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Abstract

Unit test development has some widely accepted guidelines. Two of them
concern the test and code relationship, namely isolation (unit tests should
examine only a single unit) and separation (they should be placed next to
this unit). These guidelines are not always kept by the developers. They can
however be checked by investigating the relationship between tests and the
source code, which is described by test-to-code traceability links. Still, these
links perhaps cannot be inferred unambiguously from the test and production
code.

We developed a method that is based on the computation of traceability
links for different aspects and report Structural Unit Test Smells where the
traceability links for the different aspects do not match. The two aspects are
the static structure of the code that reflects the intentions of the developers
and testers and the dynamic coverage which reveals the actual behavior of
the code during test execution.

In this study, we investigated this method on real programs. We manually
checked the reported Structural Unit Test Smells to find out whether they
are real violations of the unit testing rules. Furthermore, the smells were
analyzed to determine their root causes and possible ways of correction.
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1 Introduction

Unit testing is an important element of software quality assurance, and it plays
an important role in software maintenance and evolution. For example, during
continuous integration, unit tests are constantly re-executed and further evolved
(by developers) in parallel with the system under test [13]. This is why the quality
of unit tests (including maintability) is important for software quality.

There are several guidelines, design patterns, and frameworks that help the de-
velopers to write good unit test cases [17]. Among these guidelines, there are two
that deal with the structural consistency between test and production code [17].
The first one is isolation, which means that unit tests should exercise only the
unit they were designed for, while the second one is separation, meaning that the
tests should be placed in the same logical or structural group (like packages or
namespaces) as the units they are testing. These guidelines, if kept, assist both the
traceability between the test and production code, and maintainability. However,
some practical aspects may prevent unit test designers and developers from creat-
ing tests that completely conform to these definitions (e.g. calls to utility functions
or general parts of the system [5, 21]). Also, refactorings and code reorganizations
might detrimentally affect the fulfillment of the isolation and separation guidelines
for test and production code. Places in the code where these rules are not kept can
be treated as test smells ([28, 3]): they are not bugs nor do they harm maintain-
ability by definition, but such locations should be investigated anyway.

Relations between test and production code elements may be treated as trace-
ability links, and several approaches have been proposed for their recovery (e.g.
[23, 22, 16, 19, 9, 7]). However, as different approaches use different information to
recover traceability, these might produce different results [23].

In a previous study, we proposed a method for investigating unit test and code
relationship [2]. Here, we use this method to identify so-called Structural Unit Test
Smells, a concept which we introduce to describe structural issues in the tests with
respect to the system as a whole, and not just issues in isolated pieces of code.
The method uses the idea that test-to-code traceability recovered from different
sources captures different type of relations. Namely, we compare traceability links
recovered from static sources that reflect the intention of the test designers and
from dynamic sources that reflect the actual behavior of the code during test case
execution. Differences in the two types of recovered traceability might suggest test
and code elements that violate isolation and separation guidelines.

In the first phase of our approach we compute the traceability links based on
two fundamentally different but very basic aspects, these being (1) the static re-
lationships of the tests and the tested code in the physical code structure, and
(2) the dynamic behavior of the tests based on code coverage. In particular, we
compute clusterings of tests and code for both static and dynamic relationships,
which represent coherent sets of tests and tested code. These clusters represent
sets whose elements are mutually traceable to each other, and may be beneficial
over individual traceability between units and tests, which is often hard to express
precisely. To compute the static clusters we use the packaging structure of the
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code, while for the dynamic clustering we employ community detection [6] on the
method level code coverage information.

In the next phase, these two kinds of clusterings are compared with each other.
We do this using a Cluster Similarity Graph (CSG) that represents the computed
clusters as graph nodes and connects the static and dynamic clusters that have
common elements. If both approaches produce the same clusters, then they are
said to agree, connecting only pairs of (one static and one dynamic) nodes in the
CSG, in which case we conclude that the (test and code) elements contained in the
clusters conform to the given unit testing guidelines. However, in many cases there
will be discrepancies in the results obtained represented as several interconnected
nodes in the CSG, which we report as Structural Unit Test Smells. There may
be various reasons for these SUTSs, but they are usually some combination that
violates the isolation and/or separation principles mentioned above.

