
problems.

2 The CSA Testbench Toolchain

2.1 Semi-automatic test suite generation

Problem After implementing a missing feature or tweaking an existing part of
a static analyzer, testing the robustness of the change and checking whether a
regression occured is a natural requirement towards the author. One conventional
approach is to run the analyzer tool on a number of real-world software projects
and artificial regression tests.

Finding a sufficient number of relevant real-world projects can be challenging.
Ideal projects should be open-source and easy to set up, so that reviewers have
a better chance of reproducing the results. Additionally, projects should exercise
the right parts of the analyzer. For example, if the change is related to dynamic
type information modeling, only projects using dynamic type information should
be included.

One option is to use a trial-and-error approach and check a random sample of
open-source projects, hoping to find enough that display the required traits. A
slightly better approach is to use code searching and indexing services and look
for projects with interesting code snippets. These services, however, are optimized
to present the individual snippets and suboptimal to retrieve the most relevant
projects according to some criteria.

Solution We present a script that harvests the results of an existing code search
service, and recommends projects to be included in the test suite based on the
results. This script can spare a significant amount of development time and help
authors find relevant projects on which their changes can be verified.



784 Gábor Horváth, Réka Kovács, and Péter Szécsi

Our script uses the SeachCode [5] service for its backend. For example, in order
to test a new static analysis check written to detect pthread mutex t abuse, we
might be interested in projects that use pthread extensively. Using the syntax on
Listing 1, we can specify the keywords to search for, the languages we are interested
in, the desired number of projects and optionally a filename for the output:

1 $ ./gen_project_list.py ’pthread_mutex_t’ ’C C++’ 3 -o pthread.json

Listing 1: A sample invocation of the project list generator tool.

This call creates a configuration file with the suggested projects in the following
format:

1 {

2 "projects": [

3 {

4 "url":"github.com/itkovian/torque.git",

5 "name": "torque"

6 },

7 {

8 "url":"github.com/snktagarwal/openafs.git",

9 "name": "openafs"

10 },

11 {

12 "url":"github.com/cfenoy/slurm.git",

13 "name": "slurm"

14 }

15 ]

16 }

Listing 2: A fraction of a configuration file generated by the project list generator
tool invocation showed on Listing 1.

This configuration file can be directly used as input to the main driver script of the
testing infrastructure as detailed in Section 2.2.

Sometimes we only want to do a stress test to ensure that the analysis engine
behaves gracefully for all projects and does not crash. We created an alternative
tool to create a configuration file based on a Debian FTP mirror for package sources.
The resulting file will contain more than 20 000 projects.

1 $ ./project_list_from_debian.py \

2 --url ftp://ftp.se.debian.org/debian/ --output debian.json

Listing 3: Sample call of an alternative project list generator tool that lists all
packages available at the specified Debian mirror.



Report on the Differential Testing of Static Analyzers 785

2.2 Easy analysis reproduction and sharing

Problem A regular pattern is that the developer sharing text files that contain
static analysis results on a set of projects. This makes evaluation considerably dif-
ficult for reviewers. First of all, they might not be familiar with the test projects
at all. Text dumps of static analysis results are hard to interpret and the mea-
surements are hard to reproduce. Further questions that might arise: How did
the author compile the project? Which version of the analyzed project was used?
How did the author invoke the analyzer? Which configuration options were used?
Which revision (commit) of the analyzer was used?

Solution Our tools use a concise configuration format that contains all the rele-
vant information about the analyzed projects: repository, tag/commit, configura-
tion options for the analysis, etc. Obtaining this configuration file enables reviewers
to reproduce the exact same measurements, with the help of our driver script. They
can also easily suggest modifications to the conducted experiment.

