
Evaluation and Assessment in Software Engineering

Software Product Lines in Value Based
Software Engineering

Maria Teresa Baldassarre, Danilo Caivano, Giuseppe Visaggio*

Department of Informatics, University of Bari – RCOST Bari
{baldassarre, caivano, visaggio}@di.uniba.it

* contact author

Objective: Evaluate the value of a product line in terms of maintainability, extensibility and configurability with
refer to the interested stakeholders: customers, maintainers, producers.
Rationale: There are values that customers constantly require in a modern software application. Some of these
values are supported by product lines. Nevertheless, in the industrial and scientific communities the conjecture
that customer values clash with those of producers/maintainers is diffused.
Design of Study: we have designed and carried out a case study in an industrial context on an ongoing project
to verify the validity of a product line in creating value for stakeholders. So data was collected as the project was
being executed along a nine month period. Then, descriptive statistics and hypothesis testing were carried out.
Results: experience acquired during the execution of an industrial project has allowed the authors to point out
the differences between program families and software product lines. Also, the case study has shown how
product lines contribute to stakeholder value proposition elicitation and reconciliation.
Conclusions: This study has represented a first step towards analyzing the value that product lines represent
for various stakeholders.

Value Based Software Engineering; Software Product Lines; Product Families; Industrial Case Study;

1. INTRODUCTION

In literature much confusion is generated between the two concepts of: Software Product Lines [5] and Program
Families [4]. A software product line is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way. On the other hand, a program family is a set of programs that
share a common set of properties and then determine the specific properties of the individual family members. In
this sense, a first aim of this paper is to point out the importance of the difference between the two approaches for
software development through an experience that the authors have made during the execution of an industrial
project.

In the past years, most of the software engineering research and practice has been carried out in a value-
neutral setting, in which decisions made do not take into account the roles and value propositions of all the
stakeholders (either they be users, acquirers, developers, maintainers, managers) involved in the process. In
current contexts, where software engineering strongly influences system’s cost, schedule and value, such an
approach is no longer feasible. Important studies like the CHAOS report [2], carried out by the Standish Group,
have attributed failure of many software projects to value oriented shortfalls. Consequently, software engineering
principles and practices result being more difficult to share among different stakeholders if their value propositions
are not considered. In this sense, Value Based Software Engineering (VBSE) plays an important role in integrating
software system’s stakeholder value propositions into all of its parts: definition, design, development and evolution.

In this work, the authors adopt the following definition of Value Based Software Engineering (VBSE): “the
explicit concern with value concerns in the application of science and mathematics by which the properties of
computer software are made useful to people” [1]. The stakeholders involved in a software engineering project are:
Customers, Producers and Maintainers. If we were to consider the most important value propositions of these
stakeholders, it would most likely arise that they are in conflict and must be in some way mitigated. Figure 1
represents part of the “spider web” [1] of the most frequent “model clashes” among stakeholders. So for example,
customers desire many features, changeable requirements, easy availability and so on, but the aspects they give
value to may clash with those of producers or maintainers. So for example, many features desired by the

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

customers clashes with the ease of meeting budget and schedule on behalf of producers who must take into
account time restrictions, effort and available budget for satisfying customer requests.

Given these general considerations, a second aim of this study is to investigate the contribution that Product
Lines can provide to stakeholder value proposition elicitation and reconciliation in the context of VBSE [3], with
respect to the three quality characteristics of maintainability, configurability and extendibility.

CUSTOMERS

PRODUCERS
Many Features

Changeable Requirements

Applications Compatibility

Early Availability
MAINTAINERS

Ease of Maintenance

Applications Compatibility
PC: Process
PD: Product
PP: Property
S: Success

Ease of meeting budget
and schedule

Stable Requirements

Freedom of choice: COTS/reuse

PD/PP

PD/PD

PP/PD

PD/PD

PD/PD

PD/PD

CUSTOMERS

PRODUCERS
Many Features

Changeable Requirements

Applications Compatibility

Early Availability
MAINTAINERS

Ease of Maintenance

Applications Compatibility
PC: Process
PD: Product
PP: Property
S: Success

Ease of meeting budget
and schedule

Stable Requirements

Freedom of choice: COTS/reuse

PD/PP

PD/PD

PP/PD

PD/PD

PD/PD

PD/PD

Figure 1: Value proposition Model-Clash spiderweb diagram

The investigation was carried out during the execution of an industrial project within an application domain that
represented typical development issues of an enterprise application. Given the issues above, the enterprise
desired adopting a product line approach. First, the confusion between product lines and program families
highlighted weaknesses, which motivated improvements and led towards a correct interpretation and
understanding of the product line concept and its benefits on a software system. The product line was defined
taking into account value propositions of the involved stakeholders. The investigation has recently finished and
data analysis is still being carried out, for this reason only part of the data have been analyzed and presented.