To assess the practical usability of the method, in this study, we applied it on
non-trivial open source Java systems and their JUnit test suites. We manually
investigated the reported Structural Unit Test Smells by recovering and analysing
their context and finding the root cause of the detected discrepancy between the
static and dynamic traceability. We also made decisions on each SUTS as to
whether it is a ‘false positive’ (i.e. the test and code conforms to unit testing
rules) or whether it points to test and production code that should be reorganized
in some way.

The rest of the paper is organized as follows. In the next section we provide
an overview of some background information and related work, then in Section 3
we describe our traceability recovery method, with the analysis of the detected
discrepancies in Section 4. In Section 5 we discuss threats to validity of the study.
Lastly, in Section 6 we draw some conclusions and make some suggestions for future
work.

2 Background and Related Work

There are different levels of testing, one of which (the lowest level) is called unit (or
component) testing. Unit tests are closely related to the source code and they seek
to test separate code fragments. This kind of test helps one to find implementation
errors early in the coding phase, and helps to reduce the overall cost of the quality
assurance activity.

Several guidelines exist that provide hints on how to write good unit tests (e.g.
[17, 27, 20]), but there are two basic principles that are mentioned by most of
them. The first is that unit tests should be isolated (i.e. test only the elements of
the target component) and separated (i.e. physically or logically grouped, aligned
with the unit being tested). In practice, this means that unit tests should not
(even indirectly) execute production code outside the tested unit, and they should
follow a clear naming and packaging convention, which reflects both the purpose of
the test and structure of the given system. Several studies have examined various
characteristics of the source code with which the above mentioned two aspects can
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be measured and can be verified to some extent (see, for example [23]).

These two properties are necessary for the approach described in this paper.
Namely, if both are strictly followed, the two automatic traceability analysis algo-
rithms we used (one package-based and the other coverage-based), will produce the
same results. However, this is not the case for realistic systems, so our approach
relies on analyzing the differences between the two sets in order to infer things
about the final traceability links.

Several methods have been proposed to recover traceability links between soft-
ware artifacts of different types, including requirements, design documentation,
code, test artifacts, and so on [24, 10]. The approaches include static and dy-
namic code analysis, heuristic methods, information retrieval, machine-learning,
data-mining based methods.

In this study, we are concerned with a specific type of traceability, namely test-
to-code links. The purpose of recovering such links is to assign test cases to code
elements of the system under test based on the relationship that shows which code
parts are tested by which tests. This information may be vital in different activities
including development, testing and maintenance, as mentioned earlier.

We shall concentrate on unit tests, in which case the traceability information
is mostly encoded in the source code implementing the production system and the
test cases, and usually no external documentation is available for this purpose.
Traceability recovery for unit test may seem straightforward at first sight, given
that the basic purpose of a unit test is to test a single unit of code [4, 11]. However,
in reality it is not so [16, 19].

Several studies have been conducted on this subject, which examined the prob-
lem of traceability and made suggestions about it [9, 7, 23, 22]. Most of these related
studies emphasize that reliable test-to-code traceability links are difficult to obtain
from a single source of information, and a combination of (or semi-automatic)
methods are required. Here, we will utilize this finding to determine the test smells

Our study mainly focuses on test (and code) smell identification. The discrep-
ancies found in the two automatic traceability analysis results can be viewed as
some sort of smell, and this suggests potential problems in the structural organi-
zation of the tests and code. Code smells (first introduced by Fowler [15]) are an
established concept for classifying shortcomings in the software. Similar concepts
for checking software tests and test code for quality issues have also been applied.
For tests that are implemented as executable code, Van Deursen et al. introduced
the concept of test smells, which suggest poorly designed test code [12], and listed
11 test code smells with recommended refactorings. We can relate our study best
to their concept of Indirect Testing Smell. Meszaros expanded the scope of the
concept by describing test smells that act at a behavior or a project level, next to
code-level smells [20]. Results that came after this study use these ideas in prac-
tice. For example, Breugelmans and Van Rompaey [8] present TestQ, which allows
developers to visually explore test suites and quantify test smelliness. They visual-
ized the relationship between test code and production code, and with it, engineers
were able to better understand the structure and quality of the test suite of large
systems [27].
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Our study significantly differs from these approaches as we are not concerned
with code-oriented issues in the tests, but with their dynamic behavior and re-
lationship to their physical location in the system as a whole. We may identify
Structural Unit Test Smells from an analysis of the discrepancies found in the au-
tomatic traceability analyses.

