
SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 1

Simulation of Experiments for Data
Collection – a replicated study

Per Runeson and Mattias Wiberg

Dept. Communication Systems

Lund University, Box 118, SE-221 00 Lund, Sweden

per.runeson@telecom.lth.se

ABSTRACT
Simulations can be used as a means for extension of data collection from empirical studies. A simu-
lation model is developed, based on the data from experiments, and new data is generated from the
simulation model. This paper replicates an initial investigation by Münch and Armbrust, with the pur-
pose of evaluating the generality of their approach. We replicate their study using data from two in-
spection experiments. We conclude that the replicated study corroborates the original one. The de-
viation between the detection rate of the underlying experiment and the simulation models was 2%
for the original study and is 4% in the replicated study. Both figures are acceptable for using the ap-
proach further. Still the model is based on some adjustment variables that are not directly possible to
interpret in terms of the original experiment, and hence the model is subject to improvement.

1. INTRODUCTION
To conduct empirical studies in software engineering costs resources, as they always include human subjects. This
is unavoidable, as we want to study how the subjects behave. However, we may possibly utilize the information
better, that is gained in empirical studies. Simulations have appeared as a vehicle to achieve this [13]. Münch and
Armbrust [11][2] have conducted a study to evaluate the principle of collecting empirical data from simulations.
Software inspections are rather well investigated empirically [3], but many other areas in software engineering lack
empirical data. The access to empirical data makes the area of software inspections suitable for evaluating the
simulation principles, and then the experiences may be transferred to other software engineering domains with less
empirical data available.

Basically, the approach is to build a simulation model based on data from experiments, and evaluate how well
the simulation model resembles the empirical studies. If the simulation model resembles the empirical study, we
may alternate the model settings and investigate alternative variants in what-if scenarios. Further, the simulation
model may be used to increase the statistical significance of empirical data, using a bootstrap approach [9]. The
results of the Münch and Armbrust study are encouraging, as the deviations between the empirical studies and the
simulated results are quite small.

The purpose of this study is to investigate whether the original results are due to specific characteristics of the
data, or they are more general. In order to investigate this, we have conducted a replication of their study. The
same simulation model is implemented in a simulation tool, calibrated using data from two experiments on inspec-
tions [14][15], and then evaluated. Another simulation tool was used, primarily due to limited access to the original
toolset. The mean deviation between the real data and the simulation data is less than 4% in the replicated study.
This is more than the reported 2% deviation in the original study, but still an acceptable result. Hence we conclude
that the simulation model seems to be general enough to capture the behavior of other inspection experiments. We
also extend the model to capture some random variation in reviewer performance.

The paper is outlined as follows. In Section 2, we provide some background on process simulation. The goal of
the study and the methodology used are presented in Section 3. The simulation model with its parameters is pre-
sented in Section 4, while the results of the replication are reported in Section 5. Finally, we summarize our conclu-
sions in Section 6.

2. SOFTWARE PROCESS SIMULATIONS
Software process simulation is a way of supporting decision making in a software development process. Simula-
tions can be used for a wide variety of applications in a software development process, ranging from smaller parts
like a single inspection to larger ones concerning a whole organization.

The basis for simulations is a computerized abstraction of the real life process, a simulation model. When de-
veloping the simulation model the goal is to address the significant features of the real life process. Kellner et al.
stress three different aspects to consider in building simulation models, namely 1) the purpose, 2) the structure of
the model, and 3) the implementation [10].

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 2

2.1. Purpose
Several issues in a software development process can be dealt with using simulations. Kellner et al. [10] divide
them into six categories: 1) Strategic management, 2) Planning, 3) Control and operational management, 4) Proc-
ess improvement and technology adoption, 5) Understanding and 6)Training and learning.

The strategic management category involves questions like “How would this process improvement affect our
productivity over the next two years?” while in the process improvement category the issue is the process im-
provement itself, like “how efficient is the new testing technique?” In the planning category the aim is to solve prob-
lems concerning cost/benefit predictions, whereas a control and operational management question is, “When
should we stop testing?” Finally, apart from supporting decision making, simulation can help in understanding com-
plex process flows, aid communication and act as a learning tool of the software process [1][5].

2.2. Structure
There are four areas to consider when defining the simulation model structure [10]: the scope of the model, the re-
sult variables, the abstraction level of the model, and the input parameters.