The scripts aggregate useful information about the analysis into an easy-to-
share HTML format (as seen in Figure 1). Analysis results are not mere text dumps
anymore, but are presented on a convenient web user interface that also displays the
path associated with the report (showed in Figure 2). Other information such as the
number of code lines in the project, version of the analyzer, analysis time, analysis
coverage (Figures 3 and 4), and statistics from the analysis engine is recorded and
charts are generated automatically (Figure 5). The web user interface also has
permanent links to each individual error report in order to make it easier to refer
to them in discussions. These pages are hosted by the person sharing the results,
code reviewers do not need to install anything to browse the results.

The configuration file showed in Section 2.1 is almost enough to run the analysis
on its own. The only extra information needed to be specified is the URL of
the CodeChecker server where analysis results are intended to be stored for later
inspection (Listing 4).

1 {

2 "projects" : ...

3 "CodeChecker": {

4 "url" : "localhost:15010/Default",

5 }

6 }

Listing 4: A segment of the configuration file specifying the address of the
CodeChecker server.

CodeChecker [3] is a tool we designed to integrate the Clang Static Analyzer and
Clang-Tidy into C/C++ build systems. It also acts as a mature bug management
system that supports commenting on static analysis reports and suppressing false
positives. It has a convenient user interface to visualize path-sensitive bug reports
(see Figure 2) and to support differential analysis. We can compare two analysis



786 Gábor Horváth, Réka Kovács, and Péter Szécsi

Figure 1: A section of the automatically produced HTML report containing in-
formation about analysis runs with different analyzer configurations. The table
contains links to the corresponding analysis runs in a web user interface (see Fig-
ure 2), and links to detailed line-based coverage reports (Figures 3 and 4). A similar
table for each analyzed project can be found under appropriately labeled tabs in
the header of the report. The Charts tab hides a number of interactive charts
generated from the results (for an example, see Figure 5).

runs using CodeChecker to differentiate between common reports and those present
only in a specific analysis run. CodeChecker’s web GUI allows sharing the results
with the rest of the world without needing to repeat the experiment. It can be used
to share not only bug reports, but also classifications and comments explaining why
some findings are considered false positives or true positives.

After adding this detail to the configuration file, we are ready to run the analysis
on the previously selected set of projects (Listing 5).

1 $ ./run_experiments.py --config pthread.json

Listing 5: Sample invocation of the main driver script of the experiment.

The script checks out each project, attempts to infer their build system, builds
them, runs the analysis, and finally collects the results. At the time of writing this
paper autotools, CMake, and make are supported out of the box.



Report on the Differential Testing of Static Analyzers 787

Figure 2: The CodeChecker web user interface. Path-sensitive reports guide the
user along the execution path leading to the bug. On the web user interface,
different runs can be compared against each other, and bug reports can be filtered
by many criteria, e.g. by severity, by review status, by detection status, by detection
date, by checker name, by checker message, etc. Bug reports can also be marked
false positive, with the possibility of leaving an explaining note for the record.

However, the script will not download and install all the dependencies required
to compile the projects. It is the user’s responsibility to ensure that the host
machine is able to compile the projects, which turned out to be a big burden for
the authors. For this reason, we introduced support for the two emerging C++
package managers, Conan [4] and Vcpkg [6]. Relying on these package managers
instead of repository URLs ensures that the analysis will not fail due to a missing
dependency. In Listing 6, we can see how easy it is to test on a project which is
available in one of the package managers.

1 {

2 "projects": [

3 {

4 "name": "zlibconan",

5 "package": "zlib/1.2.11@conan/stable",

6 "package_type": "conan",

7 },

8 {

9 "name": "zlibvcpkg",

10 "package": "zlib",



788 Gábor Horváth, Réka Kovács, and Péter Szécsi

11 "package_type": "vcpkg",

12 }

13 ]

14 }

Listing 6: A sample configuration file that will instruct the framework to download
projects using the Conan and Vcpkg package managers.

In case a special build command is required, or the build system is not yet
supported, the user can specify the build command and the configuration command.
Building a specific version of the project determined by a tag, a commit hash, or a
URL to a source tarball instead of top of tree is also possible and highly encouraged,
in order to get consistent results in subsequent experiments.