3 Method

We define Structural Unit Test Smell (SUTS) as those suspicious parts of either
the test or production code which seem to violate best practices used during unit
test creation, execution and maintenance. In this respect, they are essentially
inconsistencies in the physical organization and the logical behavior of unit test
code and the tested code.

3.1 Overview

Figure 1 provides an overview of the above process, which has several sequential
phases. First, the physical organization of the production and test code into Java
packages is inferred, and the required test coverage data is produced by executing
the tests. In our setting, code coverage refers to the individual recording of all
methods executed by each test case. Physical code structure and coverage will be
used in the next phase as inputs to create two clusterings over the tests and code
elements.

| preparation

[ ¥ ¥

’ production code ‘ ’ test code H method level test coverage ‘

\traceability analysis | |
’ static clusters ‘ ’ dynamic clusters ‘

i traceability comparison

Cluster Similarity Graph ‘

B S

' manual analysis of discrepancies

Figure 1: Overview of the method

These will represent the two types of relationships between the test and code,
these being the two sets of automatically produced traceability links from two
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viewpoints, namely static and dynamic. Both clusterings produce sets of clusters
that are made up of a combination of tests (unit test cases) and code elements
(units under test). In our case, a unit test case is a Java test method (e.g. using
the @Test annotation in the JUnit framework [26]), while a unit under test is a
Java production code method.

In our approach, the elements of a cluster are mutually traceable to each other,
and no individual traceability is considered between individual test methods and
production methods. The advantage of this is that in many cases it is impossible
to uniquely assign a test case to a unit; instead groups of test cases and units may
represent a cohesive functional unit [18]. Also, minor inconsistencies, such as helper
methods that are not directly tested, are concealed in this procedure. Details about
the clustering based traceability algorithms are provided in the next section.

The automatically produced traceability links of the two analyses will be com-
pared using a helper structure called the Cluster Similarity Graph (CSG) [2]. This
is a directed bipartite graph whose nodes (disjointly) represent the clusters of the
two clusterings. Each edge of the graph connects two nodes representing one static
and one dynamic cluster, and weights on them denote the level of similarity be-
tween the two corresponding cluster nodes (based on the elements contained in the
two corresponding clusters). Weights can be calculated using a pairwise similarity
measure. In particular, we can use the Inclusion measure. Let K; and K5 be two
clusters of different types (one static and one dynamic). The Inclusion measure
I(K1, K5) expresses to what degree the elements of K7 are included in Ks. A value
of 0 means no inclusion (fully disjoint clusters), while a value of 1 means that K
is a subset of K5. Edges with a 0 inclusion value are omitted from the CSG.

Figure 2 shows an example CSG taken from one of our subject systems, oryx.
The static clusters are represented as purple rectangles, while the dynamic clusters
are represented as green boxes. The edge weights are not shown in this example.
Both types of clusters contain test and code elements. Edges in the figure mean that
the two connected clusters have some common items (test or production methods).
For example, the elements of dynamic cluster 9 are completely contained in the
static cluster com/cloudera/oryx/common (as dynamic cluster 9 has no common
elements with other clusters), and dynamic cluster 11 shares its elements with two
static ones. Note that in the example the numbers of the dynamic clusters have
no special significance, while the static clusters are named after the package that
contains their elements.

After we had created the CSG, we looked at it closely. It is obvious that in the
ideal case static and dynamic clusterings produce the same clusters, hence the CSG
contains only connected pairs of nodes. However, in practice the CSGs are not like
this, and each pattern in the graph that consists of more than two connected nodes
can be treated as a Structural Unit Test Smell. Therefore, we manually examined
the different patterns in the CSG and tried to discover what properties of the code
and tests caused them. The results for this are presented in Section 4.
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Figure 2: A part of the CSG of the oryx program

3.2 Clustering based traceability analysis

Our approach for unit test traceability recovery includes a step in which traceability
links are identified automatically by analyzing the test and production code from
two perspectives (static and dynamic). In both cases, clusters of code and tests are
produced which jointly constitute a set of mutually traceable elements. Here, we
deal with Java systems and rely on unit tests implemented in the JUnit test au-
tomation framework. In this context, elementary features are usually implemented
in the production code as methods of classes, while the unit test cases are embodied
as test methods. A system is then composed of methods grouped into classes and
classes into packages. All of our algorithms have the method-level granularity, i.e.
clusters are composed of production and test methods. Here, we do not explicitly
take into account class information during the clusterings.

