
Acta Cybernetica 25 (2021) 555–573.

Footvector Representation of Curves and Surfaces∗

Gábor Valasekab, Csaba Bálintac, and András Leiteregad

Abstract

This paper proposes a foot mapping-based representation of curves and
surfaces which is a geometric generalization of signed distance functions. We
present a first-order characterization of the footvector mapping in terms of
the differential geometric invariants of the represented shape and quantify the
dependence of the spatial partial derivatives of the footvector mapping with
respect to the principal curvatures at the footpoint. The practical applica-
bility of foot mapping representations is highlighted by several fast iterative
methods to compute the exact footvector mapping of the offset surface of
constructive solid geometry (CSG) trees. The set operations for footpoint
mappings are higher-order functions that map a tuple of functions to a single
function, which poses a challenge for GPU implementations. We propose a
code generation framework to overcome this that transforms CSG trees to
the GLSL shader code.

Keywords: computer graphics, constructive solid geometry, signed distance
function

1 Introduction

This paper introduces a foot mapping based representation of shapes. The footpoint
is the closest point of the shape boundary to an arbitrary query position and the
footvector is the displacement from the latter to the footpoint. The proposed
representation leverages the footvector mapping of the encoded shape and it is a
geometric generalization of signed distance functions.

We present the theoretical background of this approach in Section 3 and show
how the differential geometric invariants at the footpoint govern the development
of the footvector mapping in space. More specifically, we highlight the connection

∗EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control
Technologies — The Project is supported by the Hungarian Government and co-financed by
the European Social Fund. Supported by the ÚNKP-20-3 New National Excellence Program of
the Ministry for Innovation and Technology.

aEötvös Loránd University, Budapest, Hungary
bE-mail: valasek@inf.elte.hu, ORCID: 0000-0002-0007-8647
cE-mail: csabix@inf.elte.hu, ORCID: 0000-0002-5609-6449
dE-mail: leanil@inf.elte.hu, ORCID: 0000-0003-0705-0214

DOI: 10.14232/actacyb.290145

556 Gábor Valasek, Csaba Bálint, and András Leitereg

between the first-order behaviour of the footvector mapping and the offsets of the
shape and, as such, the principal curvatures. These results are presented for curves
in the plane and surfaces in space.

Following the theoretical discussion, we introduce a method to create CSG
models with precise offset operations using footvector mappings. In particular,
we present two iterative algorithms on foot mappings in Section 4 and Section 5
to compute the footvector function of the intersection of two shapes. We discuss
the robustness/speed trade-off between these in Section 1 where we apply these
methods to the offset of intersections.

In general, implicit surface representations (g : R3 → R) usually describe ’inside’
region as the set of negative values ({g < 0} := {x ∈ R3 : g(x) < 0), and the
’outside’ as the positive {g〉0} ⊆ R3 region of space. Set operations can be defined
with minimum and maximum operations on the argument implicit functions.

A special case of implicit representations are the signed distance functions
(SDFs) that map the signed distance from the boundary to every point in space.
They offer efficient real-time visualization with sphere tracing [7]. Unfortunately,
they are not closed under the min/max representation of set operations, that is
the minimum and maximum of SDF arguments may not be a precise SDF. Even
though the shape of the surface and the convergence of sphere tracing are invariant
under these operations, the loss of the exact SDF property is disadvantageous for
the offset operation.

We define the offset surface as the set of points that are r distance away from the
original surface. To take an offset of a surface given by a signed distance function,
one must only subtract the offset radius [2]. However, if g1 and g2 : R3 → R are
SDFs, then the r > 0 offset of their intersection is

x 7→ max(g1(x), g2(x))− r ⇐⇒ x 7→ max(g1(x)− r, g2(x)− r)

which is the same as taking their offsets and then their intersection. However, these
operations are not supposed to be interchangeable.

For example, the positive offsets of spheres are larger spheres, so their inter-
section is an intersection of larger spheres with a sharp edge, yet, the offset of the
original intersection set supposed to be a pill-shaped oval surface. This is a wrong
result as these operations should not be interchangeable. The reason is that the
intersection operation is imprecise near-surface edges and corners and the function
values do not increase correctly. Our algorithm solves this issue allowing real off-
set operations on set operation results. Figure 1 demonstrates this key difference
between signed distance functions and footvector mappings.

We extend the precision of analytic distance functions for foot mappings by
defining the primitives, set operations, and offset on them. The set operations,
however, do not operate on a single implicit function value, but operate on whole
functions. This means that set operations on footvector mappings are higher order
functions that also produce a function from the input functions:

∩,∪ ∈ (R3 → R4)× (R3 → R4)→ (R3 → R4) .

Footvector Representation of Curves and Surfaces 557

(a) SDF (b) Foot mapping (c) SDF (d) Foot mapping

Figure 1: The offset of the intersection of two spheres and the offset of a cylinder
subtracted from a sphere. The offset operation should leave the surface smooth for
which the distance representation is inadequate.

Our representation maps to R4 because besides the footvector we also have to
encode whether the point is inside or outside the geometry. The footvector is
assigned to the first three coordinates, and the signed distance value is in the
fourth.