Finally, differential analysis can currently be conducted by running the same
projects multiple times with different options passed to the analyzer or using dif-
ferent versions of the analyzer (Listing 7).

1 {

2 "projects": [

3 {

4 "url": "github.com/itkovian/torque.git",

5 "name": "torque",

6 "tag": "tag name",

7 "build_command": "special build command"

8 }, ...

9 ]

10 "configurations": [

11 {

12 "name": "original",

13 "clang_sa_args": "",

14 },

15 {

16 "name": "variant A",

17 "clang_sa_args": "argument to enable feature A",

18 "clang_path": "path to clang variant"

19 }

20 ], ...

21 }

Listing 7: Differential testing can be achieved by running many analysises on the
same projects with different options passed to the analyzer.

2.3 A more precise differential analysis

Problem Currently, coverage measurements provided by the Clang Static Ana-
lyzer are limited. The engine can only record the percentage of basic blocks reached
during the analysis of a translation unit, which is not sufficiently precise for mul-
tiple reasons. First, the analysis can stop in the middle of a basic block due to
running out of the analysis budget for that specific execution path. Secondly, there



Report on the Differential Testing of Static Analyzers 789

is no precise way of merging information from different translation units. Finally,
inline functions or templates in header files might appear in multiple translation
units and their contribution will be counted multiple times upon attempting to
aggregate information over translation units.

Solution We implemented line-based coverage measurement based on the gcov [7]
format. We do not calculate coverage as an overall percentage value, but record
it separately for each line. This makes it possible to precisely aggregate coverage
information over translation units, and to do differential analysis on the coverage
itself. Our toolset includes scripts to aid that kind of analysis.

Figure 3: A sample report summarizing coverage percentages over the analyzed
files. Line-based coverage information can be browsed by clicking on filenames.

In some cases, we are interested in the reason behind a specific bug report
disappearing when running the analysis with different parameters. Performing
differential analysis on the coverage, we are able to determine whether the analyzer
actually examined the code in question during both runs.

The Clang Static Analyzer can output different kinds of statistics such as the
number of paths examined, the number of times a specific cut heuristic was used
etc. Instead of having a fixed set of statistics to collect, we used some text mining
to process the output of the analyzer, in which we are able to automatically detect
newly added custom statistics without any additional configuration, and aggregate
them over translation units.

As mentioned in Section 2.2, the final report of our toolset includes figures
like charts and histograms. The list of figures can be set in the configuration file.
After adding a new statistic to the analyzer engine, the author only needs to add a
single entry in the configuration file to make the toolset generate a figure based on
that statistic. One sample use-case is producing a histogram of analysis times per
translation unit. This can help us track down performance regressions in outliers.

We cannot emphasize the importance of automatically generated figures enough.
The statistics about a run of the symbolic execution engine is not easy to interpret.
For example, an increase in the number of generated symbolic states can be both
a good and bad news depending on how the rest of the statistics are changed. Not
requiring the author to create the figures from the numbers manually is a great
productivity boost.



790 Gábor Horváth, Réka Kovács, and Péter Szécsi

Figure 4: Our amended version of the Clang Static Analyzer can provide coverage
information for each executed line of each analyzed file. In Figure 3, lines covered
by the analysis are shown in a green color, while lines not covered are shown in red.
White lines contain no executable code.

C-Reduce [15] is a tool that takes a large C, C++, or OpenCL file that has a
property of interest (such as triggering a compiler bug) and automatically produces
a much smaller C/C++ file that has the same property. We also use C-Reduce to
get minimal examples that showcase differences between two versions of the static
analysis engine. First, we need a file on which analysis engine versions produce
different results. This can be a different set of warnings or other statistics emitted
by the engine. These minimal examples can greatly aid our understanding of the
effects of a change. The main shortcoming of C-Reduce is the lack of support for
reducing multiple translation units at once. We do plan to add this feature in the
future.