3.2.1 Static clustering

Through static clustering, our intention is to detect groups of tests and code that
are connected together by the intention of the developer or tester. The placement
of the unit tests and code elements within the package hierarchy of the system is a
natural classification according to their intended role. When tests are placed within
the package the tested code is located in, it helps other developers and testers to
understand the connection between tests and their subjects. Hence, it is essential
that the physical organization of the code and tests be reliable and reflect the
developer’s intentions.

Our package-based clustering simply means that we assign the fully qualified
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package name of the method to each production and test method, and treat meth-
ods (of both types) belonging to the same package as members of the same clus-
ter. Class information and higher level package hierarchy are not directly taken
into account. For example, package com.cloudera.oryx.common and its subpack-
ages com.cloudera.oryx.common.math and com.cloudera.oryx.common.random
are treated as unique clusters containing all the methods of all the classes directly
contained within them. Furthermore, we do not directly consider the physical direc-
tory and file structure of the source code elements (although in Java, these usually
tell us something about the package structure).

3.2.2 Dynamic clustering

In order to determine the clusters of tests and code based on the actual dynamic
behavior of the test suite, we apply community detection [6, 14] on the code coverage
relations.

Code coverage in this case means that, for each test case, we record what meth-
ods were invoked during the test case execution. This forms a binary matrix called
a coverage matrix, with test cases assigned to its rows and methods assigned to
the columns. A value of 1 in a matrix cell indicates that the particular method is
invoked at least once during the execution of the corresponding test case (regardless
of the actual statements and paths taken within the method body), and 0 indicates
that it has not been covered by the test case.

Commaunity detection algorithms were originally defined on (possibly directed
and weighted) graphs. Thus, in order to use the selected algorithm, we construct a
graph (referred to as the coverage graph in the following) from the coverage matrix.
The nodes are the methods and tests of the system being analyzed, and there is an
edge between a method and a test node if and only if the corresponding cell in the
coverage matrix is 1. There is no edge between any two nodes of the same type.

The actual algorithm we used for community detection is the Louvain Mod-
ularity method [6]. It is a greedy optimization method based on the modularity
metric, which penaltizes edges between clusters and rewards edges inside clusters.
The algorithm works iteratively, and each pass is composed of two phases. In the
first phase it starts processing single-node clusters and continues to unify clusters
until no more unification leads to an increase of modularity. In the second phase,
a new graph is created by assigning a single node to each clusters of the previous
graph. New edges are also computed and weighted based on the edges between the
cluster elements in the previous graph. The algorithm iterates these two steps until
it reaches a graph in which no nodes can be unified in terms of modularity.

4 Analysis of traceability discrepancies
We manually analyzed all discrepancy instances found in the results produced by

the static and dynamic traceability detection approaches. In this procedure, we
considered the CSGs, the associated edge weights, and examined the corresponding
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parts of the production and test code. For the first step, each subject system was
assigned to one of the authors of the paper for initial comprehension and analysis of
the resulting patterns. The analysis required an understanding of the code structure
and to some extent the intended goal of the test cases. API documentation, feature
lists, and other public information were also examined during this phase. Next,
the researchers made suggestions on the possible recovered traceability links and
eventual code refactorings. Then, all the participants were involved in a discussion
about the final decisions. The edge weights in the CSGs obtained during the
analysis helped us to assess the importance of a specific cluster. For example,
small inclusions were often ignored because these were in many cases due to some
kind of outlier relationships that did not affect the overall structure of the clusters.

The results of the analysis were possible explanations for the reported SUTS
with concrete suggestions, as well as the corresponding general guidelines for pos-
sible refactorings.

4.1 Subject programs

Our subject systems (see Table 1) were medium-to-large-size open-source Java pro-
grams, with unit tests implemented using the JUnit test automation framework.
We chose these systems because they had a reasonable number of test cases com-
pared to the system size.