There are many other ways to compute the offset surface. Most of these operate
on parametric representations, which may not be available in our case. For implicit
representations, fast distance transforms are commonly used. These are efficient to
execute, but the visualization is not direct because a grid of values must be com-
puted and stored. Thus, these algorithms are limited in accuracy by the available
memory. Yet, the resulting distance representation is fast, and offset surfaces can
be created quickly making this a viable choice for e.g. text rendering in 2D. Three
dimensional distance fields are even more expensive to store which motivated our
grid-free approach.

Moreover, methods based on distance transform rely on a discretization of the
distance function and marching the distance values by approximating the distance
to the surface from the neighbouring values [5, 13] or use simplified proxy geometries
to infer a more precise distance value [14]. The local computations introduce errors
that can be amplified by set operations, making them worse than the min and
max SDF operations. To increase precision and reduce memory usage, we devised
iterative algorithms that compute the distance to the intersection set from any
point x ∈ R3 to the intersection object. In exchange, the presented algorithms
require a different representation of the surfaces.

To achieve real-time direct visualization of such offset surfaces, the GPU is
required. However, our set operations operate on functions, and we cannot simply
pass functions as arguments in shader code, because GPUs only support inline-
able functions. For this reason, we implemented a code generator that created the
implementation for the footvector mapping from a given CSG tree. The higher-
order set operations had to be implemented into the code generator to run our
iteration on various argument footvector mappings. These results are presented in
Section 6.

558 Gábor Valasek, Csaba Bálint, and András Leitereg

2 Preliminaries

From any sample point x ∈ Rn a signed distance function (SDF) g : Rn → R is
a continuous function that evte aluates to the signed Euclidean distance measured
from the surface. That is∣∣g(x)

∣∣ = d(x, {g = 0}) (∀x ∈ R3),

where d(x, A) is the point-to-set distance, and {g = 0} is the zero level-set. The
dimension is n = 2 for the plane and n = 3 for 3D space. The sign encodes whether
x is inside {g ≤ 0} or outside {g > 0} which allows set-operations to be defined on
SDFs. Let us take g1 and g2 signed distance functions, then according to [7],

d
(
x, {g1 ≤ 0} ∪ {g2 ≤ 0}

)
≥
∣∣min{g1(x), g2(x)}

∣∣ (∀x ∈ Rn) ,

d
(
x, {g1 ≤ 0} ∩ {g2 ≤ 0}

)
≥
∣∣max{g1(x), g2(x)}

∣∣ (∀x ∈ Rn) .
(1)

The min(g1, g2) = x 7→ min {g1(x), g2(x)} function is an implicit function of the
union of {g1 ≤ 0} and {g2 ≤ 0} objects. The resulting function is a good lower-
estimate of the distance on the inside of the union, whereas it is exact on the
outside of the union. For this reason, many SDF representations use min and max
operations to combine primitive geometries into complex scenes [6, 8]. However,
the approximation is imprecise on the union for the min operation, and only exact
within the intersection for the max intersection SDF approximation.

The precision can be quantified for any g : Rn → R SDF by comparing the real
distance-to-surface value to that of the function:

qg(x) :=

∣∣g(x)
∣∣

d(x, {g = 0})
(∀x ∈ Rn) (2)

Signed distance function estimates (SDFEs) are defined using the above local pre-
cision. If there exists a c > 0 global precision such that 0 < c ≤ qg(p) ≤ 1, then
g : Rn → R is a signed distance function estimate.

Distance representations can be directly ray-traced via various sphere tracing
algorithms [1, 3, 7, 10]. The precision of the SDFE measures the slowdown of the
sphere tracing algorithm; however, computing qmax(g1,g2)(x) for the intersection
operation can be expensive.

The function f : Rn → Rn is a footvector mapping if

1. x 7→
∥∥f(x)

∥∥ (x ∈ Rn) is a distance function

2. f(x + f(x)) = 0 for all x ∈ Rn

This means that f returns a vector pointing to one of the closest points on the
surface it defines. Thus x+ f(x) is the corresponding footpoint, but note that the
f function is not unique for a given shape. This is because some points will have
more then one closest points from the geometry, each providing an allowed return
value for the f function.

Footvector Representation of Curves and Surfaces 559

Figure 2: Left: 2D SDFE obtained through min and max set operations using
transformations of a half-plane (line) and a circle primitive. Local precision is the
ratio of the SDFE (left) and the exact SDF (middle) is displayed on the right
signaling the slowdown of sphere tracing. Our footpoint iteration produced the
middle image.

Similarly to SDFs, the footpoint representation requres volumetric, i.e. solid
geometric information for the set-operations to be defined. Let us assume we can
decide if x is inside x ∈ G ⊆ Rn closed set or outside x ∈ Rn \ G, where the
boundary set is ∂G = {x ∈ Rn | ‖f(x)‖ = 0} ⊆ G. For example, having the
corresponding signed distance function g : Rn → R such that G = {g ≤ 0} and
{f = 0} = {g = 0} = ∂G will allow the set operations.

3 Differential geometry and footpoint mappings

In this section, we investigate the relation between the derivatives of the footpoint
mapping and the local differential geometry at the footpoint.