Model scope. Scoping of the model involves setting the limitations for what the model should comprise. A simu-
lation model cannot include everything that might possibly impact on the result variable, but must be limited to the
major factors. To be able to select a scope it is important to understand the purpose of the model i.e. which ques-
tions need to be answered.

Key result variables. When deciding which result variables a model should provide, the purpose of the model
and the questions attached to it, are once again decisive. Result variables may be cost/effort, defect level, staff
utilization rate, cost/benefit and throughput/productivity.

Process abstraction. The issue with process abstraction is to consider the tradeoff between complexity and data
sufficiency, and then to choose which key elements of the process that will make the model useful. Important ele-
ments to identify could be key activities, primary objects, vital resources and decision points [10]. The process ab-
straction aspect is highly dependent on the selection of both the result variables and the input parameters.

Input parameters. As Raffo and Kellner [12] point out, the results from a simulation model can only be as accu-
rate as the input supports. In addition to this it is naturally also important to select the input parameters that are es-
sential for the model purpose and key result variables.

All these factors, and also the model purpose, will affect the model behavior and thus also each other. If one
factor is modified, the rest will most likely have to be reviewed once again. In conclusion, model building is an itera-
tive process with the aim of finding an adequate representation of a real life process.

2.3. Implementation
When the purpose, scope, key parameters and abstraction level of the simulation model are established, the final
question is how to implement the simulation model. This involves the decision of simulation approach and consid-
eration of available techniques and related simulation tool.

Simulation approach. Kellner et al. [10] list a number of the simulation approaches applied to software proc-
esses: 1) State-based process models, 2) Discrete event simulations, 3) Continuous simulations, 4) Hybrid simula-
tions, 5) Rule-based languages, and 6) Queuing models.

They emphasize that no modeling approach or tool is the best one for every situation. However, in their study
they provide general guidelines for the selection. Continuous simulations are suggested to be suitable for high-level
analysis, like strategic management and for processes with longer time-span. Discrete event and state-based simu-
lation is on the other hand well-suited for a detailed process analysis.

Additionally, in discrete event models the simulation moves forward in discrete steps which allow the process
and attributes to be analyzed in detail. This is not the case in a continuous model where the dynamics take place in
continuous time and process details can not be individually traced.

Simulation techniques. The simulation model can be developed using visual or textual techniques. Visual mod-
els have become the norm in software process simulations [10], because they are easier to understand.

Furthermore, the input parameters used in a simulation model can be deterministic, stochastic or a combination
of both. Deterministic parameters have single values without variation, whereas the stochastic ones are random
numbers from a probability distribution.

The decisions concerning simulation approach and technique highly affect the choice of simulation tool. The tool
must be able to support the chosen approach and its properties. Furthermore, it must also provide the adequate
techniques for building the model. This means, that in addition to the approach, the tool must also support the im-
plementation of key parameters and abstraction level.

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 3

3. STUDY DEFINITION AND METHODOLOGY
The purpose if the simulation study reported in this paper is to understand the characteristics of a software inspec-
tion process, with the intention of using the simulation model for empirical data collection. In particular, replication
methodology is used to investigate the generality of the simulation approach.

The scope of the simulation model is inspection processes, as defined by the original study [2][11]. The primary
result variable is the number of defects found in the inspection. We abstract the model to capturing artifacts and
reviewers, with attributes qualifying each instance. The input parameters are artifact and reviewer attributes, taken
from experimental studies on software inspection.

The implementation of the simulation model is based on the continuous simulation approach. The model is im-
plemented in the MATLAB/Simulink environment, which has a graphical representation of model building blocks.

The overall goal of the study is to investigate whether the simulation model is specific for the inspection experi-
ments on which it was built, or it is more general to its character. A secondary goal is to evaluate the feasibility of
using the MATLAB/Simulink environment for process type simulations.

The replication study is conducted in four main steps:
1. Implementation of the model in a simulation tool
2. Validation of the model implementation, using the original data
3. Replication of the study, using the new data
4. Extend the model for better performance, and evaluate

The implementation of the model was quite straightforward, as we got access to all relevant information from the
original study [2][11]. We chose to implement the model in the MATLAB/Simulink1 environment instead of the origi-
nal Extend2 environment, primarily due to better access to the tool. The implemented model was validated using
one data set from the original study to ensure that the new implementation of the model is identical to the original
implementation. The new implementation provided exactly the same output with the original data, as the original
study, and hence we consider the two implementations being identical.

