Acta Cybernetica 25 (2021) 435-468.

Traquest Model — A Novel Model for
ACID Concurrent Computations®

Déniel B. Rétai®, Zoltan Horvath®, Zoltan Porkolab®,
and Melinda Téth®

Abstract

Atomicity, consistency, isolation, and durability are essential properties of
many distributed systems. They are often abbreviated as the ACID prop-
erties. Ensuring ACID comes with a price: it requires extra computing and
network capacity to ensure that the atomic operations are done perfectly or
they are rolled back.

When we have higher requirements on performance, we need to give up
the ACID properties entirely or settle for eventual consistency. Since the
ambiguity of the order of the events, such algorithms can get very complicated
since they have to be prepared for any possible contingencies. Traquest model
attempts to create a general concurrency model that can bring the ACID
properties without sacrificing a too significant amount of performance.

Keywords: ACID, concurrency, consistency, atomicity, concurrency model,
fault tolerance

1 Introduction

In the case of the microservices architecture [5] when we send a request, it can
initiate some modifications in the global state in a transactional way. Microser-
vices are mainly based on the request-response model. When the Request returns
with no errors, that means the modifications in the global state are done, and the
transaction is over. While if the response is an error, that means there were no

*The research was supported by the UNKP-20-3 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research, Development
and Innovation Fund. The research is part of the ” Application Domain Specific Highly Reliable
IT Solutions” project that has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence
Programme no. 2020-4.1.1.-TKP2020 (National Challenges Subprogramme) funding scheme.

*Eo6tvos Lordand University, Faculty of Informatics, Budapest, Hungary

bE-mail: danielratai@inf.elte.hu, ORCID: 0000-0002-9587-571X

¢E-mail: hz@inf.elte.hu, ORCID: 0000-0001-9213-2681

4E-mail: gsd@inf.elte.hu, ORCID: 0000-0001-6819-0224

¢E-mail: toth.m@inf.elte.hu, ORCID: 0000-0001-6300-7945

DOI: 10.14232/actacyb.288765

436 Daniel B. Ratai et al.

modifications in the global state at all. Requests can make other requests, and
more complex transactions can be assembled.

In a request-response model, the ACID properties come at a high price. The
service which calculates the response has to guarantee that any write operations
arising must be synchronized, committed, and persisted before it can reply with a
response. Of course, on the other hand, if ACID is not a requirement, the service can
be very fast. In this case, the service can just read and write the state of the local
server and answer to the client immediately. Later, the server can synchronize the
writes if eventual consistency is a requirement, but this does not block or decelerate
the original process.

However, it is not just the performance that can cause a problem. It is very
challenging to ensure atomicity itself when we nest the services. Figure 1 shows a
scenario where we have service A calling two other services, B and C. The order of
the network events is marked on the figure. The client sends a request to service
A, which sends requests to service B and C. Service B responds correctly, but C
responds with an error. In this case, we can assume that C has rolled back correctly,
but B should be rolled back as well. There is no mechanism to roll back a request
in the request-response model after it has been responded. Therefore it is hard to
chain more services properly when atomicity is a requirement. We can be sure to
have a proper response if the happy path happens, but if there is an error arising
at some of the chained requests, our system can get easily stuck into an invalid
intermediate state.

It seems there is a hard dilemma between ACID properties and efficiency. The
proposed Traquest model attempts to resolve this dilemma and therefore improve
the efficiency of the ACID systems.

The phrase Traquest [28] comes from the words Request and Transaction. The
core of the idea comes from the microservices architecture, and the Traquest model

How to roll back B?

Figure 1: Nested rollback issue

Traquest Model 437

is something similar to the request-response model. We can send requests to a
Traquest, and the Traquest replies with an answer, but here the answer is not a
simple response message, but rather an established parent-child connection between
the two Traquests with a temporary response, a so-called Trasponse. When a
Traquest gets a request, it can immediately carry out read and write operations on
the local server. It can immediately reply with a Trasponse; however, of course,
that still might take time to synchronize the effects of the operations with other
servers. Therefore Trasponse is only a temporary response.

Before creating the Traquest model, we have examined many of the existing
technologies and solutions, including multitier architectures, actor model based
systems, different consistency protocols, and different papers discussing the limita-
tions of distributed ACID systems. We have found that the current systems have
the strict limitations we described above. We decided to investigate whether it is
possible to create a system based on the idea that a response can have a temporary
nature. The Traquest model was realized during this research process.

We created the concept of the Traquest model, and we also built an experimental
prototype in TypeScript. Adjustments on the model might become necessary later
as further, and more comprehensive implementations will be created in different
programming languages. However, the current results show that the general concept
of the Traquest model is viable. Traquests can provide ACID computations using
magnitudes fewer network messages in some concurrency scenarios than the current
technologies.

This paper is structured as follows. In Section 2, we give an explanation of
the Traquest model. In Section 3, we discuss some state-of-the-art solutions and
how the current technologies were used to solve problems related to the ACID
properties. We explain further the Traquest model through an exemplary case and
compare it to the current technologies. In Section 4, we will highlight the current
challenges and further research directions. Finally, this paper concludes in Section
5.

2 The Traquest model

The request-response model is used on a local level as well and not only between dif-
ferent computing nodes. Asynchronous callback functions can behave equivalently.
We can send the request content and the callback function as an argument, and
the callback function can contain the response in an argument. This mechanism
is often used to wrap network-based request responses, but for local asynchronous
operations as well.

However, callbacks can get complicated when they are heavily used, and we
want to handle exceptional scenarios. To this end in computer science, Future,
Promise, Delay, and Deferred refer to constructs used for synchronizing program
execution in some concurrent programming languages. They describe an object
that acts as a proxy for a result that is initially unknown, usually because the
computation of its value is not yet complete. The term Promise was proposed

438 Daniel B. Ratai et al.

in 1976 by Daniel P. Friedman and David Wise [9] and Peter Hibbard called it
FEventual [16]. A somewhat similar concept Future was introduced in 1977 in a
paper by Henry Baker and Carl Hewitt [3].

Traquests behave most similarly to Promises; therefore, we use them as a base-
line for the explanation. Traquests, just like Promises, are placeholders for a tem-
porarily unknown value. Traquests, just like Promises, can be nested and depend
on each other. However, once a Promise returns with a response, this response
is final, and it cannot be modified afterwards. On the other hand, Traquests can
be strongly bonded together to form a tree structure, a so-called Traquest tree.
A Traquest tree creates the transaction, and if any Traquest fails in the Traquest
tree, all the Traquests are failing. When the Traquests are failing, they are not just
returning an error, but they are ensuring that if they created any modification, it
would be appropriately rolled back so that the global state of the system will not
be affected by half-done transactions. To be able to achieve this, Traquests are
containing some additional mechanisms.

2.1 Structure

To understand how Traquests are working, first, we need to see the fundamental
structure of the state of art Promises.

2.1.1 Promises

Figure 2 shows the fundamental structure of Promises. Deferred describes a yet
unfinished work which is the asynchronous process that has to be done to get the

Promise
belongs to/ \hi-ls
Deferred Handlers
e
Resolvers Then Catch
d
Resolve Reject

Figure 2: Promise structure

Traquest Model 439

final value of the Promise. A Promise belongs to a Deferred. When the Deferred
finishes, it can call different resolvers depending on whether the execution was
successful or some exceptions were arising. If the execution was successful, the
Deferred calls the Resolve resolver; otherwise, it calls the Reject resolver. The
Promise itself is the placeholder of the yet unknown value. It has two handlers to
handle the event when the unknown value becomes known. The Then handler is
responsible for handling the successful resolution of the Promise, and the Catch
handler is for handling the exceptions.

2.1.2 Traquests

Figure 3 show the fundamentals structure of Traquests. A Traquest also belongs
to a Deferred that, similarly to Promises, describes a yet unfinished work. Traque-
sts have handlers just as Promises to handle the event when the Deferred returns.
However, Traquests has a third significant component as well, the Binding mecha-
nism. The binding can permanently bind together Traquests in a parent-child tree
structure. This binding holds until the whole atomic transaction finishes. Like
that, a Traquest tree can act as a single entity, and it can form a complete atomic
transaction, which can be distributed to many computing nodes.

Traquest

S

belongs to .
Deferred .
| has
has \
l \ Handlers
Resolvers \
Resolve Mistake Terminate Then Catch Finally
) Binding
- .
o to —
Children Parent This
Commit Finalize Undo AckCommit AckFinalize Rollback ReExecute

Figure 3: Traquest structure

440 Daniel B. Ratai et al.

The Deferred has the following resolvers. The Response resolver is the same
as the Resolve resolver at the Promises. This should be executed when the asyn-
chronous Deferred process successfully finishes with the proper value. The Mistake
resolver is slightly different from the Reject resolver of the promises. The Mistake
is called when a temporary failure happens. If there is a chance that the failure has
occurred only because of the wrong order of the asynchronous operations, then Mis-
take should be triggered. Mistakes can be undone later, and the Traquests might
rerun in proper order. The Terminate resolver is used in case of final failures. This
resolver terminates the whole Traquest tree and tries to roll back all the Traquests
in the Traquest tree.