Let G ⊆ Rn denote a geometry of interest in either the plane or space, i.e.
n = 2, 3, and intG ⊆ G its interior points. Let us assume that its boundary, ∂G,
is a sufficiently smooth set in the sense of geometric continuity, that is, it can be
covered by local parametrizations of the desired parametric smoothness [4].

The stationary condition of distance [12] states that the vector from the query
position x to the footpoint x∗ is perpendicular to the tangent entity of the shape,
which is the tangent line in plane and the tangent plane in space. In other words,
this means that the footvector mapping f = x∗ − x is parallel to the curve or
surface normal n∗ at the footpoint x∗.

Let c(t) : R → R2 and s(u, v) : R2 → R3 be the parametric representation of
∂G in the plane and in space, respectively. In both cases, we denote any suitable
implicit representation of G by g : Rn → R (n = 2, 3). Using these notations, the
perpendicularity of the footvector to ∂G is expressed as:

560 Gábor Valasek, Csaba Bálint, and András Leitereg

representation plane space

parametric f · c′ = 0

{
f · su = 0

f · sv = 0

implicit f ×∇g = 0 f × (su × sv) = 0

where c′ denotes differentiation with respect to the particular curve parameter t,
su = ∂us, and sv = ∂vs.

A more intuitive characterization of the footvector mapping comes from observ-
ing the behaviour of its first degree Taylor expansion. Using x = [x, y, z]T ,x0 =
[x0, y0, z0]T , this is formally

f(x) ≈ f(x0) + (x− x0)∂1f(x0) + (y − y0)∂2f(x0) + (z − z0)∂3f(x0) .

Our goal is to quantify the interplay between the footpoint mapping and the
differential geometry at the footpoint. The most natural setting for the study of
the local differential geometry of shapes is the parametric representation. As such,
in the following two subsections we derive our results for parametric curves in the
plane and parametric surfaces in space.

3.1 Derivatives of the footpoint mapping: R2

In the case of parametric plane curves, the footvector mapping f : R2 → R2 is
decomposed as

f(x) = c(t(x))− x (3)

= c ◦ t− id ,

where c : R → R2 is a parametrization of the boundary, x = [x, y]T is the query
position, and t : R2 → R is the footparameter mapping that assigns the parameter
value corresponding to the closest curve point to x. In the second equation, id
denotes the identity mapping of Rn, i.e. ∂1id = e1, ∂2id = e2, where ei are the
canonical basis vectors of R2.

Let i ∈ {1, 2} denote an arbitrary coordinate axis and let us take the partial
derivative of f · c′ = 0 with respect to i as

0 = ∂i

((
c ◦ t− id

)
· c′ ◦ t

)
= ∂i

(
c ◦ t− id

)
· c′ ◦ t+

(
c ◦ t− id

)
· ∂ic′ ◦ t

=

(
c′ ◦ t · ∂it− ei

)
· c′ ◦ t+

(
c ◦ t− id

)
· c′′ ◦ t · ∂it

After rearrangement, the partial derivative of the footparameter mapping is

∂it =
c′ ◦ t · ei

c′ ◦ t · c′ ◦ t+ f · c′′ ◦ t
.

Footvector Representation of Curves and Surfaces 561

Omitting the point of evaluation, the gradient of the footparameter mapping is

∇t =
1

c′ · c′ + f · c′′
c′

proving the simple intuition that the largest change in the footparameter happens
when the query position is displaced parallel to the tangent line at the footpoint.
More importantly, this equation also quantifies the amount of the largest change.

To give a geometric interpretation to this, let us consider the ĉ : [0, L] → R2

arc-length parametrization of the boundary. This is done without loss of generality.
The gradient of the footparameter mapping is then

∇t =
1

1 + f · κn̂
t̂ ,

where t̂, n̂ denote the Frenet frame unit tangent and normal vectors of the curve
and κ is its curvature function. Noting that f ‖ n̂ and thus can be expressed as
f = d · n̂ for some d ∈ R, the above becomes

∇t =
1

1 + dκ
t̂ (4)

that is, a unit displacement of the query position along t̂ results in a 1
1+dκ displace-

ment in the footpoint parameter.
Equation (4) is also remarkable in the sense that it shows that the change in

the footpoint parameter is the reciprocal of the change of the parametric speed of
the original boundary curve offset by d. In Kallay’s terms [9], it is a first order
pull-back onto the parametrization of the offset curve.

To translate our results on the footparameter mapping to the footpoint mapping,
let us consider the first degree Taylor expansion of Eq. (3) as

f(x) ≈f(x0) + (x− x0)∂xf(x0) + (y − y0)∂yf(x0) .

From Eq. (3), the partial derivatives of f are

∂if = c′ ◦ t · ∂it− ei ,

that is,

f(x) ≈ f(x0) + (x− x0)
(
c′(t(x0))∂1t(x0)− e1

)
+ (y − y0)

(
c′(t(x0))∂2t(x0)− e2

)
= f(x0)− (x− x0) + (x− x0)c′(t(x0))∂1t(x0) + (y − y0)c′(t(x0))∂2t(x0)

This is written more succinctly omitting the evaluation points, denoting f0 =
f(x0), ∇t0 = ∇t(x0), c′0 = c′(t(x0)), and substituting Eq. (3) as

f(x) ≈ f0 − (x− x0) +
(
(x− x0) · ∇t0

)
c′0 ,

or, using arc-length parametrization,

f(x) ≈ f0 − (x− x0) +
(x− x0) · t̂0

1 + dκ0
t̂0 .