Finally, the behavior of the model was validated using empirical data from two experimental studies conducted
at Lund University [14][15]. Both studies concern inspection of design documents, comparing two different reading
techniques. One of the treatments in both studies is usage-based reading, guided by prioritized use cases. The
other treatment is usage-based reading with randomized ordered use cases [14] and checklist-based reading [15]
respectively.

The extension of the simulation model is conducted as a separate step, and the evaluation of the extensions is
conducted, using the same data as the evaluation of the replication.

4. MODELS

4.1. The original study
The purpose of the original model was to investigate how well a simulation model captures the behavior of a soft-
ware inspection. The structure of the simulation model developed by Münch and Armbrust [2][11] is a discrete
event model of the factors influencing on the inspection performance, with the dynamic behavior modeled as influ-
ence diagrams. They implemented the model in a modeling and simulation environment, called Extend.

The dynamic simulation model is based on a static process model of the actual inspection process, presented in
Figure 1. The development process as such is not implemented in the simulation model, but it is designed based
on the artifacts and activities of the process, their attributes and the relations between these attributes. The rela-
tions are presented in an influence diagram in Figure 2, which is used to model the dynamic behavior of the inspec-
tion process.

The static inspection model contains an overview of all the steps, roles and artifacts in the process. The inspec-
tion steps, Planning, Overview, Preparation, Inspection Meeting, Rework and Follow-up are the basis for the
model. In addition to the steps, the roles in the process are also displayed, which are Moderator, Designer, Imple-
menter, Reader and Tester. Each role has some specific skill or knowledge and the team members can play multi-
ple roles. In the static model, the roles and not the actual team members, are displayed. Münch and Armbrust use
a somewhat different terminology regarding role names, but the function of the roles are the same. The Inspector
and the Author are for example simply roles played by several team members. The artifacts that move through the
inspection process are also displayed in the inspection process in Figure 1 [11]. These include the actual design
document and the documents produced during the inspection, like a defect list.

1 http://www.mathworks.com
2 http://www.imaginethatinc.com

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 4

To provide a better understanding of the inspection process model, the steps are described below along with
the roles and artifacts involved. The planning step involves the forming of the inspection team and the assignment
of the roles. This is organized by the moderator who functions as a coach for the entire inspection. The overview
step is an optional one, in which the author may present the artifacts and additional properties of the software
product. After this the team members individually inspect the artifacts in the preparation step. This generates lists
from the reviewers which are compiled into a defect list by the moderator. With the defect list as a basis, the in-
spection meeting is conducted with all the team members present. In the inspection meeting the defects are identi-
fied and documented. Solutions or suggestions of implementation are not to be discussed. An aggregated defect
list is compiled by the moderator and provided to the author. The author performs the rework, i.e. corrects the de-
fects in the list and delivers an inspected design document. If an artifact contained many defects the decision of a
reinspection and further rework can now be taken. Finally, in the follow-up step the moderator checks that the is-
sues in the defects list are resolved.

The purpose of the simulation model is to be a decision support for planning in software projects. Furthermore,
the model development was focused on the integration of empirical data. This means that some aspects of the in-
spection process can be excluded from the simulation model and thereby reducing its complexity. The simulation
model is still useful in the intended context and the data reduction limits the scope and consequently also the ab-

Document
Size

Document
Complexity

Experience

Expertise

Document
Difficulty

Review
Correction
Factor

tDDR

iDDR

EE level

Inspection
Capability

FIGURE 2. Influence diagram [2]

+

+

+

+

+

+

+

+
-

FIGURE 1. Static inspection process model [11]

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 5

straction level. In conclusion, the simulation model abstracts from several details in the inspection process, but the
key elements that will make the model useful are all included.

The key factors, chosen by Münch and Armbrust [11] to be the most influential to the inspection process per-
formance, are the capacity of the available reviewers and the status of the document to be inspected. The two fac-
tors, document and reviewers, are characterized by a number of attributes. The factors, the attributes and a short
description of them are presented in Table 1.

The influence diagram in Figure 2 describes the interaction between the attributes in Table 1. The diagram and
the static model were used as a basis for the dynamic model, which in the original study was implemented in the
simulation environment Extend as a discrete event model. For calibration and further development, Münch and
Armbrust integrated empirical data from two experimental studies [4][8]. Finally, a validation of the simulation model
was performed using a data set from Biffl and Gutjahr [6].