The Then handler is the same as the Then handler of the Promises. The Catch
handler is similar to the Catch handler of the Promises, but it is used explicitly for
the mistakes. It can also avoid spreading up the Mistake to parent Traquests or
let it spread further. The Finally handler is called no matter if the Traquest was
properly committing or it was terminated.

The Binding mechanism of the Traquests has the following concepts:

Parent-child binding — When a Traquest had been created, the reference to
the parent Traquest should be defined. If it is not defined, that means the created
Traquest will be the root of the Traquest tree.

Undo — A mistake happens when an exception occurs because the Traquests
are executed out of order. However, it can happen that the Traquest has already
responded with a seemingly correct response, and an out-of-order conflict turns out
only later. In this case, an undoing mechanism can be executed, which rolls back
the necessary Traquests on the affected branch of the Traquest tree and re-executes
them.

Rollback — A callback is provided for the case when the Traquest needs to
revert the changes it has made so far. If the Traquest did not create any changes
directly to the global state, just by calling other Traquests, this part could be
omitted because the rollbacks spread automatically on the Traquest tree.

Finalizing — It is a mechanism used when all the Traquest in the tree have
returned, and the result of the Traquests can be finalized. This happens completely
hidden and automatically when all the Traquests in the tree have returned.

Committing — It is a mechanism used when all the Traquests in the tree have
been finalized, and a final commit can be initiated. This happens completely hid-
den and automatically. The Committing mechanism combined with the Finalizing
mechanism gives a similar process to the two-phase commit protocol [35]; however,
there are differences because the Finalizing and Finalized states are handling the
potential rollbacking Tail Traquests as well.

2.2 States

Promises and Traquests have different states throughout their life-cycle, which de-
scribes their behaviour.

Traquest Model 441

2.2.1 Promises

Figure 4 is a state diagram that shows the possible states of a Promise. In the
case of the Promises, we have three very simple states. We have an Unfulfilled
or Pending state while the Deferred process is running, and the Promise value is
not known. From this state, the Promise can step only to Fulfilled or Rejected
state. This happens when the Deferred process finishes depending on whether an
exception was arising or not.

Unfulfilled

resolve(value) \reject(reason)

Fulfilled| | Rejected|

Figure 4: Promise state diagram

2.2.2 Traquests

Figure 5 shows the simplified state diagram of the Traquests. Traquests have to
handle more complex scenarios; therefore, they can have more different states. For
the sake of simplicity, the Terminated state and some state transitions are not

Waiting

execute(parent?)

Executing . AT=>reExecute()

resolve(value) | \ AC=>undo(reason)

AP=>finalize()

AC=>ackFinalize()

mistake(reason)
IAP=>undo(reason)

AC=>undo(reason)
AP=>undo(reason)

AC=>undo(reason)
AP=>undo(reason)

AP=>commit() \ AP=>undo(reason)

Committing

IAC=>ackCommit() AT=>close()

Committed Ignored

Figure 5: Simplified Traquest state diagram

442 Daniel B. Ratai et al.

shown here, only the most relevant ones which are necessary to understand the
working mechanism of the Traquests. In Figure 5 the explanation for the state
transition prefixes are the followings:

e AC: Automatically triggered by the child Traquest

e AP: Automatically triggered by the parent Traquest

e AT: Automatically triggered by the current (”this”) Traquest
e No prefix: Manually triggered in the Deferred process

As one can see, Traquests are much more complex and have much more states
than Promises have. However, Traquests have only two main manual resolvers, just
like the Promises. When we have nested Promises, and an exception occurs, we
should ensure manually that the proper Reject resolver is called, and it is handled
at the parent Promise [31]. Furthermore, the parent Promise should manually
escalate the exception further by calling its own Reject resolver. Traquests, on
the other hand, are bound together and escalate the Mistakes automatically. A
traditional exception in the Deferred process can be automatically converted into
a Mistake, or a Mistake can automatically come from a child Traquest. In either
case, no manual intervention is needed. Most of the time, it is enough to define only
the happy path in a Deferred process and call the Resolve resolver. Interestingly
this means that even though Traquests are more complex than Promises, still using
Traquests can be even more convenient. To understand more how Taquests work,
let us investigate them state by state in more detail.

Waiting state: The Waiting state is the initialization state of the Traquest. In
this state, the Traquest gets initialized by defining the Deferred process belonging
to it. The Deferred process is not added automatically to the event-loop like in
the case of the Promises [20]; instead, it has to be manually executed. During
the execute call, we need to provide the parent Traquest optionally. If the parent
Traquest is missing, the current Traquest will be the root of the Traquest tree;
therefore, the current Traquest will represent the overall transaction.

Executing state: When the execute method is called on the Traquest, the
Traquest begins to execute the Deferred process, and it steps into the Executing
state. During this state, the Deferred process can create new child Traquests and
bind them to the current Traquest. The transaction can grow this way recursively.

During the execution, the Traquest can be interrupted by parent or child Traque-
sts. The interruption happens if a Mistake arises at the ascending or descending
Traquests. If a parent Traquest has a Mistake, that means the current Traquest
should be ignored, including its children. Therefore if the parent Traquest triggers
an undo operation on the current Traquest, it changes its state to Undoing, and
triggers an undo operation on all the descendant Traquests.

If a Mistake is coming from one of the children of the current Traquest, that
means that the Mistake is still not escalated to upper levels in the Traquest tree,
and the Traquest can try to re-execute itself. In this case, the Tragest steps into
the Restarting state.

Traquest Model 443

The Mistake can come not only from the bounded Traquests, but it can also
happen locally in the Deferred process of the current Traquest. In this case, the
Traquest should roll back its changes; therefore, it has to switch into Undoing state.

Suppose no Mistakes are coming from the bounded Traquests, and the current
Traquest is not running into a Mistake either. In that case, the Deferred process
should call the resolve operation with the proper resulting value when it finishes.
When the resolve operation is called, that means the current Traquest has com-
pleted its desired asynchronous task, and it can respond with the required value;
therefore, the Traquest should step into the Responded state.

Responded state: The Traquest can get into the Responded state only from
the Executing state by the Deferred process calling the Resolve resolver. Before
stepping to the Responded state, the Traquest sends the result value coming from
the Resolve operation to the handler of the Traquest. The handler executes the
callbacks bounded to the Traquest by the Then operation right after the Traquest
steps into the Responded state. However, there is one exception. If the current
Traquest is the root of the Traquest tree, then no handlers are called, and the
Traquest steps into the Finalizing state immediately.

Otherwise, the Traquest waits in the responded state until the parent Traquest
asks for a commit, or a Mistake is coming from any of the bounded Traquests.
Parent Traquests obviously can still be in execution when the current Traquest
responds. However, for synchronization purposes and keeping the system’s overall
consistency, children Traquests can still be in Executing state as well. We discuss
this scenario in more detail in Section 2.6. This means that a Mistake can trigger
an undo operation from any direction. When an undo operation is called on a
Traquest, which is in a Responded state, it should not be able to commit anymore.

If no Mistakes are coming from any of the bounded Traquests, then the current
Traquest waits until it gets a finalize operation from the parent Traquest. The
Traquest can and should trigger a finalize on itself only if the current Traquest is
the root Traquest.

Finalizing state: When a finalize operation is triggered on a current Traquest
by the parent Traquest and the current Traquest is in the Responded state, the
current Traquest switches to the Finalizing state and calls the finalize operation on
its child Traquests. If there are no child Traquests, the current Traquest steps into
Finalized state and sends an ackFinalize operation to the parent Traquest.

If the current Traquest is still in Executing state, it makes no action. In this
case, when the Deferred process returns, the parent Traquest calls again the finalize
operation on the current Traquest; hence the finalizing mechanism can continue.
This scenario happens with the Tail Traquests, which we will discuss later in more
detail.

An Undo operation can come from any bounded Traquests during the Finalizing
state.

Finalized state: The Traquests step to Finalized state when they get an
ackFinalize acknowledgement from all of their children. If the Traqgest steps into
the Finalized state, it calls an ackFinalize operation on its parent. If it has no
parent — meaning that the current Traquest is the root of the Traquest tree — the

444 Daniel B. Ratai et al.

Traquest steps in to Committing state and sends a commit operation to all of its
child Traquests.

Undo operation can come only from a parent Traquest during the Finalized state
because this state means that no descendant Traquests are being in Executing state,
which could serve as a root for launching the undoing chain.