In the remaining part of the paper a brief description of product lines is given (section 2). We then illustrate the
industrial case study in detail (section 3) and discuss results of data analysis (section 4). Finally conclusions are
drawn.

2. BACKGROUND

In literature it is not seldom for confusion to be generated between the concepts of “product lines” and “program
families”. Some authors state that they are the same. On behalf of the authors of this paper an important
conceptual distinction must be made. Such distinction is made with respect to the chronology in literature of the
definitions we refer to.

In [4] Parnas wrote: “A Program Family is considered a set of programs to constitute a family, whenever it is
worthwhile to study programs from the set by first studying the common properties of the set, and then determining
the special properties of the individual family members”. In [5] a Software Product Line is: “a set of software-
intensive systems that share a common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core assets in a prescribed way”.

A program family is usually developed without the intent of satisfying a common set of features required by the
market. Moreover it can be seen as a software application that is tailored to customer requirements by setting
parameters. In this way the same software application is customized to specific needs. An example is SAP/R3, a
general purpose information system that can be tailored in their behaviour by setting a set of specific parameters.
So, in a program family, the same system is adapted by setting parameters to customer requirements.

A software product line is characterized by a set of products that share a common core of features and are
distinguished from one another by additional variant capabilities which satisfy the needs of a specific stakeholder.
An example is given by the Windows Operating Systems. In this case, there are various final products: Windows
XP, Windows Me, Windows 2003 Server, Windows 4.0 NT, etc. Each product is an independent system made up
of common features, such as libraries, interfaces, algorithms, and basic services, shared among all the systems,
and specific variant features that are characteristic of each application, for example Windows 2003 Server has
capabilities for network domain management, user account and profile management, network monitoring, etc;
Windows XP for tablet PCs has capabilities for touchscreen management as an input device; Windows Mobile has
capabilities for interface management that differs from other products.

If the two concepts were the same, what need would there have been to use a different term (product line) in the
late 90s to identify something that had already been introduced in the early 70s (product family) by Parnas.
Wouldn’t it be like reinventing the wheel?

The experience acquired during the project has pointed out the importance of differentiating program families
from product lines. Also, in spite of the importance of the presented issues for practitioners, literature provides little

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

references on the application of value to product lines [3]. This paper represents a step in this direction and
illustrates an empirical investigation on an ongoing industrial project.

VBSE was firstly significantly addressed by Boehm [11]. The value-based movement became of high interest for
the software engineering community during the 90’s with the Win Win model which stressed the multi-stakeholder
perspective and with contributions from empirical and evidence based software engineering, value based
approaches, agile software development and risk driven approaches. In [1] Boehm revisits and puts together all the
contributions.

3. CASE STUDY

LEGOM is an application of an Italian SME, that has been on the market for 3 years. It supports the legal office
of a bank or an insurance company in managing risky credits. In the respect of the norms that regulate this
application domain, each bank adopts a specific approach, based on past acquired experience, with their clients.
For nationwide banks such decisions must adapt to the various territorial and economical contexts which have
different cultures, and different manners for facing the initiatives to undertake. Many institutions also rely on
external attorneys that adapt credit return procedures to their experience. So, in facing credit return issues there
are common features applicable nationwide and variant aspects that apply only to local contexts. Experience is
another variant factor.