562 Gábor Valasek, Csaba Bálint, and András Leitereg

According to this, there is no change in the footpoint if x− x0 is perpendicular to
t̂, but this only holds as long as the footpoint mapping is a function, that is, the
footpoint is unique. As soon as we reach the cut locus, i.e. a point in the plane that
has multiple closest points, the footpoint mapping becomes discontinuous and the
footpoint can change arbitrarily along the circumference of the unbounding circle.

3.2 Derivatives of the footpoint mapping: R3

Now, let us consider the case when the geometry is a volume and s : R2 → R3 is
the parametric representation of its boundary surface. The stationary condition of
the footpoint is written as

f · su = 0 (5)

f · sv = 0 , (6)

where the footpoint mapping is decomposed as

f = s ◦ u− id , (7)

that is,
f(x, y, z) = s(u(x, y, z), v(x, y, z))

with the two footparemeter mappings u, v : R3 → R, u = (u, v).
Differentiating Eq. (5) with respect to an arbitrary coordinate axis i ∈ {1, 2, 3}

yields

∂i(f · su ◦ u) = ∂i
(
(s ◦ u− id) · su ◦ u

)
= (su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei) · su ◦ u

+ f ·
(
suu ◦ u · ∂iu+ suv ◦ u · ∂iv

)
Similarly, differentiating Eq. (6) is

∂i(f · pv ◦ u) = (su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei) · sv ◦ u
+ f ·

(
suv ◦ u · ∂iu+ svv ◦ u · ∂iv

)
As such, the partial derivatives of the footparameter mappings with respect to

the coordinate axes of R3 are found from the following system of six linear equations
in the unknowns ∂iu, ∂iv, i ∈ {1, 2, 3}:

(su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei) · su ◦ u + f ·
(
suu ◦ u · ∂iu+ suv ◦ u · ∂iv

)
= 0

(su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei) · sv ◦ u + f ·
(
suv ◦ u · ∂iu+ svv ◦ u · ∂iv

)
= 0

Recalling that the footvector mappings are perpendicular to the tangent plane, we
can make the substitution f = d ·m, where d ∈ R and m is the unit surface normal
of s, e.g. m = su×sv

||su×sv||2 at regular points of s. The resulting system takes its final

form as

E · ∂iu+ F · ∂iv − ei · su ◦ u + d · L · ∂iu+ d ·M · ∂iv = 0

F · ∂iu+ G · ∂iv − ei · sv ◦ u + d ·M · ∂iu+ d · N · ∂iv = 0
(8)

Footvector Representation of Curves and Surfaces 563

using the first and second fundamental forms of

E = su · su , F = su · sv , G = sv · sv ,
L = suu ·m , M = suv ·m , N = svv ·m .

It is possible to derive a concise solution to the system of six equations in Eq. (8)
by using a special parametrization of s that is analogous to the arc-length or natural
parametrization of curves. This parameterization takes the lines of curvature as
the u, v parameter axes where the parameter lines are also arc-length. This can
be done without loss of generality because lines of curvatures cover the surfaces
simply, without gaps [11]. Let us denote this parametrization by ŝ.

The normal curvature of a curve on the surface with tangent vector a ·su+b ·sv
is

κ(a, b) =
L · a2 + 2 ·M · a · b+ N · b2

E · a2 + 2 · F · a · b+ G · b2
(9)

If the surface is parameterized as ŝ, then

E = 1 , F = 0 , G = 1 ,

L = κ1 , M = 0 , N = κ2 ,

where κ1, κ2 are the principal curvature functions, i.e. the minima and maxima of
normal section curvatures of Eq. (9) at every point on the surface.

Now, the system of equations in Eq. (8) simplifies to

∂iu · (1 + d · κ1) = ei · ŝu ◦ u
∂iv · (1 + d · κ2) = ei · ŝv ◦ u

giving us the partial derivatives of the footparameter mappings as a function of dis-
tance from the surface and the geometric invariants of the surface at the footpoint:

∂iu =
ei · ŝu ◦ u
1 + d · κ1

∂iv =
ei · ŝv ◦ u
1 + d · κ2

(10)

Let us consider the first degree Taylor expansion of the footvector mapping as

f(x) ≈ f(x0) + (x− x0)fx(x0) + (y − y0)fy(x0) + (z − z0)fz(x0) ,

where, using Eq. (7), the i ∈ {1, 2, 3} partial derivatives of f are

fi = su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei .

Substituting this into the Taylor expansion, we get

f(x) ≈ f(x0) + (x− x0)

(
su ◦ u · ∂1u+ sv ◦ u · ∂1v − e1

)
+ (y − y0)

(
su ◦ u · ∂2u+ sv ◦ u · ∂2v − e2

)
+ (z − z0)

(
su ◦ u · ∂3u+ sv ◦ u · ∂3v − e3

)

564 Gábor Valasek, Csaba Bálint, and András Leitereg

Assuming a natural parametrization of the surface, this is further developed using
Eq. (10) as

f(x) ≈ f(x0) + (x− x0)

(
ŝu ◦ u ·

e1 · ŝu ◦ u
1 + d · κ1

+ ŝv ◦ u ·
e1 · ŝv ◦ u
1 + d · κ2

− e1

)
+ (y − y0)

(
ŝu ◦ u ·

e2 · ŝu ◦ u
1 + d · κ1

+ ŝv ◦ u ·
e2 · ŝv ◦ u
1 + d · κ2

− e2

)
+ (z − z0)

(
ŝu ◦ u ·

e3 · ŝu ◦ u
1 + d · κ1

+ ŝv ◦ u ·
e3 · ŝv ◦ u
1 + d · κ2

− e3

)
or, using the notational shorthands ŝui = ŝu ◦ u · ei, ŝvi = ŝv ◦ u · ei,

f(x) ≈ f(x0)−(x−x0)+

3∑
i=1

((x− x0) ·ei)
(
ŝu◦u ·

ŝui
1 + d · κ1

+ ŝv ◦u ·
ŝvi

1 + d · κ2

)
.

The first two terms of the approximation are interpreted similarly to the curve case.
Since f(x0) = x∗ − x0, f(x0)− (x− x0) = x∗ − x, i.e. the approximation starts
from the vector pointing to the footpoint of x0 from the new position x. To distill
the geometric meaning of the sum in the above approximation, let us rewrite x−x0

in the spherical coordinate system about x0 with axes ŝu, ŝv, m̂ as

x− x0 = l ·
(

cosα sinβ · ŝu + sinα sinβ · ŝv + cosβ · m̂
)

= l ·
(

∆x · ŝu + ∆y · ŝv + ∆z · m̂
)
,

where l ≥ 0, α ∈ [0, 2π), β ∈ [0, π]. This yields

f(x) ≈ x∗ − x + l ·
3∑
i=1

(∆x · ŝui + ∆y · ŝvi + ∆z · m̂i) ·
ŝui

1 + d · κ1
· ŝu ◦ u

+ l ·
3∑
i=1

(∆x · ŝui + ∆y · ŝvi + ∆z · m̂i) ·
ŝvi

1 + d · κ2
· ŝu ◦ u

= x∗ − x +

(
l

1 + d · κ1
·

3∑
i=1

(∆x · ŝ2ui + ∆y · ŝviŝui + ∆z · m̂iŝui) · ŝu ◦ u
)

+

(
l

1 + d · κ2
·

3∑
i=1

(∆x · ŝuiŝvi + ∆y · ŝ2vi + ∆z · m̂iŝvi) · ŝv ◦ u
)

= x∗ − x +
l · ŝu ◦ u
1 + d · κ1

·
(

∆x

3∑
i=1

ŝ2ui + ∆y

3∑
i=1

ŝviŝui + ∆z

3∑
i=1

m̂iŝui

)

+
l · ŝv ◦ u
1 + d · κ2

·
(

∆x

3∑
i=1

ŝuiŝvi + ∆y

3∑
i=1

ŝ2vi + ∆z

3∑
i=1

m̂iŝvi

)

Footvector Representation of Curves and Surfaces 565

Note that ŝu, ŝv, m̂ form an orthonormal basis, that is, for example ŝu · ŝu =∑3
i=1 ŝ

2
ui = 1 and ŝu · ŝv =

∑3
i=1 ŝuiŝvi = 0. Carrying out the resulting simplifica-

tions gives us the final form of the first degree Taylor expansion of the footvector
mapping as

f(x) ≈ x∗ − x +
l ·∆x

1 + d · κ1
· ŝu ◦ u +

l ·∆x
1 + d · κ2

· ŝv ◦ u (11)

= x∗ − x + cosα sinβ
l

1 + d · κ1
· ŝu ◦ u + sinα sinβ

l

1 + d · κ2
· ŝv ◦ u

Changing the query position x along the footpoint surface normal m̂, i.e. when
β ∈ {0, π}, does not alter the footpoint until we pass the cut locus of the geometry.
The footvector is scaled according to the distance between x and x0.

The largest change in the footpoint mapping occurs when the query position
is displaced parallel to the tangent plane at the footpoint, in the direction of the
smaller principal curvature in magnitude. In this case β = π

2 and Eq. (11) becomes

f(x) = x∗ − x + l ·
(

cosα

1 + d · κ1
· ŝu ◦ u +

sinα

1 + d · κ2
· ŝv ◦ u

)
Interestingly, the magnitude of the change is only equal to the change in the planar
footvector mapping of a normal section curve when we are moving x parallel to
either of the principal curvature directions. In all other cases, the two quantities
will be different since the normal section curvature is cos2 ακ1 +sin2 ακ2 by Euler’s
theorem.

4 Footpoint Intersection Iteration

Let G1 ⊆ Rn and G2 ⊆ Rn be two objects with the foot mapping f1 : Rn → Rn and
f2 : Rn → Rn, respectively. Our task is to produce a foot mapping f12 : Rn → Rn
with G12 = G1∪G2 or G12 = G1∩G2 similar to Eq. (1). This paper only describes
the intersection since the complement geometry has the same foot mapping and
G12 = G1 ∪G2 = Rn \

(
(Rn \G1) ∩ (Rn \G2)

)
.