2.4 Recommended workflow, how to use the toolchain

Using our toolset the recommended workflow is shown in Figure 6. The author of
the patch uses some of our scripts to select the project to test the changes on. After
running the experiments she makes sure all the data support the hypothesis. Then
she uploads tha patch for review and provides reviewers with a link to the test
results which includes the configuration. Reviewers can choose to either merely
look at the results or repeat the whole experiment based on the configuration,
depending on the verification effort required for the change. They can also suggest



Report on the Differential Testing of Static Analyzers 791

Figure 5: One of the many interactive charts generated based on statistics collected
during analysis, this figure shows duration times for different analyzer configura-
tions for different open-source projects. Precise numbers are shown when hovering
over the block of columns corresponding to a project.

changes to the configuration to gather more insight about the changes. After such
suggestions it is as easy to re-run the whole experiment as pushing a button.

2.5 Alternative applications

The tools we introduced in the previous section can be generalized beyond sup-
porting only static analysis engines. First, obtaining a set of projects with certain
properties (e.g. projects using runtime type information) can be valuable for the
testing of any language tool. Secondly, the ability to check out and analyze any
number of past tags of a project and perform differential analysis on them enables
the collection of historical data about the evolution of the project’s coding conven-
tions. We can also track the number of findings over time for a certain project.

We also found that these scripts are great to build CI loops. Running the
analysis on a set of projects for each commit is a great way to find regressions.
We introduced a flag to break the CI loop each time the analysis of a project fails
for some reason. The reported HTML will contain useful information about the
analysis failures as well as assertion messages.

Finally, one of the most interesting applications of our scripts is automatic
parameter tuning. Some static analysis engines have a great number of adjustable
parameters. Our tools are not only suitable for running the analysis, but also
for setting its parameters and measuring time, coverage, engine statistics, and the
number of reported bugs. Using this information, a machine learning algorithm can
attempt to optimize the parameters in order to improve the quality of the analysis.



792 Gábor Horváth, Réka Kovács, and Péter Szécsi

Figure 6: A flowchart describing the recommended workflow when using the CSA
Testbench to do differential testing of an analyzer change.

2.6 Future work

Unfortunately, using textual queries to get a set of interesting projects is not suffi-
cient. There are certain language constructs that are hard to query this way, such
as implicit casts or structured bindings. Likewise, using code search services is also
an imperfect solution, a semantic indexer would probably be more suitable.

We intend to introduce more (optional) measurements into the scripts such as
memory profiling during analysis. We also plan to perform a more detailed analysis
of how the proposed process can improve the quality of the static analysis engine.

These set of tools are the result of optimizing the productivity of our team
while working on some static analysis tools. While each added feature helped to
improve our work-flow, it is hard to quantify the improvements. We plan to conduct
some surveys in the future to verify the usefulness of our framework among a wider
community of researchers and developers.

3 Related Work

The difficulty of performing static analysis varies among programming languages,
due to differences in the number and maturity of tools written for them. Two
languages on the worse end of the spectrum are C and C++, as no widely used
build system or package repository exists in their fragmented ecosystem. Having
tools to deal with software repositories directly can be a step towards overcoming
this problem and helping researchers perform more rigorous evaluations for their
tools targeting these languages. Since C++ is a language of enormous size, most



Report on the Differential Testing of Static Analyzers 793

projects use a relatively small subset of it. For this reason, finding a good set of
test projects is even more critical.

This problem is less likely to surface during the analysis of other languages.
Some of them, like Java, armed with Maven repositories, are in a convenient posi-
tion for experimentation. Software packages can be easily downloaded, built and
analyzed. Fortunately, the C++ community realized the value of having package
managers, and now two of them named Conan [4] and vcpkg [6] started to gain
popularity, but have not reached wide adoption yet.