The output of the simulation model is the average team defect detection rate (tDDR), i.e. the rate of the defects
found by the simulated teams. The simulation model is evaluated with respect to its deviation from the value
achieved by constructing virtual teams (VT) from the original experiment. A virtual team of size N is composed by
drawing N individual reviewers from the data set, and calculating the tDDR for that team. All combinations of re-
viewers are composed into teams on N reviewers, and statistics on the tDDR can be calculated. See [7] for further
details on VT or Virtual Inspections. Virtual teams is a variant of bootstrapping [9].

TABLE 1. Model attributes

Factor Attribute Description

Number of defects Total number of defects in the document

Size Document size

Document

Complexity Document complexity

Team size Number of reviewers

Experience Reviewer experience with reading technique, document type etc.

Expertise Reviewer domain expertise

iDDR Individual defect detection rate

Reviewers

Document coverage Percent of document covered by reviewer

The deviation is defined as the average defect detection rate of the virtually composed inspection teams, minus

the simulated team detection rate (tDDRΔ = tDDRVT – tDDRsim). The results of the Münch and Armbrust study show
quite a small deviation between the virtual teams of the empirical data and the results from the simulation. The
mean deviation in their study is about 2%.

The principal procedures of the original study are summarized in Figure 3 (left). The model is built and cali-
brated using information from the experiments. The individual detection rate (iDDR) is fed into the model, and the
team detection rate (tDDR) is calculated from the simulation. The outcome is evaluated by calculating the deviation
from the experimental value.

4.2. The replication study
The purpose of the replication is the same as in the original study, i.e. to investigate how well a simulation model
can capture the behavior of a software inspection experiment. Now we add the aspect of generality in that we apply
the previously derived model to new data. The structure of the model is the same as in the original study, while the
implementation is conducted in another toolset, for practical reasons. The main difference is that we use data from
another set of experiments as calibration and input to the model, as depicted in Figure 3 (right). We also investigate
some extensions to the simulation model.

Model
iDDR tDDR

Exp 1
Δ=? Exp 2

FIGURE 3. Overview of original study procedures (left) and replication study procedures (right)

Model
iDDR

tDDR

Exp 3
Δ=?

Exp 4

Extension

tDDR
(StDev)

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 6

4.2.1. Model implementation
The MATLAB/Simulink simulation environment differs slightly from Extend, used in the original study, which re-
quired a different approach to some modeling concepts. However, the differences were mainly implementation de-
tails, e.g. other building blocks and changes in representation of the model properties and attributes. With access
to relevant information about Extend and the original model, these implementation difficulties could be resolved.
The basic structure and principles in the replication model and the original model, are identical.

The input data are read from file to provide an efficient setup for simulation execution. The file contains attrib-
utes which are here explicitly set for each reviewer.

The first step in building the simulation model was to implement the basic structure, i.e. attribute realization and
their connections. The factors and attributes described in Table 1, their interaction extracted from the influence dia-
gram and other additional calculations were the basis for this. In addition to the listed attributes, the original study
provides tree adjustment variables. These variables give further control of the model behavior and consequently a
better description of the inspection context. The adjustment variables are Experience Importance, Expertise Impor-
tance and the Review Correction Factor. The adjustment variables and the attributes represent the input variables
to the simulation model and are briefly described below.

4.2.2. Document attributes
The documents used in the simulation model are design documents characterized by the attributes described be-
low. These can be found as boxes in the top-left corner of Figure 4.

• Document Defects is the total number of defects that exist in the document. The attribute is used in the model
to display the effects of the inspection process, i.e. the reduction of defects. The attribute is simply
implemented as a constant and can be set to values in the interval [1,n].

• Document Size is the attribute that reflects the size of the document. The attribute is implemented as a con-
stant and can be in the interval [0,2], where the value 1 represents an average document size in the context
where it is used. Values over or below this average reflects a larger or smaller document. In the original study,
the average value is a document with 17 pages.

• Document Complexity is designed to reflect the complexity of the document and is also implemented as a con-
stant with values in the interval [0,2], with 1 as the average. Like Document Size, the attribute can assume val-
ues over or below the average to display complexity different from the usual.

FIGURE 4. The simulation model expressed in MATLAB/Simulink.