Table 1: Subject programs
Program Version LOC Methods Tests

checkstyle 6.11.1 114K 2655 1487
netty 4.0.29 140K 8230 3982
orientdb 2.0.10 229K 13 118 925
oryx 1.1.0 31K 1562 208

We modified the build processes of the systems to produce method level cover-
age information using the Clover coverage measurement tool [1]. For storing and
manipulating the data, we used the SoDA framework [25], e.g. to process the cover-
age matrix. Then, we implemented a set of Python scripts to perform clusterings,
including a native implementation of the community detection algorithm.

4.2 Identified Structural Unit Test Smells

Now, we present 8 SUTSs that we found and analyzed manually. These were
the simplest smell patterns in the CSGs, where we suspected the nature of the
smell and could give clear refactoring options (even if we sometimes provided more
possible, contradictory options to a single smell instance). We encountered more
complex patterns during our experiment (containing tens of clusters and hundreds
of traceability links), but a deep analysis of these lay outside the scope of this
present study.
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4.2.1 com/puppycrawl/tools/checkstyle/doclets

This package belongs to our subject checkstyle and it is composed of the class
TokenTypesDoclet with all 5 of its methods and of the test class TokenTypesDo-
cletTest with its 6 test cases. The package is used to create a configuration/prop-
erty file with short descriptions of TokenTypes constants. There are 4 dynamic
clusters connected to this static cluster. They are one for option validation (1
method, 1 test case), a cluster for file name handling and file creation (2 methods,
3 test cases), one for counting options (1 method, 1 test case) and one for static
initialization (1 method, 1 test case).

Possible explanation and refactoring: The dynamic clusters describe the sub-
functionalities correctly. This SUTS is the result of the clustering and granularity
we are working with, where our units are at the package level, while we work at
the method level and this enables our method to identify smaller units. Namely,
the sub-features are tested separately, but the implemented (and tested) classes are
not separated into different packages, which is a quite reasonable decision in this
case. Hence, we treat this SUTS as a false positive, and suggest that no refactoring
should be performed.

4.2.2 io/netty/handler/codec/haproxy

HAProxy is a submodule of netty which is responsible for handling load balancing-
related protocols. It has 7 classes, 42 methods and 30 test cases arranged in a
single test class of over 1000 lines (HAProxyMessageDecoderTest). There are two
dynamic clusters connected to it, these being one for messages and protocols (39
methods, 29 test cases) and one with two helper classes and their test case (3
methods, 1 test case).

Possible explanation and refactoring: A straightforward solution would be
to split the package according to the dynamic behavior. However, we think that
one of the resulting subpackages would be too small as a single package. Instead,
the package should be divided into packages of messages, protocols and others. It
would require other refactorings as well (e.g. involve splitting of the big test class)
to produce a structure that conforms with the unit testing guidelines. However,
this refactoring cannot be directly derived from the identified clusters alone. It
requires a deeper analysis and knowledge of the code.

4.2.3 com/cloudera/oryx/als/common

This is the core package of the als-common submodule of subject oryx. It contains
comparators, custom exception classes and small utility classes, and consists of 9
classes, one interface with altogether 18 methods and 4 test classes with 17 test
cases. Four dynamic clusters are connected, these being a string-to-long map utility
(1 method, 6 test cases), the DataUtils class and related test cases (1 method, 2
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test cases), another string-to-long map utility (5 methods, 2 test cases) and a set
of comparators and utility methods (11 methods, 7 test cases).

Possible explanation and refactoring: The dynamic clusters capture the sub-
functionalities correctly, and there is room for refactoring. That is, exceptions,
comparators, and utilities could be separated into three different packages, one
for each. From the identified dynamic clusters, we seem to have a good basis for
reorganizing the code, but additional decisions and corrections are needed. This
Structural Unit Test Smell turned out to be true positive.

4.2.4 com/cloudera/oryx/common/io

The next Structural Unit Test Smell in oryx is the io package with Delimited-
DataUtils, which is adapted from SuperCSV as a fast/lightweight alternative to
its full APT and I0Utils, a collection of simple utility methods related to I/O op-
erations. It is composed of these two classes with 10 methods and the related 11
test cases. The four connected dynamic cluster are: DelimitedDataUtils.encode
(3 methods, 5 test cases), I0Utils.delete (3 methods, 1 test case), Delimited-
DataUtils.decode (2 methods, 4 test cases) and I0Utils.copy (2 methods, 1 test
case).