Committing state: When a Traquest steps into the Committing state, it
triggers a commit on its child Traquests and waits until it gets an acknowledgement
from them. When all the children have responded with an acknowledgement using
the ackCommit operation, the Traquest steps into the Committed state. If the
Traquest has no children, it immediately steps to the Committed state without
waiting for any other processes or Traquests.

Traquests cannot roll back if the Traquest has already stepped into the Com-
mitting state.

Committed state: When a Traquest gets acknowledgements from all the child
Traquests, it steps into the Committed state. The Committed state is a final state,
meaning that the life-cycle of the Traquest was finished.

At the Response state, we discussed that if the current Traquest is the root
Traquest the callbacks bounded to the handlers are not called. The root Traquest
calls any handlers only at the end of its life-cycle. Therefore, when the root Traquest
enters the Committed state, it calls the callback bounded to the Then handler,
responding the final result of the whole transaction.

Undoing state: When a Traquest enters the Undoing state, that means that all
the modifications in the global state done by the current Traquest or its descendants
should be rolled back. Traquests can enter the Undoing state from almost any
state. The exceptional states are the Waiting, Committing, Committed, Ignored,
and Terminated states. From Waiting, there would be no point in entering the
Undoing state since without executing the Deferred process, there cannot be any
modifications to be rolled back.

The Committing state is already part of the committing process. Here all the
temporary values are finalized. Suppose any errors are happening at this phase.
That means a more serious issue that can affect the consistency. Therefore rolling
back cannot be an option from the Committing state.

The Committed, Ignored, and Terminated states are the final states of the
Traqgest, and they cannot be rolled back. In all the other states, except the five
states mentioned above, stepping to the Undoing state is possible.

Stepping to the Undoing state can be triggered manually in the Executing state,
during the execution of the Deferred process — we can use the mistake operation
for this purpose — or it can be triggered automatically by the bounded Traquests.
The bounded Traquests can use the undo operation for initiating a rollback and
trigger the current Traquest to step into the Undoing state. However, when the
current Traquest is still in Executing state, and an undo operation comes from its
child, the Traquest can still be re-executed, and in this case, the Traquest will step
into the Restarting state.

Traquest Model 445

Traquests can spread up the undoing chain even if they already have responded.
This is important because the undo operation means that the responded value is
not valid anymore; therefore, the parent Traquest, which already consumed this
value, should be conflicted.

Ignored state: The Traquest steps into the Ignored state from the Undoing
state when it has finished calling all the undo operations on its bounded Traquests.
The Ignored state is a final state, and it means the life-cycle of the Traquest has
ended.

Restarting state: When the current Traquest gets an undo operation from its
child Traquest while the current Traquest is still in the Executing state, the Deferred
process of the current Traquest should be re-executed. In the Restarting state, an
undo operation is called on each of the child Traquests, the rollback callback is
called for the current Traquest — if it was defined — to roll back every state change
that has been made so far. When the rollbacks are finished, a reExecute operation
is called on the current Traquest, which sets back the state of the current Traquest
to Executing, and re-executes the Deferred process.

Terminated state: The Terminated state was not discussed in depth so far,
and it is missing from Figure 5, because it implies high complexity. Figure 10
in the Appendix shows all the possible states and state transitions a Traquest
can have, including the Terminated state. The Terminate state can be initiated
by calling the terminate operation of the Traquest. The Terminated state means
that an unsolvable error has happened, and the system’s consistency cannot be
guaranteed.

When a Traquest enters the Terminated state, it tries to roll back itself and
calls the terminate operation on all its bounded Traquests.

2.3 Timestamps

Traquests contain a logical timestamp of their creation to be able to resolve con-
flicts. The timestamp of a Traquest inherits all the timestamps of the ascendant
Traqgests. This means that the timestamp of a parent Traquest represents the log-
ical time of its whole branch when compared with Traquests from other branches.
The timestamp of an ascendent Traquest is always earlier than the timestamps of
descendant Traquests. The order of the sibling Traquests is decided in the order of
their creation.

To clarify how the order of the Traquests should be considered, Figure 6 shows
two Traquest trees, and on the horizontal axis, their physical time of creation is
represented. In this case, the physical order of the Traquests is the following:
T1; T2; T3; T4; T5; T6; T7; T8, T9. However, since Traquests trees represent
atomic operations, and the branches of the trees represent atomic sub-operations,
the logical order of the Traquests cannot be equivalent to the physical order. The
logical order of the Traquests in this particular case is the following: T1; T3; T6;
T8; T4; T7; T2; Th; T9.

446 Daniel B. Ratai et al.

Figure 6: Order of Traquests

2.3.1 Current logical timestamps

There are already several solutions for creating timestamps and clocks in a dis-
tributed environment when more processes are running parallelly. The Lamport
timestamp [27] algorithm or the Vector clocks [37] algorithm are designed to handle
timing issues when more processes are existing at the same time which can interact
with each other. In the case of the Lamport timestamp, creating the timestamp
is very fast and easy but compare two timestamps is very hard and costs a lot of
computation time. For the comparison, we also must decide if there is a joining
path between the processes. It is not possible to use it for the Traquests. With
the vector clocks, the result is similar. However, at the vector clocks, creating the
timestamp is highly costly because we need as many dimensions for the clock as
many processes we have. In our case, every Traquest is a process, and there can
be millions of them or even more. Furthermore, Traquests can be created in real-
time, which means at the point where we should give a timestamp for a Traquest,
we do not even know how many processes should we consider to create a Vector
Clock based timestamp. Therefore, the Vector clock works neither for the Traquest
model.

2.3.2 Hierarchical timestamp

We need a hierarchical time stamping mechanism which is a more special case. The
naive algorithm for creating a required hierarchical timestamp would be simply
using an array with integers. All the Traquest can count how many children they
have already, and whenever a child is created, they increase the counter; therefore,
each child knows where they are in the queue of the order. The root Traquests can
get their number from a global counter, from the Unix time, or a combination of the
two. The array used as a timestamp can store all the ancestor’s order numbers and
also its own order number in the last record. Figure 7 shows the naive algorithm
timestamps for the Traquest tree example presented in Figure 6.

Traquest Model 447

Traquest timestamp
global——[unix]
—T1 —[unix, @]
—T3———[unix,0,0]

|:T6——[unix,0, 0,0]
T8——[unix,0,0,1]

—T4——[unix,0,1]
L17—[unix,0,1,0]
—T2 —[unix,1]
—T5———[unix,1,0]
—T9 [unix,1,1]

Figure 7: Naive hierarchical timestamps

In the example, we supposed that all the Traquests were created very close in
physical time; therefore, they all have the same Unix time in the first record. After
the global timestamp, all the timestamps contain their ancestors’ timestamps; they
are just extending it with their own order number. For flat hierarchies, it works
well because there are only a few levels, and the length of the timestamp is short.
However, the timestamps can get very long when the hierarchy is tall.

To address this issue, we have created a new timestamp algorithm that can
reduce the necessary size of the timestamp drastically. Explaining our research on
the optimized timestamps in more detail would be complex, and it is out of the
scope of the current paper. Therefore, we rely on the naive timestamps for the
explanation of the Traquest model.

2.4 Data protectors

We introduced that Traquests are forming a tree structure. However, a tree struc-
ture by itself would never result in any conflicts, which would be the core of the
Traquest model to handle them effectively. Conflicts are happening when two dif-
ferent processes are trying to read or write the same part of the global state. To
this end, Data protectors were constructed. Data protectors are entities responsible
for managing a given segment of the global state. They protect the given global
state particle from conflicting reads and writes.

The goal of each branch of the Traquest tree is to interact somehow with the
global state. Therefore, each branch, at some point, ends up in a Data protector.
Traquests can call CRUD [33] operations on the Data Protectors. When a Traquest
calls a CRUD operation to a Data protector, the Data protector generates a new
Traquest containing the operation and replies with the generated Traquest. This
new Traquest can be bounded to the original Traquest as a child; therefore, it
becomes part of the Traquest tree.

448 Daniel B. Ratai et al.

When more Traquests are using the same Data protector, the Data protector
can use the logical timestamps of the Traquests to decide which read or write
operation should be answered first. If a Traquest with an earlier timestamp comes
after a Traquest with a later timestamp has been already responded to, the Data
protector can call the undo mechanism of the already responded Traquest and serve
the newly requesting Traquest. Therefore, the Data protector can efficiently resolve
any conflicts.

Furthermore, because all the conflicts are recognized and resolved at the Data
protectors, most of the conflict resolving features of the Traquests are used only
by the Data protectors themselves. Data Protectors can trigger a Mistake if they
have conflicting Traquests, and they can define the callback for the Rollback. This
way, the increased complexity of the Traquests can be mostly hidden from the
developers, and they do not need to care about the failure handling parts at all,
except taking care of the Finally handler of the root Traquest. As a result, using
Traquests can be as straightforward as using Promises or even more.