In this context, banks and insurance companies are the customers of LEGOM, while SME’s staff involved in the
LEGOM development teams are the maintainers and producers. We have considered the spiderweb diagram in [1]
as a starting point for identifying value propositions of stakeholders and have refined it into what appears in Figure 1
according to what stakeholders have pointed out during the project execution. Moreover, the values desired by
customers were: Many Features, used for defining client characteristics and understanding how to enact credit
return; Changeable Requirements because experience acquired in time may lead to modification of features; Early
Availability because customers require that requested changes be usable in a short time. Application Compatibility
in that the features of an application must be coherent with the social context they are used in and with the other
applications they must interact with. On the other hand, maintainers desire ease of maintenance in satisfying
maintenance requests in short time with low effort, and that the applications integrated in the software system are
compatible with one another (application compatibility). Finally developers of a software system desire that the
requirements of the system to develop are stable and not subject to change in short periods (stable requirements)
so budget and schedule can be planned and respected (ease of meeting budget and schedule). Also, developers
desire freedom of choice of COTS that should make up the final software system and the possibility of reusing
existing code for developing requirements.

In order to face and overcome the clashes related to stakeholder value propositions, the SME migrated the
LEGOM application into a product line [5, 6]. This was done through three steps:

1. analysis of existing versions in order to point out: a) invariant core and b) variant components
2. distinction of characterizing parameters for each version
3. formalization of the relation between characterizing parameters and variant components. Each combination
between a set of characterizing parameters and variant components determines a profile, i.e. the applications of
LEGOM implemented for customers.

After the migration, a case study was carried out in the SME in order to evaluate how the product line provided
value proposition elicitation and reconciliation with respect to three quality characteristics of maintainability,
configurability and extendibility. The case study was carried out on field as LEGOM was used by its customers and
maintenance requests were forwarded during an observed time period of three trimesters. The relations between
the stakeholder value propositions of Figure 1 and the three quality characteristics observed in the product line are
pointed out in Table 1. Moreover for each quality characteristic, the table lists the clashes between stakeholder
value propositions and motivates our conjecture on the how the quality characteristic measured in a product line
reconciles the clash.

Quality
characteristic

Clash of stakeholder
values

Relation

Changeable Requirements
& Stable Requirements

Maintainability assures that changes, due to changeable requirements desired by
customers, are localized in small parts of the variant components and do not impact
on the remaining modules of the product.

Maintainability

Ease of Maintenance &
Freedom of Choice

Developer’s reused software may not be easy to maintain causing a model clash in
that each time a feature or requirement must be modified it is necessary to verify
and validate the correctness of the changes keeping in mind the relations among
the numerous components. We hypothesize that in a product line the integrated
components favour maintenance interventions.

Extendibility Early Availability & Ease of
meeting budget and

The customer’s desire of having the software available in short time clashes with
developer’s budget and schedule. We hypothesize that a product line allows to

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

schedule develop features that can be used by customers and gradually extend them.

Many Features & Budget
Schedule

An application with many features makes production costly and risks to be unable
to meet budget and schedule restrictions. Configurability verifies that the product
line has a very large set of available features manageable according to customer
needs. This overcomes the clash with budget and schedule.

Configurability

Applications Compatibility
& Freedom of Choice

The developer’s choice of COTS or reused components may be incompatible with
customers and maintainer’s other applications because configuration management
is costly and may be unreliable due to the large amount of components to manage.
We hypothesize that in a product line choice of software components is compatible
with existing applications.

Table 1: Relations between Stakeholder Values and Quality Characteristics

In the following, details of the case study planning and enactment are provided. Note that, given the
characteristics of a case study carried out on field, the level of control is not the same as for an experiment in vivo.
However, authors will provide a description as detailed as possible to allow other interested practitioners and
researchers to perceive the aspects and lessons learned by carrying out the study.

3.1. Definition of the Case Study
The case study aimed at assessing value elicitation of stakeholders involved in the LEGOM product line in

terms of maintainability, configurability, and extendibility of the application. So, three research goals have been
defined:

RG1: Analyze the maintenance process of the LEGOM product line; For the purpose of evaluating it; With
respect to maintainability; From the point of view of maintainers; In the context of an Italian SME
RG2: Analyze the maintenance process of the LEGOM product line; For the purpose of evaluating it; With
respect to configurability; From the point of view of maintainers; In the context of an Italian SME
RG3: Analyze the maintenance process of the LEGOM product line; For the purpose of evaluating it; With
respect to extendibility; From the point of view of maintainers; In the context of an Italian SME

These goals have been assessed during three trimesters of execution of the case study, according to the
maintenance requests made by stakeholders/customers of the product line. For clearness, a maintenance request
has been classified as corrective (for eliminating defects of the system in use); adaptive (for adapting existing
features of the application to customer needs), evolutional (for adding new capabilities to the application). The
application domain of LEGOM is given by the body of knowledge related to legal procedures in credit or insurance
institutions.