Possible explanation and refactoring: This Structural Unit Test Smell is the
result of how we define the unit in the static case. The dynamic clusters describe
the sub-functionalities correctly at the method level, but the static cluster is too
small to suggest some reorganization of the tests and the code. Actually, it turns
out to be a false positive SUTS.

4.2.5 com/cloudera/oryx/common/stats

This static package is a common submodule of oryx which provides different statis-
tics, and it has 5 classes with 24 methods, and 4 test classes with 13 test cases
altogether. This pattern has 4 dynamic clusters: a weighted mean implementation
for floating-point weights (6 methods, 5 test cases), a similar module with inte-
ger weights (7 methods, 6 test cases), a class encapsulating a set of statistics like
mean, min and max (4 methods, 1 test case) and a bean class encapsulating some
characteristics of the JVM runtime environment (7 methods, 1 test case).

Possible explanation and refactoring: The dynamic clustering split the static
package into smaller units. Following the dynamic clusters would result in four
units, but here we suggest that just the bean class JVMEnvironment should be
separated, and the others have a similar functionality. Although the SUTS is valid,
the clusters can only be partially used to determine the refactoring and further
knowledge is required to do it correctly.
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4.2.6 com/cloudera/oryx/kmeans/common

This package is the core of the kmeans-common submodule of oryx which is re-
sponsible for providing the k-means algorithm and several evaluation strategies. It
includes 12 classes and 4 interfaces with 51 methods altogether, and 5 test classes
about 60-70 lines long, providing 20 test cases. This case includes two coverage-
based clusters (see Figure 3(a)), one for the evaluation strategies, weights, cluster
centers, validity and statistics (40 methods, 17 test cases) and one that includes
other evaluation strategies (11 methods, 3 test cases).

Possible explanation and refactoring: This package could be safely splits
into two packages according to the dynamic clusters, one being responsible for
the statistical validation and the other being responsible for the strategies. In
Figure 3(a), cluster 32 should correspond to the validation and 33 should correspond
to the strategies. This is a clear example of the situation where the Structural Unit
Test Smell is not only valid, but the clusters involved in it also clearly show how
the refactoring should be carried out.

\com/orientechnologies/orient/server/token

‘com/cloudera/oryx/kmeans/common‘

= 1,00 1= 1.00)
‘ com/orientechnologies/orient/server/binary/impl

(a) (b)

Figure 3: Examples of a clustering comparison

4.2.7 com/cloudera/oryx/kmeans/computation/covariance

Another SUTS in oryx is the package responsible for handling covariance com-
putations in k-means. It includes two classes called CoMoment and Index with 9
methods altogether, and the corresponding test classes with 3 test cases in total.
There are 2 dynamic clusters involved, one for the first class (6 methods, 2 test
cases) and one for the other class (3 methods, 1 test case).

Possible explanation and refactoring: In this SUTS, the static cluster was
divided into two dynamic clusters. These two clusters are too small to be reasonably
separated into distinct packages. Hence, the SUTS is a false positive. However, we
note that in our investigation we found that this functionality might not be tested
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properly, and it might have some indirect effect associated with the smell that was
reported.

4.2.8 An example of dynamic cluster

This SUTS belongs to the subject program called orientdb. The corresponding
part of the CSG can be seen in Figure 3(b). This pattern consists of a coverage-
based cluster (with serial number 38) and two related static clusters. By investigat-
ing the content of the dynamic cluster, we found that it is mainly responsible for
token handling/serialization in the OrientDB Server. It includes all 6 classes (with
61 methods) from the server/token package and the OBinaryToken class (with
27 methods) from package server/binary/impl. In addition, it contains 2 test
classes with 9 test cases. The former package is responsible for handling and seri-
alization of Web authentication tokens, while the latter is a bean-like class which
stores information about the user, database, protocol, driver and server. This class
has no direct tests, but it is covered by those test cases which examine the token
serializer and token handler classes.