Data Protectors are the only entities who can contact directly to the global
state storage. Therefore, the way we physically store the data can be abstracted
away. Data Protectors can store the state using any databases, the local storage,
the memory, or even any mixture of these solutions. Using traditional databases
can be helpful to provide compatibility with other systems; however, in this case,
we should be aware of the risk of corrupting the consistency of the global state.
The most efficient solution is to use the local storage or memory for storing the
state.

2.5 Consistency and Fault tolerance

Traquests interact with each other using serializable data constructs only. There-
fore, Traquests can be located on different computing notes as well, and they still
can interact. Fault tolerance requires the replication of the different particles of the
global state to several computing nodes. Traquests are perfect for creating replicas
of a desired global state particle and consistently managing them. It is enough to
add new Traquest tree branches to each write operation that replicates the opera-
tion on different computing nodes. Thanks to the atomic property of the Traquest
tree, the state will always remain consistent. For the read operations, we do not
need such replication since the writes are already ensuring consistency.

2.6 Tail Traquests and network buffering

Tail Traquest is not a new separate feature in the Traquest model; it is instead a
useful design pattern. Tail Traquests are simply Traquests where the Then handler
of the Traquest is not defined. This implies that the parent Traquest of a Tail
Traquest can finish its Deferred process without waiting for the current Traquest
to finish with its task. This also means that the resulting value of a Traquest is
independent of its child Tail Traquests.

Traquest Model 449

Tail Traquests are primarily helpful for synchronizing the modifications in the
global state made by the Traquest tree with other servers in a consistent way for
reaching fault tolerance. Because Tail Traquests are not blocking the execution
of the core logic of the Traquest tree, the overall Traquest tree can run very fast.
Suppose every part of the global state that needs to be used is replicated locally.
In that case, the whole logic of the Traquest tree can even execute in-memory
time, and the network messages for the synchronizations are buffered automatically.
They can be synchronized lazily in only two round trip messages for finalizing
and committing. This optimization can happen even in the case of very complex
algorithms, when there are many global state reads and writes depending on each
other.

The communication of the Traquests between different computing nodes and the
buffering can be separated and managed automatically. Therefore, the protocol
for communication is abstracted away. The background implementation can use
TCP [17], UDP [39], REST [21], WebSocket [8], WebRTC [18], long polling [19],
SSE [36] or any other technologies what the infrastructure allows. This leaves
many possibilities for optimizations. For example, if two nodes are communicating
less frequently, they can use REST calls. However, if there are two nodes with
frequent communication between them, they can switch to WebSocket. This way,
the Traquest model attempts to create a new layer on top of the OSI layers [14],
where the network communication itself can be abstracted.

2.7 A basic exemplary case

We have discussed how the basics of the Traquest model are working. To have a
deeper understanding, let us examine how we can increment a simple integer value
in the global state.

2.7.1 Basic scenario with no conflicts

To examine a basic scenario with no conflicts, let us discuss a simple incrementation
of a value in the global state. In the Appendix Figure 11 illustrates such an example
of an incrementation. The incremented global state variable is named i. The global
process creates a Traquest for the transactional incrementation. A ”T” prefix
marks the Traquests, and their postfix is their logical timestamp. "DP_i” is the
Data Protector of the i variable, and ”Storage_i” is the physical location of the i
variable. The ”Storage_i” can be a local storage, it can be stored directly in the
memory, or it can represent any kind of database as well. The sequence diagram
notes are marking the actual states of the Traquests. The global process creates the
”T1” Traquest, and the other two Traquests are generated by the Data Protector,
one for reading the i variable and one for updating it. The diagram shows the
operations between the entities. The initial value of the i variable is 10.

450 Daniel B. Ratai et al.

2.7.2 Conflict resolving

To examine how Traquests behave in a conflicting scenario, let us continue with a
similar incrementation, but in this case, we have two conflicting global processes
(e.g., two threads). In the Appendix Figures 12a and 12b illustrate such an example
of a conflicting incrementation. The first global process begins an incrementation
on variable i, and the second process begins a read on the same i variable only a
little later. In this case, we have two Traquest trees with T1 and T2 Traquests at
the root. The T1 tree performs a read on variable i, next the T2 tree performs a
read, and after that, T1 performs the write with the incremented value. This is a
conflicting scenario because the T2 tree should read the value of i only after the T1
has completely finished with the incrementation.

Figures 12a and 12b in the Appendix show that despite the conflict, the global
processes get only the correct result at the end, and the correct final global state
value is persisted on the storage. Examining more the ?DP_i” Data Protector, it is
also visible that the Data Protector reads and writes to the storage only once. It is
interesting if we consider that it had to serve several CRUD operations coming from
the Traquests. Data Protectors can effectively aggregate those CRUD operations
and reduce the number of CRUD operations necessary to call on the storage itself.
This has higher importance if we consider that the storage is a component that
can be located on different computing nodes; therefore, calling an operation on the
storage can be the slowest element of the overall process.

3 Related work

3.1 Current technologies

There are many technologies for providing ACID concurrent systems. Hereby we
discuss the most relevant and most widely used directions.

3.1.1 Multitier architectures

The ”Layers” architectural pattern has been described in various publications [6],
and it is the most widely used pattern in the case of enterprise web applications.
When the Business layer executes the desired algorithm, it continuously has to
access the Data access layer to read the global state and write back the changed
state. When the algorithm requires only a few iterations depending on each other
with the Data access layer, this causes no problem. On the other hand, each read
and write requires a roundtrip on the network when there are several depending
steps. Although many databases — e.g., most of the SQL databases — can easily
handle atomic transactions, the number of the necessary roundtrips implicates a
massive limitation in the overall performance. This is a strict limitation in any
architecture where we separate the location where we execute the business logic
from the location where we store the global state.

Traquest Model 451

To give an example, one might select any use cases where there are several
dependent reads or writes to any databases to compare the multitier architectures.
One of those examples is the Geographical Information System using large point
clouds. For this purpose traditional PostgreSQL [23] is often used. Using space
partitioning algorithms is a necessity to be able to manage the point cloud. Octree
[22] is such an algorithm that can let us manage the points efficiently and easily.

Figure 8 shows an example when a new point is added to an Octree. We
assumed that adding the new point requires searching down the Octree structure
for ten levels. We assumed that the whole data set is replicated to two servers.

Database servers cannot execute algorithms in multitier architectures. They are
only responsible for storing the data. The application is executed by the application
server. Therefore, each node has to be first read to the application server from one
of the database servers. Each node refers to its children; therefore, all the parents
should be read before the child can be reached, and pipelining [29] cannot be used.
Furthermore, to ensure atomicity and consistency, each node must be checked and
locked on both servers. The example showed in Figure 8 is a simplified one. In real
life, there can be much more and complex network messages between the servers.
Still, even in this simplified case, we can count up to 44 network messages between
the servers.

This example shows that any solutions built on using databases can have strict
performance limitations if the operations sent to the database are depending on
each other. If they are independent, buffering and pipelining can be used, and many
queries can be sent within a single RTT (Round Trip Time) over the network. In
this case, the number of network messages can be O(1).

Client Application Server Data Server 1 Data Server 2
addPoint(x,y,z)
getNode(null, 0)
T checkNode(null,0)
ackNode(null,0)
response(node0)
getNode(node0, 3)
1] checkNode(node0,3)
ackNode(node0,3)

response(node1)

getNode(node3, 7)

checkNode(node3,7)
ackNode(node3,7)

response(node4)
createNodes([node5..node12])

-

synchNodes([node5..node12])
ackNodeSynch()

response(OK)

response(OK)

Client Aopplication Server Data Server 1 Data Server 2

Figure 8: Add point to an octree in a multitier architecture

452 Daniel B. Ratai et al.

However, in many cases, we need to know the result of a query to be able to
send the following query to the database. In such cases, the number of network
messages grows on a O(n) scale.

3.1.2 Serverless architecture

Serverless is one of the most trending architecture types nowadays. Serverless
computing has emerged as a new compelling paradigm for the deployment of ap-
plications and services. It represents an evolution of cloud programming models,
abstractions, and platforms and is a testament to the maturity and wide adoption
of cloud technologies [4].

The serverless architecture is built on using stateless cloud functions in a man-
aged way. The developer does not need to manage any server-side infrastructures.
The number of cloud functions can scale horizontally automatically. These cloud
functions can call other managed database systems to reach out to the application’s
global state. Serverless is getting more and more traction, and all the leading cloud
providers are offering their serverless solutions: AWS Lambda [2], Google Cloud
Functions [11], or Azure Functions [24].