In the following paragraphs, we describe tools that play a similar role for other
programming languages than our framework for C++.

VISUFLOW [9] is a tool to help debug static analysis software. While it is great
for debugging problems on small reproducers, it is not suitable to debug problems
that only manifest on large projects, such as cut heuristics and exploration strategy
related issues in symbolic execution. The same author conducted a survey with
115 analysis writers [8]. They concluded that the state-of-the-art tools were not
sufficient to fulfil the needs of static analysis software authors. The participants of
the survey identified graph visuals, access to the intermediate representation and
intermediate result count as very important features, and our framework excels at
visualizing intermediate counters (statistics) over a large corpus of test projects.

Using static analysis together with mining is not a new idea. Macedo et. al. [12]
used the mining of malware and static analysis together to extract behavioral pat-
terns aiming to identify malware. The difference from our work is that we are
mining repositories in order to improve the quality of a static analysis tool.

Covrig [13] is a tool to run dynamic and static analysis on several projects
and aggregate the results. It is supporting a different use-case than our tool. Its
emphasis is on collecting metrics about the analyzed projects and not on collecting
metrics about the analyzers.

Ray et. al. [14] used entropy as a measure for comparing static analysis findings
in order to correct code. They found that search-based bug-fixing methods may
benefit from using entropy both for fault-localization and for the searching for
fixes. Our presented toolset might help conduct similar studies in the future for C
family languages, as it supports comparing a patched and unpatched (or differently
configured) version of the static analysis engine.

4 Conclusions

We find the traditional practice of static analysis tool testing cumbersome and in-
sufficient. One of the greatest problems is that a fixed set of test projects might not
stress the newly introduced code paths of the analysis engine. The other concern
is reproducibility, which is not only essential for reviewers, but for any subsequent
re-evaluation of the changes. As the analyzer evolves, some of its distinct parts in-
teract with each other. Consequently, some of the changes that seemed sensible in
the past might become irrational in the future. Having a record of experiments from
the past facilitates the re-evaluation of those decisions in the light of new circum-



794 Gábor Horváth, Réka Kovács, and Péter Szécsi

stances. Finally, the current practice of presenting the measurement results does
not aid the interpretation of the raw data. Using an easier-to-digest representation
of measurements would reduce the effort needed to evaluate the changes.

In order to mitigate these issues, we suggested a particular analysis workflow and
developed a toolchain supporting the Clang Static Analyzer and Clang-Tidy. These
tools not only help collect relevant candidate projects for testing, but also perform
differential analysis on the test projects, and generate easy-to-interpret figures for
reviewers. We also added a new line-based coverage measurement mechanism to
the Clang Static Analyzer that improved the precision of differential testing.

References

[1] Clang Static Analyzer, a source code analysis tool for C, C++, and
Objective-C programs. URL: https://clang-analyzer.llvm.org/ (Re-
trieved: 23/03/2019).

[2] Clang-Tidy, a static analysis and code refactoring tool. URL: http://clang.
llvm.org/extra/clang-tidy/ (Retrieved: 23/03/2019).

[3] CodeChecker, a defect database and viewer extension for Clang-Tidy and the
Clang Static Analyzer. URL: https://github.com/Ericsson/codechecker
(Retrieved: 23/03/2019).

[4] Conan, an open-source C/C++ package manager. URL: https://conan.io/
(Retrieved: 23/03/2019).

[5] SearchCode, a free source code search engine. URL: https://searchcode.
com/ (Retrieved: 23/03/2019).

[6] Vcpkg, a C/C++ library manager for Windows, Linux, and MacOS. URL:
https://docs.microsoft.com/en-us/cpp/vcpkg (Retrieved: 23/03/2019).

[7] Bhushan, Ram Chandra and Yadav, Dharmendra Kumar. Number of test
cases required in achieving statement, branch and path coverage using ’gcov’:
An analysis. In 2017 the 7th International Workshop on Computer Science
and Engineering, pages 176–180, 2017. DOI: 10.18178/wcse.2017.06.031.