Possible explanation and refactoring: Both static or dynamic clustering re-
sults could potentially be considered for refactoring, depending on what unit test
writing principles the project follows. One solution might be to use mocking to
eliminate the dynamic relation between the elements of the two packages. But
merging the packages (i.e. moving OBinaryToken to the token package) to provide
a single unit is also a reasonable option in this case. Thus, the reported Structural
Unit Test Smell is valid, and suggests elements that should be refactored. Fur-
thermore, the refactoring possibilities can be directly obtained from an analysis of
clusters, although choosing one requires additional information.

5 Threats to validity

This study contains some threats to validity. First, we selected the subjects after
assuming that the integrated tests using the JUnit framework are indeed unit tests,
and not other kinds of automated tests. However, during manual investigation some
tests turned out to be higher level tests, and in these cases the traceability links
had a slightly different meaning from that for unit tests. Also, in practice the
granularity and size of a unit might differ from what is expected (a Java method).
Generally speaking, it is hard to ascertain automatically whether a test is intended
or not intended to be a unit test, so we verified each identified patterns manually for
these properties as well. However, in actual scenarios this information will probably
be known beforehand.

Another aspect to consider about the manual analysis is that this study was
performed by the authors of this paper, who are experienced researchers and pro-
grammers as well. However, none of them was a developer of the given systems,
hence the decisions made about the Structural Unit Test Smells and refactorings
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would probably have been different if they had been made by a developer of the
system.

6 Conclusions

In this study, we carried out an analysis of test-to-code traceability information.
Unit test development has some widely accepted rules that support things like the
maintenance of these tests suites. Some of them concern the structural attributes
of these tests. These attributes can be described by traceability relations between
the test and code. Previous studies demonstrated that fully automatic test-to-code
traceability recovery is difficult, if not impossible in the general case [23, 16, 19].
There are several fundamental approaches proposed that have been proposed for
this task, based on, among other things, static code analysis, call-graphs, dynamic
dependency analysis, name analysis, change history and even questionnaire based
approaches (see Section 2 above). However, there seems to be general agreement
between researchers that no single method can provide accurate information about
test and code relations.

Following this line of thinking, we developed a method that is able to detect
Structural Unit Test Smells, i.e. locations in the code where unit test development
rules are violated. In particular, we compute test-to-code traceability using two
relatively straightforward automatic approaches, one based on the static physical
code structure and the other on the dynamic behavior of test cases in terms of
code coverage. Both can be viewed as objective descriptions of the relationship of
the unit tests and code units, but from different perspectives; hence, each location
where they disagree about traceability can be treated as a SUTS. Our approach is
to use clustering and hence form mutually traceable groups of elements (instead of
atomic traceability information), and this makes the method more robust because
minor inconsistencies will probably not influence the overall results.

Here, we investigated the results of this method applied on four subject pro-
grams. Our goal was to manually check the reported Structural Unit Test Smells
to see whether at least a part of these are real problems that needs to be examined.
Experience indicates that most of the reported SUTSs point to parts of the test
and code that could be reorganized to better follow unit test guidelines. However,
in some situations it might not be worth modifying the tests and the code (e.g.
for technical reasons). Overall, we found several typical reasons that could form
the basis for future study and this might lead to an automatic classification of the
Structural Unit Test Smells.

These findings have several implications. First, the method has a potential
to find Structural Unit Test Smells, but the results will probably contain a large
number of false positives. To filter out them, we need to carry out an investigation of
the given situation. Fortunately, it seems that there are similar situations that can
provide a basis for the automatic classification of the identified smells, and it may
assist the developers in their refactoring activities. However, it is also clear from
our manual analysis that automatic classification requires additional knowledge
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(i.e. simply relying on the currently used static and dynamic data is not enough).
Furthermore, we found several intricate SUTS patterns in the CSGs, for which we
could not make informed refactoring suggestions because of their complexity and
size.

Lastly, there are future possible directions for further research. One is that we
could identify and automatically recognize patterns, and then propose an appro-
priate refactoring solution for them. Another might be the investigation of some
methods that simplifies the recognition of the graph patterns, even the complex
ones, where possible. The class level hierarchy and traceability relations might also
be worth investigating to see whether they can provide relevant information that
would help us to identify Structural Unit Test Smells.
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