However, in serverless architectures, the cloud functions have strict performance
limitations thanks to the stateless nature of the cloud functions. The cloud func-
tions cannot store any part of the global state. They need to call a database, a
distributed file system, or other external services for that purpose. Therefore the
cloud functions cannot be executed in-memory time, and they need to commu-
nicate on the network to finish their task. This means that from a performance
perspective, they share the same limitations with the multitier architectures.

3.1.3 Actor model

Carl Hewitt first described the actor model in 1973 [15]. Actors can execute business
logic and store state simultaneously; therefore, they do not share the limitations
of the classical multitier architectures. Actors are excellent for solving problems
where we have many independent processes that can work in isolation and only in-
teract with other Actors through message passing. This model fits many problems.
However, unfortunately, the actor model is not a favorable model for implementing
truly shared state [34], when we need to have a consensus and a stable view of
state across many components. Actors can get information about each other only
through messages; therefore, it is hard to maintain atomicity.

The Actor model is a more general concept. Many algorithms can be imple-
mented using Actors. Therefore we cannot directly compare the Actor model itself
with the Traquest model because it depends on the algorithm that we create using
the Actor model. However, there are standardized solutions for creating atomic
transactions using the Actor model. The Akka toolkit suggests Transactors [34]
for creating transactions. Under the hood, it uses a CommitBarrier, similar to a
Java CountDownLatch [26] which is a blocking mechanism. Therefore, Transactors
also have no specific timestamping mechanism. They have to lock and await each

Traquest Model 453

change in the global state; therefore, we would not have fewer network messages
with the Transactors than what multitier architectures have.

3.1.4 Consistency protocols

The Traquest model can ensure atomicity and is also a promising way to ensure
consistency. Therefore, hereby we take the most relevant consistency protocols [32]
under investigation respective to the Traquest model.

Continuous consistency: Continuous consistency ensures that the numerical
deviation of a specific global state particle does not go above a certain threshold on
the different computing nodes. This can be applied only in the case of numerical
values, and it ensures only an approximate consistency; therefore, it is out of scope
for the Traquest model.

Primary-Based Protocols: Primary-Based protocols provide proper con-
sistency for an arbitrary type of data. To keep the data consistent, they have to
synchronize each write at least with the primary server. For instance, in such a
case, the algorithm has to be blocked until a read it depends on gets a confirma-
tion from the primary server. This requires many iterations of roundtrip messages;
therefore, Primary-Based Protocol implies a strict limitation in the performance.

Quorum-Based Protocols: Quorum-Based Protocols have very similar lim-
itations to Primary-Based Protocols. Each read and write operation must be con-
firmed by other computing nodes before the executed algorithm can rely on the op-
eration and step forward. The only exception is the Read-One, Write-All scheme.
In this case, it is enough to read the local state of the data; however, it requires
even more messages to write synchronizations. This scenario can only be suitable
in the case of very read-heavy applications.

The mentioned Primary-Based and Quorum-Based protocols share the same
problems with the Transactors and multitier solutions. Each read or write should
be crosschecked with other servers before we can rely on the locally stored data,
and the locks are blocking the process. Therefore, these protocols cannot reduce
the necessary network messages either.

3.2 Traquest model compared to the current technologies

In the following, we will discuss the exemplary GIS-octree case described in Section
3.1.1 to understand more and compare the Traquests.

With the Traquest model, we do not need a persistence layer because the Traque-
sts themselves can already ensure the ACID properties. The data protectors can
store the global state on the local storage or even in the memory. Therefore, there
is no need for network communication for the reads in the case of an optimal topol-
ogy. Moreover, write operations do not need network communication either, only
for synchronization, which can be buffered and postponed. This way, all the net-
work events can be done in only three RTTs. This results in O(1) — or even less
depending on the proportion of reads and writes — number of network messages
even for operations that depend on each other.

454 Daniel B. Ratai et al.

Client S1 52
addPoint(x,y,z)

createNodes(node10..node17)
resolve()
finalize()
ackFinalize()

commit()
ackCormnmit()

response(0K)

Client 1 52

Figure 9: Add point to an octree in a Traquest based architecture

Figure 9 shows the same use case that was presented in Figure 8, but it uses
the Traquest model. We do not need to use separate application and data servers
since the Traquest model has constructions for both processing and storing. We
have two servers for storing the replicated data on two different physical computing
devices, just like the multitier example. As we discussed earlier, Traquests do not
need to synchronize the read operations because if a conflict arises, the responded
value can be later undone. Furthermore, the writes can also be aggregated and
buffered and be sent in one message on the network. In this particular case, there
are only six network messages between the servers. Compared with the optimistic
estimation of 44 for the multitier architectures, this is a significant reduction. This
difference is even bigger if there are more dependent iterative operations necessary
for the database. For example, suppose we would have a graph as an example, and
we wanted to find the shortest distance between two points. In that case, there
could be thousands of dependent operations to the database, but with the Traquest
model, we would still need only six network messages.

Here we need to emphasize that this optimal scenario is valid only if the nec-
essary particles of the global state have replications locally. These numbers also
depend on the actual infrastructure topology, the used components, the concrete
use case, and many other factors.

However, even if not every data is available locally, the execution of the necessary
Traquest tree branches can be delegated to other servers since all the servers are
running the Traquest environment. Therefore the location of the processing can
move to the data location and not backwards. This means much less communication
over the network, even in this case.

Suppose we have a worst-case scenario, where the data stored over the servers
is randomly fragmented. In that case, the number of the messages in the Traquest
model can grow on a O(n) scale, which is the best-case scenario for the multitier
architectures. However, this would mean already an unrealistic and completely
randomized worst-case topology. In general, we can say that Traquests has the
potential to reduce the network load by magnitudes.

Traquest Model 455

Table 1: Comparing the Traquest model

Case # Circumstances Response type
Concurrency Dependency Topology Operations Final Temporary
1 Optimistic Independent Ideal Read only 0(0)

2 Optimistic Independent Ideal

3 Optimistic Independent Read only

4 Optimistic Independent

5 Optimistic Ideal Read only !
6 Optimistic Ideal

7 Optimistic Read only

8 Optimistic

9 Independent Read only !
10 Independent

11 Independent Read only

12 Independent

13 Read only !
14

15 Read only

16

Comparing the Traquest model with the existing technologies and models is
challenging because there can be many different distributed scenarios. Table 1
shows a more complex comparison of the Traquest model. We showed four differ-
ent kinds of circumstances that can highly influence the properties of a distributed
system. The ”Concurrency” column shows whether the examined distributed sys-
tem has an optimistic or pessimistic concurrency scenario. We consider a scenario
optimistic when there are no conflicts or the global state operations are executed in
proper order or affect different records of the global state. In a pessimistic scenario,
all the global state operations are executed in reverse order on the same global state
records; therefore, we have the highest possible amount of conflicts. Realistically,
most the distributed systems are much closer to the optimistic scenario.

The ”Dependency” column shows whether the global state operations are de-
pendent on each other. They are dependent if a global state operation has to await
a previous one to be executed. For instance, incrementing a value is a dependent
operation since the value first has to be read to increment it.

The "Topology” column shows whether the topology of global state particles is
ideal or not. The topology is ideal if all the corresponding global state particles
are stored on the same servers; therefore, the processes can reach them at one step.
The topology is random if the global state particles are spread across the servers
without considering the probability of them being used together. For instance,
consistent hashing used for sharding by many of the most popular databases (AWS
DynamoDB [7], Redis [30], etc.) creates such a random topology.

The ”Operations” column shows whether the examined processes are write-
heavy or they only contain read operations.

456 Daniel B. Ratai et al.

There are two ”Response type” columns in the table. The Traquest model is
built on introducing the temporary responses. As we described earlier, the Traquest
model can collect all the conflicts and resolves them lazily in a buffered way. The
column ”Final” refers basically to all the currently existing technologies (multitier,
serverless, actor, etc.) where the response to a request is final; therefore, all the
conflict resolution must be finished in advance. It is usually done by using a locking
mechanism. The ” Temporary” column refers practically to the Traquest model as
it introduces the temporary responses. However, we do not exclude the possibility
that later new models or concepts will arise and utilize this idea as well.

The limitation in the performance of a distributed system is usually coming
from the overall time needed to get network messages from one computing node to
the other. A larger amount of data can be sent over the network relatively fast in
a buffered way, but when there are more messages, each message has a roundtrip
time and an overhead. Also, in-memory calculations are magnitudes faster than
network communication. Therefore, to compare the Traquest model, we choose the
necessary number of messages compared to the number of global state operations
as the primary indicator for the performance of the distributed system.