If x ∈ G1 ∩G2, then the intersection approximation is precise in Eq. (1), so

f12(x) =

{
f1(x) if ‖f1(x)‖ ≤ ‖f2(x)‖
f2(x) otherwise

(x ∈ G1 ∩G2) . (12)

If the closest point to G1 from x 6∈ G1 ∩G2 is inside the G2 set, then that point is
the closest point to x in the G1 ∩G2 intersection. Thus,

f12(x) =

{
f1(x) if x + f1(x) ∈ G2

f2(x) if x + f2(x) ∈ G1

(
x ∈ R3 \ (G1 ∩G2)

)
. (13)

However, this still leaves some f12(x) values for us to define via iterative algorithms.
The idea of this naive midpoint approach is to step closer to the intersection and

566 Gábor Valasek, Csaba Bálint, and András Leitereg

re-evaluate f12:

f12(x) :=
f1(x) + f2(x)

2
+f12

(
x +

f1(x) + f2(x)

2

)
if not (12) or (13). (14)

One can stop evaluating the recursion when one of Eq. (12) or Eq. (13) yield a value
or after a predefined number of iterations. Figure 3 illustrates the convergence.

Since ‖f1‖ and ‖f2‖ are distance functions, there are no surface points inside
the corresponding unbounding spheres K‖fi(x)‖(x) = {y ∈ R3 : d(x,y) < ‖fi(x)‖}:

{fi = 0} ∩ K‖fi(x)‖(x) = ∅ (x ∈ R3, i = 1, 2) .

The point x is not in the intersection set G1 ∩ G2 in the recursive Eq. (14).
Therefore, (

G1 ∩G2

)
∩
(
K‖f1(x)‖(x) ∪ K‖f2(x)‖(x)

)
= ∅(

G1 ∩G2

)
∩ Kmax(‖f1(x)‖,‖f2(x)‖)(x) = ∅

Which means that we can take a larger heuristic step without overstepping with
the following bisector iteration:

f12(x) :=
f1(x) + f2(x)

‖f1(x) + f2(x)‖
+ f12

(
x +

f1(x) + f2(x)

‖f1(x) + f2(x)‖

)
if not (12) or (13).

(15)
Figure 3 compares Eq. (14) and Eq. (15) iterative methods, with the upcoming

deltoid iteration. This bisector iteration was sufficiently robust for 3D scenes as
well. Figure 4 demonstrates the generated surface as a function of the iteration
number.

5 Deltoid iteration

For this heuristics, we take advantage of the fact that the footvectors, f1(x) and
f2(x), are perpendicular to the surfaces. First, we look for a

v(f1(x), f2(x)) = α · f1(x) + β · f2(x)

vector which is in the same plane as the footvectors. Second, the x+v(f1(x),f2(x))
should lie on each of the tangent planes at the footpoints.

Note that this quadrilateral is not necessarily a deltoid. To be precise, the
evaluation point x, the footpoints x+ f1(x) and x+ f2(x), and the next heuristic
evaluation point x + v(f1(x),f2(x)) forms a right angular cyclic quadrilateral.

Therefore, the desired vector v(a, b) = α · a + β · b has to be perpendicular to
both a := f1(x) and b := f2(x), which means the following:

(v − a) · a = 0

(v − b) · b = 0
⇐⇒

[
a>

b>

]
· v =

[
a>

b>

]
·
[
a b

]
·
[
α
β

]
=

[
aa
bb

]
.

Footvector Representation of Curves and Surfaces 567

Figure 3: Comparison of the midpoint and deltoid footpoint iterations in a 2D scene
where F and G are tangential circles, and the intersection is a single point. The
midpoint method in Eq. (14) is the yellow iteration, the blue iteration is improved
version from Eq. (15), the purple is the deltoid method from Section 5. The deltoid
method converges much faster because of the surface linear approximation and the
unrestricted step size.

SDFE 0 iteration 1 iteration 2 iterations 3 iterations

6 iterations 9 iterations 12 iterations 15 iterations 18 iterations

Figure 4: Convergence of the bisector iteration for an offset of a challenging inter-
section of a sphere and a cylinder. The iteration quickly starts to bounce from one
surface to the other, resulting in similar error patterns in every second image, but
converges nevertheless.

568 Gábor Valasek, Csaba Bálint, and András Leitereg

Where the dot products aa = a · a, bb = b · b, ab = a · b. Solving the equation for
α and β assuming d := aa · bb− ab · ab 6= 0 gives:[

α
β

]
=

[
aa ab
ba bb

]−1
·
[
aa
bb

]
=

1

d

[
bb −ab
−ab aa

]
·
[
aa
bb

]
=

1

d

[
bb · (aa− ab)
aa · (bb− ab)

]
. (16)

For the deltoid footpoint iteration, we substitude v = α · a + β · b from Eq. (16)
into Eq. (14), so g12(x) := v + g12(x + v) unless Eq. (12) or Eq. (13) provide a
foot vector.

The presented algorithms are visualized in 2D on Figure 3. In 2D, the deltoid
iteration was the most efficient and was used to produce Figure 2. However, this
method diverged and produced too many artifacts in 3D to be applicable, so the
bisector iteration was used in our test scenes.