[8] Do, Lisa Nguyen Quang, Krüger, Stefan, Hill, Patrick, Ali, Karim, and Bod-
den, Eric. Debugging static analysis. CoRR, abs/1801.04894, 2018.

[9] Do, Lisa Nguyen Quang, Krüger, Stefan, Hill, Patrick, Ali, Karim, and Bod-
den, Eric. Visuflow: a debugging environment for static analyses. In Proceed-
ings of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, pages 89–92. ACM, 2018. DOI: 10.1145/3183440.3183470.

[10] Hampapuram, Hari, Yang, Yue, and Das, Manuvir. Symbolic path simulation
in path-sensitive dataflow analysis. SIGSOFT Softw. Eng. Notes, 31(1):52–58,
September 2005. DOI: 10.1145/1108768.1108808.

https://clang-analyzer.llvm.org/
http://clang.llvm.org/extra/clang-tidy/
http://clang.llvm.org/extra/clang-tidy/
https://github.com/Ericsson/codechecker
https://conan.io/
https://searchcode.com/
https://searchcode.com/
https://docs.microsoft.com/en-us/cpp/vcpkg
https://doi.org/10.18178/wcse.2017.06.031
https://doi.org/10.1145/3183440.3183470
https://doi.org/10.1145/1108768.1108808


Report on the Differential Testing of Static Analyzers 795

[11] Lattner, Chris. LLVM and Clang: Next generation compiler technology. Lec-
ture at BSD Conference 2008, 2008.

[12] Macedo, Hugo Daniel and Touili, Tayssir. Mining malware specifications
through static reachability analysis. In Crampton, Jason, Jajodia, Sushil, and
Mayes, Keith, editors, Computer Security – ESORICS 2013, pages 517–535,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. DOI: 10.1007/978-3-

642-40203-6_29.

[13] Marinescu, Paul, Hosek, Petr, and Cadar, Cristian. Covrig: A framework
for the analysis of code, test, and coverage evolution in real software. In
Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ISSTA 2014, pages 93–104, New York, NY, USA, 2014. ACM. DOI:
10.1145/2610384.2610419.

[14] Ray, Baishakhi, Hellendoorn, Vincent, Godhane, Saheel, Tu, Zhaopeng, Bac-
chelli, Alberto, and Devanbu, Premkumar. On the “naturalness” of buggy
code. In Proceedings of the 38th International Conference on Software Engi-
neering, ICSE ’16, pages 428–439, New York, NY, USA, 2016. ACM. DOI:
10.1145/2884781.2884848.

[15] Regehr, John, Chen, Yang, Cuoq, Pascal, Eide, Eric, Ellison, Chucky, and
Yang, Xuejun. Test-case reduction for c compiler bugs. In ACM SIGPLAN
Notices, Volume 47, pages 335–346. ACM, 2012. DOI: 10.1145/2345156.

2254104.

[16] Rigby, Peter C and Storey, Margaret-Anne. Understanding broadcast based
peer review on open source software projects. In 2011 33rd International Con-
ference on Software Engineering (ICSE), pages 541–550. IEEE, 2011. DOI:
10.1145/1985793.1985867.

https://doi.org/10.1007/978-3-642-40203-6_29
https://doi.org/10.1007/978-3-642-40203-6_29
https://doi.org/10.1145/2610384.2610419
https://doi.org/10.1145/2884781.2884848
https://doi.org/10.1145/2345156.2254104
https://doi.org/10.1145/2345156.2254104
https://doi.org/10.1145/1985793.1985867

	Introduction
	The CSA Testbench Toolchain
	Semi-automatic test suite generation
	Easy analysis reproduction and sharing
	A more precise differential analysis
	Recommended workflow, how to use the toolchain
	Alternative applications
	Future work

	Related Work
	Conclusions