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 7

4.2.3. Reviewer attributes
The individual reviewers form an inspection team and inspect the design documents. The reviewers are described
by the attributes below. These are input to the simulation model in a file called reviewer_data.mat in Figure 4.
• Team size is the number of reviewers contributing in the inspection.
• Experience reflects the experience a reviewer has with the inspection process, the document type and the

reading technique. The attribute can be set to values in the interval [0,2], with 1 as the average.
• Expertise describes what domain knowledge the reviewer has. Values are in the interval [0,2].
• Document Coverage reflects how the reviewer makes use of the assigned inspection time. Values are in the

interval [0,1] and 1 indicates that the entire document was reviewed.
• Individual Defect Detection Rate (iDDR) describes the reviewer performance, i.e. how large share of the de-

fects a reviewer found of the total amount contained in a document. Values are hence in the interval [0,1].

4.2.4. Adjustment variables
In addition to the attributes, the original model has a set of adjustment variables, which take some specific inspec-
tion considerations into account.
• Experience Importance gives the possibility to adjust the model to an inspection process where the experience

of the reviewers is of special importance.
• Expertise Importance is used to reflect if an inspection process is highly dependent on reviewers with special

domain experience.
• Review Correction Factor (RevCor). When an inspection is performed by a team of reviewers some defects will

be found by more than one reviewer. This will create an overlap which can differ with different inspection tech-
niques. The overlap in the model is reflected by the Review Correction Factor. Values are in the interval [0,1].

4.2.5. Model validation
In order to confirm that the new implementation of the simulation was correct, the replication model was validated
with the data from the original study. The replication model was run with data sets used for calibration by Münch
and Armbrust. The data originates from two experimental studies [4][8].

The validation was performed by setting up the replication model with the data and inputs from the original simu-
lation, execute a simulation run and finally comparing the outcome tDDR with the tDDR from the original study. The
simulation setup is presented in Table 2.

TABLE 2. Original simulation setup, used in replication model validation

Attribute Value

Number of defects 28

Document size 1

Document complexity 1

Team size 3

Reviewer experience 1

Reviewer expertise 1

iDDR 0.2464; 0.3214; 0.2133; 0.2593; 0.1459; 0.2246

Document coverage 1

The simulation model was run with six different values of the average iDDR from the original study data sets.

The output from the simulation, the original tDDR and the replication model tDDR, were identical and the replication
model was therefore considered to be identical to the original model.

4.2.6. Replication
The data used for the replication originates from two experimental studies. The first study [14] evaluates the use of
usage-based reading (UBR). The experiment in the study was conducted on 27 third-year software engineering
students and was designed to compare prioritized to randomly ordered use cases in UBR. The experiment had two
groups, one with 13 students using randomly ordered use cases and one with 14 students using use cases in pri-
oritized order. A questionnaire was used to investigate the expertise and experience among the students and from
the result it was concluded that the subjects, although being students, could be considered to be similar to software
developers. The document that was inspected is a design document with 9 pages which contains 37 defects. A
defect is present when some part of the design differs from the stated requirements. These data sets are denoted
Rand and UBR1 respectively.

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 8

The second study, also presented by Thelin et al. [15], describes an experiment that compares usage-based
and checklist-based reading, i.e. UBR and CBR. The participants in the experiment in this study were 23 fourth
year software engineering students and could, like in the experiment above, be considered similar to software de-
velopers. The experiment had two groups, one with 12 students using CBR and on with 11 students using UBR.
The inspected document is a design document with 9 pages which contains 38 defects. A defect is present when
some part of the design differs from the stated requirements. These data sets are denoted Check and UBR2 re-
spectively.

With the replication model, the input data from the experimental studies [14][15] and the virtual team calcula-
tions, the prerequisites for performing the replication study were fulfilled. Four different data sets were available,
which enabled four average iDDR’s to be calculated. The properties of the data and the construction of the simula-
tion model meant that four simulations runs were carried out. The replication model was set up as described in Ta-
ble 3.

TABLE 3. Replication simulation setup

Attribute Value

Number of defects 37; 38

Document size 1

Document complexity 1

Team size 3

Reviewer experience 1

Reviewer expertise 1

iDDR 0.2287; 0.3089; 0.2588; 0.3134

Document coverage 1

The inspected documents contain different number of defects. The corresponding attribute in the simulation

model is set according to this for each simulation run. The number of defects, the average iDDR and tDDR are pre-
sented along with the results and analysis in Chapter 5.