6 Shader code generation from CSG trees

To represent CSG trees in code, we first define the type of a tree node as the union
of

• some primitive shape types, like Box, Sphere or Cylinder, and

• some standard CSG operations, like Move, Rotate, Union and Intersect.

Each of these node types contains the specific parameters necessary to describe
the object (size, color) or the operation (vector, angle) as fields. Once we have
the union type (called Expr), we can build any CSG tree, where the nodes are all
Expr objects: the leaves are instances of the primitive shape types, and the internal
nodes are operations.

Now we can traverse this tree in a bottom-up or top-down manner to collect
(or distribute) information about it. For example, we can count the number of red
objects in the tree using this algorithm:

def alg(node):

if node in [Box, Sphere, Cylinder]:

return 1 if node.color is "red" else 0

elif node in [Move, Rotate]:

return alg(node.child)

elif node in [Union, Intersect]:

return alg(node.child_1) + alg(node.child_2)

Even though the algorithm is run from the root of the tree, what it actually does
is breaking down and converting the tree into a single number, starting from the
bottom. It begins with the leaf nodes because it can directly convert those. Then
for each internal node, it first recursively converts the subtrees, then combines the
obtained partial results into a single value using some node-specific logic.

We can use the same approach to derive much more complex information from
the tree, like a program code that renders the represented model. We just need to

Footvector Representation of Curves and Surfaces 569

change the so-called carrier type – the type of the value each subtree is reduced
into, and the node-specific reduction logic. Our carrier type is a structure that
contains a block of code and the name of the register that holds the result of the
computation.

The generated block of code for the primitive shapes is simple: it’s a function
that takes a x ∈ R3 position as an argument, and returns four scalars: the footvec-
tor and the signed distance value. Code generation in internal nodes combines the
code generated for their subtrees. E.g. for a Union node this means that the re-
sulting function executes the functions corresponding to the subtrees, collects their
results, then calculates and returns the footvector and the distance for the union.

The intersection operation needs to evaluate its arguments multiple times, so
we had to generate actual functions to calculate the subtrees, couldn’t just directly
calculate the results. Since we cannot define higher order functions in GPU shader
code, each occurrence of the intersection operation had to be specialized for its
actual arguments as a separate function. Writing all these specializations all by
hand would have been tedious and error prone, this is one of the main reasons why
we decided to generate the shared code.

The code generation also made it possible to implement optimizations which
would be difficult to do manually. Such optimization is pushing down the Move
and Rotate operations to the leaf nodes. The intuitive implementation of a CSG
evaluator would first compute operand of a Move or a Rotate, and then apply the
operation on the result. However, we can render the primitive objects in the leaf
nodes with the same cost, regardless of their position or orientation, so we rather
aggregate these operations while traversing down the tree, and apply them directly
on the leaf objects.

This recursive approach to code generation is well known. What we recognized
and used to our advantage is that the CSG model representation is a much simpler
tree than usual syntax trees, we do not need any sophisticated state management
to process it, which resulted in clean and reusable code generation.

7 Exact offset surfaces

All variants of the footpoint iteration algorithm are heuristic optimization itera-
tions. For this reason, there are cases when the iteration does not converge to the
correct solution. In essence, there is a trade-off between robustness and speed. Al-
though we can visualize the above surfaces in real-time on an Nvidia 1080ti GPU,
the visualization is expensive and three to ten times slower than the signed distance
function representation.

Figure 5 demonstrates the most important advantage of our algorithm, that is,
the offset operation will be exact afterwards. With enough iterations, the surface
will be smooth because there is no voxelization. For simple surfaces such as the
intersection of two objects, the raytracing of the offset surface can be real-time.
For more complex scenes, we avoided running the iterative approach for the union
operation because the standard minimum distanced union operation yields exact

570 Gábor Valasek, Csaba Bálint, and András Leitereg

offset = 0.0 offset = 0.25 offset = 0.5

offset = 1.0 offset = 2.0 offset =4.0

Figure 5: Different offsets of the intersection of a cylinder and a slightly larger
sphere. Our bisector algorithm does a 100 iterations for each evaluation to produce
the precise offset. The offset can be changed in real-time.

results outside the surface. Unless the result of the union is intersected with another
object, the positive offset surface is correct.

Figure 6 showcases a few example surfaces and the drawbacks of the proposed
method. Because the method is heuristic, the closest point of the intersection
surface is not always found. In such cases, the surface may present artifacts or
even appear elsewhere. Scene complexity both increases the likelihood of failure
and the evaluation speed. When there are multiple intersection operations, the
iterations are correctly inserted into each other by the code generator. This leads
to an exponential slowdown in the number of nested intersection operations.

8 Conclusion

This paper proposed a footvector based representation of shapes. Section 3 provides
a theoretical background for this, connecting the partial derivatives of the footvector
mapping with the local differential geometry at the footpoint. The practicality of
this representation, however, is provided by the iterative algorithms that make this
representation closed under set theoretic and offset operations.