The rows in the table describe different cases respective to the different circum-
stances. The last two columns show how the necessary number of network messages
is growing as we increase the global state operations. The cells with green back-
ground mean easier circumstances or better performance, and the red background
table cells have the opposite meaning. Table cells with white background mean
no significant difference between traditional architectures and the Traquest model.
The exclamation marks at the end of Case 5, 9, and 13 highlight that the Traquest
model performs better not only by one but also by two magnitudes.

When the global state operations come strictly in order, they are independent,
and the topology is ideal, the traditional databases can use pipelining. In this
ideal scenario, the read and write operations can be sent over one single network
message. This implies that at Case 1 and 2, the number of messages can scale on a
O(1) level ideally. In all the other cases, there is at least one network message per
global state operation necessary. When the operations come entirely out of order
and have a pessimistic concurrency scenario, traditional architectures using final
responses still need only O(n) messages. However, they also need to use locking
mechanisms actively. This slows down the execution significantly. We did not show
this effect in the table because we assumed that the servers could utilize this freed
resource for other tasks or processes.

With the Traquest model, the processing and storing of the data can be per-
formed on the same server, supposing we have read operations only and the topology
is ideal. Therefore, in Case 1, 5, 9, and 13, there is no need for messages on the
network at all. This means the number of the messages scales on a O(0) scale. In
an ideal case, when there are writes, the Traquest model can immediately process
the writes in-memory time and postpones the conflict resolving and data replica-
tion lazily to buffer them to one single message. The committing mechanism runs
in a buffered way as well, meaning that Case 2 and 6 can scale on a O(1) level. In
the worst cases, the Traquest model needs O(n) network messages, except when we

Traquest Model 457

need to consider pessimistic concurrency. When we have pessimistic concurrency,
random topology, and write-heavy global state operations, the Traquest model can
require O(n?) number of messages. There is a big difference between read and
write operations because reads do not generate conflicts thanks to the ability of the
Data protectors to store the history of the global state records and serve the read
operations, respectively.

We can conclude that the Traquest model performs better than the traditional
architectures when considering some level of topology optimization and a more
optimistic concurrency scenario. In this case, the advantage can reach several
magnitudes. The Traquest model is not ideal when there is a limited amount of
global state records getting many concurrent, and conflicting writes or the topology
of the global state records is random.

3.3 Comprehensive solutions in the literature
3.3.1 Consistency Choices in Distributed Systems

Gotsman et al. [12] give a comprehensive overview of the consistency issues and
the compromises that should be considered when designing a distributed system.
It argues that only the necessary level of consistency should be used to avoid un-
necessary loss in the performance. Using different levels of consistency in the same
distributed system in such a mixed way is called hybrid consistency. The authors
have designed a modular methodology to help developers decide the necessary level
of consistency, and they presented proof for the methodology.

Despite the comprehensiveness of the paper, the different consistency issues are
all discussed on the database level. All the consistency issues are discussed as
database-related issues. This pattern can be recognized in the literature in general
since consistency problems are associated with the consistency of the global state,
and most of the distributed systems are managing the global state in the persistence
layer. On the other hand, Traquests can ensure consistency — and atomicity —on the
data processing level, not only on the data storage level. This is a major difference
that allows a significant leap forward in the potentially reachable performance.

The authors of the paper also discuss the usefulness of hybrid consistency strate-
gies. Through the enhanced performance, the Traquest model can highly reduce
the consistency level dilemma and reduce the necessity of using hybrid strategies.
Nevertheless, the Traquest model still supports hybrid consistency implicitly. When
we wish to create strong consistency, we can build a fully bound Traquest tree as
an atomic operation, and all the state changes and replica synchronization steps
will remain strongly consistent.

However, we are not always restricted to define the parent of a Traquest. This
way, we can separate different branches from the Traquest tree, and we can create
less consistent operations to gain more performance. Although, in the Traquest
model, it can rarely have clear benefits because strong consistency can already per-
form equally fast. Separating Traquest trees can be beneficial when we need to face
highly conflicting use cases. In such a pessimistic concurrency case, the continuous

458 Daniel B. Ratai et al.

rollbacking of the branches could slow down the execution of the Traquest tree, and
hybrid consistency can be an effective solution.

3.3.2 Performance of Transactional Distributed Systems

Eric Brewer introduced the idea that there is a fundamental tradeoff between con-
sistency, availability, and network partition tolerance. This tradeoff, known as the
CAP [10] theorem, has been widely discussed ever since. Some of the interest in
CAP derives from the fact that it illustrates a general tradeoff in distributed com-
puting: the impossibility of guaranteeing both safety and liveness in an unreliable
distributed system.

Ahsan et al. [1] discuss the CAP theorem in more depth. The authors highlight
some of the limitations in the practical usage of the CAP theorem, and they propose
a new impossibility theorem called the CAT theorem.

The paper refers to Jim Gray’s paper from 1996 [13] which showed that the
rate of transaction aborts increases at least proportional to the square of the TPS
(throughput) of the system, and the third to the fifth power of the number of
actions in the transaction.

The Traquest model cannot violate the CAP theorem either, but it can provide a
workaround. The Traquest model can inherently provide consistency and partition
tolerance. Transaction availability is also basically provided thanks to the Tail
Traquests. Availability is provided for the whole transaction as well; just the final
commit of the root Traquest has to be awaited. We will have the correct result,
and only the response time can be higher for the final commit if the writes need to
be synchronized.

The workaround nature of the Traquest model for the CAP theorem confirms
that alternative and more practical impossibility theorems can be essential. The
CAT theorem stands for Contention, Abort Rate, and Throughput. The Traquest
model tries to keep the abort rate minimal, thanks to introducing the temporary
mistakes. If an exception arises, that would typically trigger the abortion of the
whole transaction. Instead, in the Traquest model, only the affected Traquest tree
branch gets aborted, rolled back, and re-executed. Therefore the Traquest model
balances between Contention and Throughput.

In the Traquest model, resolving a conflict is relatively expensive, thanks to
the undoing mechanism. Therefore, the Traquest model shows the most significant
potential in the case of optimistic concurrency cases. This refers to cases where
we can assume that most of the operations are not conflicting. We can say that
regarding the CAT theorem, the Traquest model prefers Contention and low Abort
Rate over Throughput. However, this decision is not architecturally predefined.
When the system gets fewer conflicting concurrent operations, it automatically
achieves higher throughput.

Traquest Model 459

4 Self-reflection and further research

4.1 Current status

To be able to verify the Traquest model, we have built an experimental prototype
in TypeScript. The Traquest model itself has no language dependencies. It can
be implemented practically in almost any programming language. However, using
TypeScript gave us more benefits in the current phase of the research. The concept
of Promises is highly used in JavaScript. Typescript is a superset of JavaScript [25];
therefore, it simplified the experimentation process with Promises and Traquests.
The flexibility of JavaScript and the strong typing, the strictness, and the expres-
sivity of TypeScript made it an ideal solution. Furthermore, TypeScript compiles
to JavaScript, which can be executed on the client and server side, enabling the
experimentation with hybrid architectures balancing between cloud, edge, and peer
to peer.

Building this experimental prototype helped clarify that the general concept
of the Traquest model is feasible and viable. We could try the different state
transitions, callbacks and write unit tests and integration tests to verify whether
the Traquests behave as expected. The functional tests have worked as they were
expected, and they gave a positive result. However, the non-functional tests gave
a slower execution time than we were expecting. The complete correctness of
the final version of the model can be verified only after more tests at a larger
scale or a complete formalization of the model. This requires further research and
optimization. However, we expect no significant changes in the general concept.
Only slight modifications are expected for edge cases we could not consider in
advance. These edge cases also might vary slightly depending on the programming
language used for the implementation.

4.2 Local boilerplate

One of the main disadvantages of the Traquest model is that it increases the com-
puting power necessary on a local level. Managing all the Traquests, calculating
the timestamps, maintaining all the states can consume significant computing. The
non-functional tests of the Traquest model clearly showed this issue. When we cre-
ated only simple standalone Traquests, then 100,000 Traquests could be executed
in 460 msec. However, when we had a more complex Traquest tree where we cre-
ated a binary tree from the Traquests, we measured 990 msec to execute only 5,998
Traquests which means less than one Traquest/msec.

Thanks to the results of the non-functional tests, the current focus of our re-
search is to optimize the Traquests performance.

Some parts of this increased computing resource consumption come from the
programming language used for the prototype implementation. Namely, if we dy-
namically change the schema of an object in runtime, the V8 JavaScript engine
changes to a much slower general implementation in the background. We mea-
sured that this deceleration can be even on a 100X times slower level. We have

460 Daniel B. Ratai et al.

built many new concepts to mitigate this issue. To describe them in detail would
be out of scope for the current paper, but we mention the most important ones.
We have created a custom Promise implementation which we measured to be 30X
times faster than the standard JavaScript Promise implementation. We also cre-
ated a custom callback mechanism which we measured to be around 14X times
faster than the standard JavaScript anonymous callbacks. We also prepared a sec-
ond prototype of the Traquest model, avoiding object schema changes. With these
optimizations, we could significantly accelerate the Traquests and execute 100,000
standalone Traquests in 54 msec.