4.2.7. Model extension
The extension involved developing an updated version of the simulation model. The purpose of the extension
model was to improve the model performance and to better capture the differences between different inspection
teams. In particular, the reliance average reviewer performance was not satisfactory.

Instead of using the average iDDR, we sample from the set of actual iDDR’s from the experiments and choose
individual values for each simulation run. This enabled an analysis of the impact on the tDDR from the stochastic
variation in the iDDR. Further, we extended the model to capture different team sizes, and analyze the simulation
performance for different team sizes.

4.2.8. Threats
The major threat to the validity of the study results concerns external validity. The replication is conducted on an-
other experiment, hence we cannot conclude whether the model is valid to e.g. industrial inspections. The internal
validity threats are under control, as we have got access and good support from the researchers in the original
study. We have validated the new implementation of the study, using the data from the original study.

5. REPLICATION RESULTS

5.1. Replication
The results from the replication simulation are briefly summarized in Table 4. The average iDDR values are taken
from the experiments. The tDDRsim are the outputs from the simulation model. tDDRVT are calculated from the ex-
perimental data as a point of reference, and finally, tDDRΔ is the difference between tDDRsim and tDDRVT. The
simulation model does fairly well corroborate the results of the experiments.

The average individual effectiveness parameter (iDDR) in the four cases varies between 22.9% and 31.3%. The
simulation model results in mean team effectiveness (tDDR) between 46.9% and 64.2% while the virtual teams,
created from the experiment data had an average tDDR between 39.9% and 60.8%. The mean deviation between
the effectiveness of the simulation and the virtual teams is 3.7%. The deviation is in the magnitude of one standard
deviation for three of the four cases.

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 9

TABLE 4. Results from the replicated simulation model.

Average individual
defect detection rate -
iDDR

Simulated team defect
detection rate -
tDDRsim

Virtual team defect
detection rate with
standard deviation in
parenthesis -
tDDRVT (Std dev)

Difference in team
defect detection rate -
tDDRΔ

Rand 0.2287 0.4687 0.3994 (0.047) -0.0693

UBR1 0.3089 0.6331 0.5979 (0.066) -0.0352

Check 0.2588 0.5304 0.5182 (0.13) -0.0122

UBR2 0.3134 0.6423 0.6083 (0.073) -0.0340

 Average

 -0.0377

The original study investigated the same range of parameters (iDDR between 14.6% and 32.1% and tDDR be-

tween 32.2% and 62.9%) and the average deviation between the effectiveness of the virtual teams and the simula-
tion is -1.99%. The model overestimates in both the original and the replicated study.

5.2. Extension
In Table 5 the mean deviation detection rate tDDRΔ from the simulation run with the extended simulation model is
presented. For the chosen team sizes, the general trend is an increasing deviation tDDR along with an increasing
team size, a trend that seem to apply to all data sets.

TABLE 5. tDDRΔ for the extended model. The replication results given as a reference.

Team Size

3 4 5

Replication
(team size 3)

Rand 0.0696 0.0848 0.0834 -0.0693

UBR1 0.0109 0.0052 -0.0072 -0.0352

Check -0.0095 -0.0214 -0.0451 -0.0122

UBR2 0.0512 0.0717 0.0773 -0.0340

The Review Correction Factor described in Section 4.2.4 limits the contribution to the tDDR for an inspection

team for each added reviewer’s iDDR. This means that the factor takes into account that adding more reviewers
increases the duplicate defects found. In a real life process, adding more reviewers may not increase the tDDR if
they find only duplicates. However, the abstraction level of the simulation model is limited and does not reflect this
fact, which may contribute to the overestimate of the tDDR.

In Table 6 the difference between the variance of simulated and calculated tDDR is presented. With an accu-
racy of two decimals the deviation does not change with an increasing team size. This observation indicates that
the simulation model is quite stable for varying number of reviewers.

TABLE 6. Difference between the variance of the simulated and calculated tDDR.

Team Size

3 4 5

Rand 0.0040 0.0040 0.0040

UBR1 0.0061 0.0064 0.0059

Check -0.0024 -0.0021 -0.0007

UBR2 0.0059 0.0070 0.0077

SIMULATION OF EXPERIMENTS FOR DATA COLLECTION – A REPLICATED STUDY

Evaluation and Assessment in Software Engineering 10

6. CONCLUSIONS
Empirical data is scarce and expensive, as it involves measurements on humans working in real-life or experimen-
tal processes. Building a process simulation model might help using the collected data more effectively. A study
based on this approach is conducted by Armbrust and Münch [11][2]. They managed to build a simulation model of
a software design inspection process, that resembles the underlying empirical study rather well, with deviations in
the defect detection rate of about 2%.