Offset operation of a signed distance function is as easy as subtracting the offset
value from it, yet it is only precise on the CSG tree leafs, so-called primitives, in
practise. This is because the SDF of combined objects are only signed distance
lower bounds causing the offset surface to appear as if the offset was applied to
the arguments of the set operation instead. In this paper, we devised algorithms

Footvector Representation of Curves and Surfaces 571

Model 1 SDF Model 2 SDF Model 3 SDFE Model 4 SDFE

Model 1 FM Model 2 FM Model 3 FM Model 4 FM

Figure 6: Several example scenes showcasing the strengths and limitations of the
proposed methods. The SDFE of Model 1 completely deletes the subtracted sphere,
yet the footpoint mapping offsets the correct surface. The improvements in smooth-
ness is visible on Model 2, with some convergence artifacts. The iterative distance
function of Model 3 and 4 introduce even more errors.

in Section 4 and 5 that iterate on input functions to produce the SDF of objects.
Footvector mapping representations extended the distance information and provide
search directions for the intersection operation iterations.

In two dimensions, the deltoid iteration outperformed the rest of the methods
by a large factor. Computing the SDF in Figure 2 with the midpoint approach was
about ten times slower compared to the deltoid method whilst achieving similar
accuracy. Note that the iterations had to be nested to produce the CSG tree of
set-operations causing exponential slowdown with CSG tree depth.

In three dimensions, our iterative methods are capable of producing high qual-
ity offset surfaces of intersection or difference of objects. The resulting footvector
mapping can be visualized in real-time as a signed distance function despite the
extra iterations within each intersection operation. Note that the expensive func-
tion evaluation time can amortized with better sphere tracing algorithms, such as
enhanced sphere tracing [1] or quadric tracing which is an unpublished algorithm
for reducing the number of function evaluations by pre-cacheing values.

For rendering purposes the SDF had to be implemented in shader code which
does not support higher order functions. Hence, a CSG code generator was designed
that created efficient implementations for our test scenes. In three dimensions, the
bisector method performed the best because the deltoid iteration often did not
converge to the right solution. Nevertheless, for most simple cases, the bisector
method converged without artifacts, producing accurate offset surfaces.

572 Gábor Valasek, Csaba Bálint, and András Leitereg

References

[1] Bálint, Csaba and Valasek, Gábor. Accelerating Sphere Tracing. In Diamanti,
Olga and Vaxman, Amir, editors, EG 2018 - Short Papers. The Eurographics
Association, 2018. DOI: 10.2312/egs.20181037.

[2] Bálint, Csaba, Valasek, Gábor, and Gergó, Lajos. Operations on signed dis-
tance functions. Acta Cybernetica, 24(1):17–28, May 2019. DOI: 10.14232/

actacyb.24.1.2019.3.

[3] Bán, Róbert, Bálint, Csaba, and Valasek, Gábor. Area Lights in Signed Dis-
tance Function Scenes. In Cignoni, Paolo and Miguel, Eder, editors, Euro-
graphics 2019 - Short Papers. The Eurographics Association, 2019. DOI:
10.2312/egs.20191021.

[4] do Carmo, Manfredo P. Differential geometry of curves and surfaces. Prentice
Hall, 1976.

[5] Fabbri, Ricardo, Costa, Luciano Da F., Torelli, Julio C., and Bruno,
Odemir M. 2D euclidean distance transform algorithms: A comparative sur-
vey. ACM Comput. Surv., 40(1), February 2008. DOI: 10.1145/1322432.

1322434.

[6] Foley, James David. 12.7 Constructive Solid Geometry. In Computer Graphics:
Principles and Practice, pages 533–558. Addison-Wesley Professional, 1990.

[7] Hart, John C. Sphere tracing: a geometric method for the antialiased ray
tracing of implicit surfaces. The Visual Computer, 12:527–545, 1996. DOI:
10.1007/s003710050084.

[8] Hoffmann, Christoph M. Boolean Operations on Boundary Representation.
In Geometric and Solid Modeling: An Introduction, pages 67–110. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1989.

[9] Kallay, Michael. A geometric Newton–Raphson strategy. Computer Aided
Geometric Design, 18(8):797–803, 2001. DOI: 10.1016/S0167-8396(01)

00070-X.

[10] Keinert, Benjamin, Schäfer, Henry, Korndörfer, Johann, Ganse, Urs, and
Stamminger, Marc. Enhanced Sphere Tracing. In Giachetti, Andrea, editor,
Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference.
The Eurographics Association, 2014. DOI: 10.2312/stag.20141233.

[11] Martin, R.R. Principal Patches - A New Class of Surface Patch Based on Differ-
ential Geometry. In ten Hagen, P.J.W., editor, Eurographics Conference Pro-
ceedings. The Eurographics Association, 1983. DOI: 10.2312/eg.19831003.

[12] Patrikalakis, Nicholas M. and Maekawa, Takashi. Shape Interrogation for Com-
puter Aided Design and Manufacturing. Springer Publishing Company, Incor-
porated, 1st edition, 2009.

Footvector Representation of Curves and Surfaces 573

[13] Sethian, James A. Fast marching methods. SIAM Rev., 41(2):199–235, June
1999. DOI: 10.1137/S0036144598347059.

[14] Valasek, Gábor. Generating distance fields from parametric plane curves. In
Annales Mathematicae et Informaticae 48, pages 83–91, 03 2018.