Some parts of the increased computing resource are coming from a more general
algorithmic level. We have also conducted more research that would be out of scope
to discuss in more detail, but we mention the most significant achievements. One
of the most resource-consuming parts of the Traquest model is the hierarchical
timestamping mechanism. We highlighted this issue in Section 2.3.2. To address
this, we created a new timestamp algorithm what we named Interval Timestamp,
which uses a logical time interval to define inheriting timestamp relations instead
of arrays used by the naive algorithm.

We plan to expand the research on aggregating the Traquests that can be ex-
ecuted sequentially. If a group of Traquests is executed by one single thread, that
means there can be no conflicting operations from elsewhere; therefore, they could
be handled as one aggregated Traquest. This optimization could reduce the execu-
tion boilerplate of the Traquests almost completely. Only the Traquest communi-
cating on the network would break this aggregation and end up in physically new
Traquests.

After this research phase, we will have a final Traquest implementation, and
we will be able to test Traquests in larger quantities. This will let us create a
more rigorous validation of the Traquest model and make more definitive perfor-
mance tests comparing Traquests with architectures based on the currently existing
technologies.

The Traquest model in its current status is already a unique approach utilizing
the idea that a response to a request can contain temporary information. A general
system can be built based on this principle. This system can postpone synchro-
nization and conflict resolution phases lazily, enabling us much more buffering on
the network and in-memory time speed even in the dependent operations where
network communication is inevitable using the current technologies.

4.3 Formalizing

We tried to model every possible scenario that can happen with a Traquest tree
to be sure about the correctness of the model. However, the Traquest model is a
new concept, and in the future, building formal semantics and reasoning for the
Traquest model using tools like the Coq [38] formal proof managing system would
give us an absolute certainty about the correctness of the model.

Traquest Model 461

5 Conclusion

Providing ACID properties can be crucial for many applications, but it requires a
massive compromise in performance. The Traquest model is a proposed potential
solution for this problem. We have discussed in detail the general concept of the
Traquest model.

Traquests are unifying the location of the data storing and processing; they
are using specialized timestamps and history tracking of the global state changes
that can potentially cause conflicts. By creating temporary responses and build-
ing up a mechanism for rolling back the conflicting parts of a running distributed
algorithm, Traquests can ensure atomicity in a very efficient way. The synchro-
nization steps over the network for replication and fault tolerance do not block the
business logic executed in the Traquests, giving a massive advantage in the perfor-
mance. Furthermore, this lazy synchronization allows an effective buffering of the
network messages; therefore, the number of the necessary network messages can be
decreased by magnitudes.

In our investigated concrete use case, the classical multitier architecture required
44 messages between the servers, where the Traquest model only needed six. The
difference can grow magnitudes as the complexity of the algorithm grows. We
showed that classical architectures require at least O(n) network messages as the
number of operations grows in the case of depending operations. Simultaneously,
the Traquest model can scale with only a O(1) factor.

We showed how the Traquest model could mitigate the dilemma of choosing
between the different consistency levels and how the Traquests can provide hybrid
consistency.

We investigated the Traquest model through the CAP theorem and realized that
the Traquest model does not violate but gives a workaround for the CAP theorem.
We considered another impossibility theorem as well, called the CAT theorem, and
identified the characteristics of the Traquest model respectively.

We discussed the main current challenges and future research directions to come
over those limitations. The biggest challenge is to improve the local performance
of the Traquests, and our suggested solution is the aggregation of those Traquests
to reduce the boilerplate execution.

The presented Traquest model can be a good foundation for making distributed
ACID computation magnitudes faster and easier.

References

[1] Ahsan, Shegufta Bakht and Gupta, Indranil. The cat theorem and perfor-
mance of transactional distributed systems. In Proceedings of the 4th Work-
shop on Distributed Cloud Computing, DCC ’16, New York, NY, USA, 2016.
Association for Computing Machinery. DOI: 10.1145/2955193.2955205.

[2] Amazon. AWS Lambda. https://aws.amazon.com/lambda/, 2021. Accessed:
2021-04-14.

462

3]

[4]

[10]

[11]

[13]

[14]

Daniel B. Ratai et al.

Baker, Henry and Hewitt, Carl. The incremental garbage collection of pro-
cesses. In SIGPLAN Notices 12, 8, pages 55-59. ACM, 1977.

Baldini, Ioana, Castro, Paul, Chang, Kerry, Cheng, Perry, Fink, Stephen,
Ishakian, Vatche, Mitchell, Nick, Muthusamy, Vinod, Rabbah, Rodric, Slomin-
ski, Aleksander, and Suter, Philippe. Serverless Computing: Current Trends
and Open Problems. In Research Advances in Cloud Computing, pages 1-20.
Springer Singapore, Singapore, 2017. DOI: 10.1007/978-981-10-5026-8_1.

Bogner, Justus, Zimmermann, Alfred, and Wagner, Stefan. Analyzing the
relevance of SOA patterns for microservice-based systems. In 10th Central
European Workshop on Services and their Composition, volume 2072, pages
9-16, 2018. http://ceur-ws.org/Vol-2072/.

Buschmann, Frank, Meunier, Regine, Rohnert, Hans, Sommerlad, Peter, and
Stal, Michael. Pattern-Oriented Software Architecture, Volume 1, A System
of Patterns. Wiley, 1996.

DeCandia, Giuseppe, Hastorun, Deniz, Jampani, Madan, Kakulapati, Gu-
navardhan, Lakshman, Avinash, Pilchin, Alex, Sivasubramanian, Swami-
nathan, Vosshall, Peter, and Vosshall, Werner. Dynamo: Amazon’s Highly
Available Key-Value Store. SIGOPS Oper. Syst. Rev., 41(6):205-220, 2007.
DOI: 10.1145/1323293.1294281.

Fette, Tan and Melnikov, Alexey. The WebSocket Protocol. RFC, 6455:1-71,
December 2011.

Friedman, Daniel and Wise, David. The impact of applicative programming
on multiprocessing. Technical report, Computer Science Department, Indiana
University, Bloomington, 1976.

Gilbert, S. and Lynch, N. Perspectives on the cap theorem. Computer,
45(02):30-36, 2012. DOIL: 10.1109/MC.2011.389.

Google. Google Cloud Functions. https://cloud.google.com/functions,
2021. Accessed: 2021-04-14.

Gotsman, Alexey, Yang, Hongseok, Ferreira, Carla, Najafzadeh, Mahsa, and
Shapiro, Marc. ’Cause I'm Strong Enough: Reasoning about Consistency
Choices in Distributed Systems. SIGPLAN Not., 51(1):371—384, 2016. DOI:
10.1145/2914770.2837625.

Gray, Jim, Helland, Pat, O’Neil, Patrick, and Shasha, Dennis. The dangers of
replication and a solution. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, page 173—182. Association for Computing
Machinery, 1996. DOI: 10.1145/233269.233330.

Henshall, John and Shaw, Sandy. OSI explained: end-to-end computer com-
munication standards. Ellis Horwood Chichester, 1990.

Traquest Model 463

[15]

Hewitt, Carl, Bishop, Peter, and Steiger, Richard. A universal modular ac-
tor formalism for artificial intelligence. In IJCAI’73: Proceedings of the 3rd
international joint conference on Artificial intelligence, pages 235—245, 1973.

Hibbard, Peter. Parallel processing facilities. In Schuman, Stephen A., editor,
New Directions in Algorithmic Languages. IRTA, 1976.

Kozierok, Charles M. The TCP/IP Guide: A Comprehensive, Illustrated In-
ternet Protocols Reference. William Pollock, 2005.

Loreto, Salvatore and Romano, Simon Pietro. Real-time communication with
WebRTC: peer-to-peer in the browser. O’Reilly Media, Inc., 2014.

Loreto, Salvatore, Saint-Andre, P, Salsano, Sd, and Wilkins, G. Known issues
and best practices for the use of long polling and streaming in bidirectional
http. Internet Engineering Task Force, Request for Comments, 6202(2070-
1721):32, 2011. DOI: 10.17487/RFC6202.

Madsen, Magnus, Lhotdk, Ondiej, and Tip, Frank. A Model for Reasoning
about JavaScript Promises. Proc. ACM Program. Lang., 1{(OOPSLA), October
2017. DOI: 10.1145/3133910

Masse, Mark. REST API Design Rulebook: Designing Consistent RESTful
Web Service Interfaces. O’Reilly Media, Inc., 2011.

Meagher, Donald. Geometric modeling using octree encoding. Com-
puter Graphics and Image Processing, 19(2):129-147, 1982. DOI: 10.1016/
0146-664X(82)90104-6.