This paper reports a study, replicating the same study with data from other inspection experiments. Using the
same model structure, the replication resulted in a deviation of about 4% in the defect detection rate. Hence we can
conclude that the model is useful for other data sets as well.

Still, the model comprises some correction factors that are rather arbitrary chosen, and it does not capture suffi-
cient random variation. The extended simulation model adds a true variation in reviewer performance. The devia-
tions are still in the same range, hence further work includes modifying the model to reduce the reliance on relative
factors, and rather build on the experimental data.

For a small and repeatable process such as the inspection process, it seems feasible to develop and use a
simulation model. However, it is still a question whether these results can be extended to comprise processes with
larger scope and hence variation, e.g. a complete development process.

7. ACKNOWLEDGEMENTS
The authors are thankful to Dr. Jürgen Münch and Mr. Ove Armbrust of Fraunhofer IESE for making the original
model and their data available for the replication purpose. The work is partly funded by the Swedish Research
Council under grant 622-2004-552 for a senior researcher position in software engineering.

8. REFERENCES
[1] C. Andersson, L. Karlsson, J. Nedstam, M. Höst and B. Nilsson, ”Understanding Software Processes

through System Dynamics Simulation: A Case Study”, Proceedings of the 9th IEEE Conference and Work-
shop on the Engineering of Computer-Based Systems, pp. 41-48, 2002.

[2] O. Armbrust, Using Empirical Knowledge for Software Process Simulation: A Practical Example, Diploma
Thesis, University of Kaiserslautern, Germany, 2003.

[3] A. Aurum, H. Petersson and C. Wohlin, “State-of-the-art: software inspections after 25 years”, Software Test-
ing, Verification and Reliability, 12(3):133-154, 2002.

[4] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard and M. V. Zelkowitz, ”The Em-
pirical Investigation of Perspective-Based Reading”, Empirical Software Engineering, 1(2):133-164, 1996

[5] T. Berling, C. Andersson, M. Höst, C. Nyberg, “Adaptation of a Simulation Model Template for Testing to an
Industrial Project”, Proceedings Software Process Simulation Modeling workshop, Portland, USA, May 3-4,
2003.

[6] S. Biffl and W. Gutjahr, “Influence of team size and defect detection technique on inspection effectiveness”,
Proceedings 7th International Software Metrics Symposium, pp. 63-75, 2001.

[7] L.C. Briand, K.E. Emam and B.G. Freimut, “A comparison and integration of capture-recapture models and
the detection profile method”, Proceedings of the Ninth International Symposium on Software Reliability En-
gineering, pp. 32-41, 1998.

[8] M. Ciolkowski, C. Differding, O. Laitenberger and J. Münch, Empirical Investigation of Perspective-based
Reading: A Replicated Experiment. Technical Report 048.97/E. Fraunhofer IESE 1997;

[9] B. Efron and R. Tibshirani, “Bootstrap Methods for Standard Errors, Confidence Intervals and Other Meas-
ures of Statistical Accuracy”, Statistical Science, 1(1):54-75, 1986.

[10] M. I. Kellner, R. J. Madachy and D. M. Raffo, ”Software process simulation modeling: Why? What? How?”
Journal of Systems and Software, 46(2-3):91-105, 1999.

[11] J. Münch and O. Armbrust, “Using Empirical Knowledge from Replicated Experiments for Software Process
Simulation: A Practical Example”, Proceedings of the International Symposium on Empirical Software Engi-
neering, pp. 18-27, 2003.

[12] D. M. Raffo and M. I. Kellner, ”Empirical analysis in software process simulation modelling”, Journal of Sys-
tems and Software, 53(1):31-41, 2000.

[13] C. Robson, Real World Research, Blackwell publishers, 2002.
[14] T. Thelin, P. Runeson, and B. Regnell, “Usage-Based Reading - An Experiment to Guide Reviewers with

Use Cases”, Information and Software Technology, 43(15):925-938, 2001.
[15] T. Thelin, P. Runeson and C. Wohlin, “An Experimental Comparison of Usage-Based and Checklist-Based

Reading”, IEEE Transactions on Software Engineering, 29(8):687-704, 2003.