Meyer, T and Brunn, A. 3D Point Clouds in PostgreSQL/PostGIS for Appli-
cations in GIS and Geodesy. In Proceedings of the 5th International Con-
ference on GISAM - Volume 1, pages 154-163. SciTePress, 2019. DOI:
10.5220/0007840901540163.

Microsoft. Azure Functions. https://azure.microsoft.com/en-us/
services/functions/, 2021. Accessed: 2021-04-14.

Microsoft. TypeScript Documentation. https://www.typescriptlang.org/
docs/handbook/typescript-from-scratch.html, 2021. Accessed: 2021-04-
14.

Oracle Corporation. Java documentation - Class CountDownLatch.
https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/
CountDownLatch.html, 2018. Accessed: 2021-04-14.

Plakal, Manoj, Sorin, Daniel J., Condon, Anne E.; and Hill, Mark D. Lamport
Clocks: Verifying a Directory Cache-Coherence Protocol. In Proceedings of
the Tenth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA '98, page 67-76. ACM, 1998. DOI: 10.1145/277651.277672.

464

28]

Daniel B. Ratai et al.

Ratai, Daniel Balazs, Horvath, Zoltan, Porkolab, Zoltan, and Toth, Melinda.
Traquest model — a novel model for ACID concurrent computations. In The
12th Conference of PhD Students in Computer Science — Proceedings, pages
44-48. Institute of Informatics, University of Szeged, 2020.

Redis Labs Ltd. Redis documentation — Using pipelining to speedup Redis
queries. https://redis.io/topics/pipelining, 2020. Accessed: 2021-04-
14.

Redis Labs Ltd. Redis documentation — Partitioning: how to split data among
multiple Redis instances. https://redis.io/topics/partitioning, 2021.
Accessed: 2021-04-14.

Sarieddine, Rami. JavaScript Promises Essentials. Packt Publishing Ltd.,
2014.

Tanenbaum, Andrew S. and Steen, Maarten Van. Consistency protocols. In
Distributed Systems — Principles and Paradigms, pages 306-317. Prentice Hall,
2007.

Truica, C., Radulescu, F., Boicea, A., and Bucur, I. Performance Evalua-
tion for CRUD Operations in Asynchronously Replicated Document Oriented
Database. In 2015 20th International Conference on Control Systems and
Computer Science, pages 191-196, 2015. DOI: 10.1109/CSCS.2015.32.

Typesafe Inc. Transactors. https://doc.akka.io/docs/akka/2.1/scala/
transactors.html, 2013. Accessed: 2021-04-14.

Uyanik, H. and Ovatman, T. Enhancing Two Phase-Commit Protocol for
Replicated State Machines. In 2020 28th FEuromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pages 118-121,
2020. DOI: 10.1109/PDP50117.2020.00024.

Vinoski, S. Server-sent events with yaws. IEEE Internet Computing, 16(5):98—
102, 2012. DOI: 10.1109/MIC.2012.117.

Zakeryfar, Maryam and Grogono, Peter. Static Analysis of Concurrent Pro-
grams by Adapted Vector Clock. In Proceedings of the International C*
Conference on Computer Science and Software Engineering, C3S2E 13, page
58-66, New York, NY, USA, 2013. Association for Computing Machinery.
DOI: 10.1145/2494444 .2494476.

Zhang, Xiyue, Hong, Weijiang, Li, Yi, and Sun, Meng. Reasoning about con-
nectors in Coq. In International Workshop on Formal Aspects of Component
Software, pages 172-190. Springer, 2016.

Zheng, Haitao and Boyce, Jill. An improved UDP protocol for video trans-
mission over internet-to-wireless networks. IEEE Transactions on Multimedia,
3(3):356-365, 2001. DOIL: 10.1109/6046.944478.

465

Traquest Model

Appendix

[Ovav]
(uosear)ajeuIuIa)|

(UOSBAI)RIRUIULIA} <=V |
(UOSERT)ORUININ =gV |

/

{ Sunueisoy

/o

UOSBII)IRUILID) <=
|\ -

\ E?,mm_\vm\ﬁmmﬁ:oﬁuoﬁ/

/A/Eumsu:ui:_EhSAHL/x v
(uoseor) h\.;AHu)</ \

(U0SBAT)RUNII <=JV /

/
(woseanjopun<=>v(1LOOY 41)

_—»PORUWR e

/ ,/ Eoﬁ‘omvuﬂm:__ioﬁuwy/

[

é:eesﬁi Onuwod<=1v(LOOY 41

A |

pozifeut

\

f:ogo._vov::AHm/\R
\ .

" \Aﬂoéobcﬁz\Amm \4
———__ (uoseanopun<=)y

\)

\ CoN:mE%UmAHUﬁ SZIeuLPR<=IV(IVIT D |

- Amo%u:o_sqﬁﬁﬁww\mg . \ \ - - ‘/?Aﬂﬁb‘nﬁ%,\ \\
/ i /A/zcmwEE%E::%S%EVBSEEBAH v OnuwoNor<=DV/ ONWwoe<=1v(IV4T D) quwoﬁf\rg. \/,

i (UOSBAI)RUTWIN <=V /

A

(uosear)opun<=Jy \

(uosearjopun<=)y
(uosear)ajeuruLIa) | /
\\ | // ,/V//« F \\
— | — I Surzipeur ———
\ \ —
o \ \ ~ —
, A:Saoboc::AHQ/) ()AMOIXTII<=]V /CoN:m:GAHmﬁ (azieu<=1v(1L00Y ,.:\V/ \\\x\\
N / "
\ / Tipspuodsay —————
\\\ -
// (on[ea)oafosar -

[

:\‘\Qﬁﬁ\\\\lu\

(uosear)opun<=Jv|

Figure 10: Comprehensive Traquest state diagram

466 Daniel B. Ratai et al.
Global process T1 DP_i TN Storage_i T1/2
create()
Waiting
execute(null)
Executing
read()
create()
Waiting
register(T1/1)
response(T1/1)
execute(T1)
Executing
read()
read()
response(10)
response(10)
resolve(10)
update(11) Responded
create()
Waiting
register(T1/2)
response(T1/2)
execute(T1)
update(11) Executing
response()
resolve()
finalize() Responded
P
Finalizing finalize()
finalize()
Finalizing Finalizing
ackFinalize() ackFinalize()
Finalized Finalized
ackFinalize()
ackFinalize()
Finalized
Commit
)
Committing
commit()
commit()
Committing Committing
ackCommit() ackCommit()
) =
Committed Committed
ackCommit()
ackCommit()
unregister(T1/1)
Committed unregister(T1/2)
update(11)
resolve() response()
Global process T DP_i TN Storage_i T1/2

Figure 11: Sequence diagram of an incrementation

Traquest Model

467

Globalprocess 1 T DP_i TN Storage_i Global process 2 T2 T2/ T1/2 T2/12
create()
Waiting
execute(null)
Executing
read()
create()
Waiting
register(T1/1)
response(T1/1
execute(T1)
Executing
. read()
read()
response(10)
T create()
response(10)
| Waiting
resolve(10)
execute(null!
Responded ;
Executing
read()
create()
Waiting |
register(T2/1)
o
response(T2/1)
execute(T2)
Exec’uting]
read()
| response(10)
resolve(10)
_update(11) Responded |
create()
Waiting
register(T1/2)
'5 undo()
Undoing |
response(T1/2,
execute(T1)
Executing
update(11)
i response()
resolve()
finalize() undo() Responded
) Restarting Ignored |
Finalizing reExecute()
finalize())
finalize() Executing
Finalizing Finalizing

T~ T~

Figure 12a: Sequence diagram of an incrementation with a conflict (Part 1/2)

468

Daniel B. Ratai et al.

ackFinalize() ackFinalize()
- =
Finalized Finalized
ackFinalize()
ackFinalize()
Finalized
Commit
Committing
commit()
commit()
Committing Committing
ackCommit() ackCommit()
)
Committed Committed
ackCommit()
ackCommit()
Committed unregister(T1/1)
resolve() unregister(T1/2)
unregister(T2/1)
update(11) |
read()
create()
Waiting
register(T2/2)
o
response(T2/2)
execute(T2)
Executing
read()
T response(11)
resolve(11)
finalize() Responded
| Finalizing |
finalize()
Finalizing
ackFinalize()
Finalized
ackFinalize()
Finalized
Commit
Committing
commit()
Committing
ackCommit()
Committed
ackCommit()
unregister(T2/2)
Committed
response() resolve(11)
Globalprocess 1 T DP_i TN Storage_i Global process 2 T2 T2/1 T1/2 T2/2

Figure 12b: Sequence diagram of an incrementation with a conflict (Part 2/2)