3.2. Planning
This phase is described according to the guidelines in [7] i.e. variables selection, selection of subjects,

hypothesis formulation.

3.2.1. Variables Selection
 The dependent variables express the quality characteristics previously mentioned. They have been detailed

and measured through a set of metrics and are specified in the following.

Maintainability Indicator (IM):
Metric Definition

Number of Reworks
(NR)

Number of times it was necessary to iterate the maintenance process to overcome the defects
encountered following to a maintenance request (MR). The NR is considered with respect to the overall
MR and to the specific types (corrective, adaptive, evolutional): MRCORR, MRADEG, MREVOL

Maintenance
Requests (MR)

The set of modification requests made by the customers of LEGOM to the producers/maintainers of the
product line during the case study observation period. The MR are considered with respect to their
totality and to the specific types. (MRCORR, MRADEG, MREVOL).

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

Maintainability
Indicator (IM)

This indicator is measured as the ratio between the number of reworks for satisfying a maintenance
request and the overall number of requests made. It is evaluated along the observation periods, as
maintenance requests are made during the use of LEGOM on behalf of its customers. Also, it is
evaluated with respect to the requests made and to the types of maintenance requested (corrective,
adaptive, evolutional). Let MRi be the i-th maintenance request, for i=1…N and N=total number of
requests along the observation period. Let NRi be the number of reworks carried out to satisfy the i-th
maintenance request. The maintainability index for the i-th MR is defined as:

i

NR
MRI

i

j
j

iM

∑
== 1)(, and with respect to each type of MR we define:

t

NR
MRI

t

j
jCORR

tCORRCORRM

∑
== 1

_

__)(,

k

NR
MRI

k

j
jADEG

kADEGADEGM

∑
== 1

_

__)(,
s

NR
MRI

s

j
jEVOL

sEVOLEVOLM

∑
== 1

_

__)(

Extendibility (IE/C and ICM): it is evaluated through two indicators.

Metric Definition
Number of Created
Components (#Ccr)

Number of new components that are created following to a MR

Number of Eliminated
Components (#Cel)

Number of components that are eliminated following to a MR

Number of Modified
Components (#Cmo)

Number of components that are modified following to a MR

Extendibility Indicator (IE/C)

Is given by the ratio between the total number of components created and eliminated for
satisfying the i-th MR, and the effort required for carrying out the request. It is calculated with
respect to the MR made during the entire observation period. It is calculated as:
 Cel Ccr MR I i C E effort

) (/
+ =

Modifiability Indicator (ICM)

Is given by the ratio between the total number of components modified for satisfying the i-th MR,
and the effort required for carrying out the request. It is calculated with respect to the MR made
during the entire observation period. It is calculated as:

effort
CmoMRI iCM

#)(=

Configurability (ICi, Nr.Profiles): evaluated through two indicators

Metric Definition
Number of Applications

(#App)
Number of applications in use that have been defined through the LEGOM product line. Each
application is a specific configuration of the product line.

Indicator of Components
Usage (ICi)

It is given by the ratio between the number of occurrences of a variant component Ci in a
specific application (configuration) in use, of the LEGOM product line and the total number of
existing applications. In particular, let Ci be the i-th variant component (for i=1..M) of a total of M
components that make up the variant part of the LEGOM product line. Let Aj be the j-th
application of the product line (for j=1…K), made up of a total of K applications. The following
table can be defined:

components/applications A1 A2 Aj … AK

C1 X X X

C2

Ci X X

….

CM X X

The intersection (i-j) indicates that the i-th component is part of the configuration that
characterizes the j-th application of the LEGOM product line. So, if we define:

= =

−=ijc Xjiif

jiif

""),(1

""),(0
 and

 Cij

I

K

j
Ci

∑
== 1

K for i=1…M

the indicator is calculated for each component. (for example, in the table above IC1 = 3/K)

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

Number of Profiles (#Pr) The total number of configurations of customer parameters. This metric identifies the types of
customers that use a product of the product line.

3.2.2. Selection of Subjects
The subjects involved in the case study were on one hand, producers/maintainers of the SME with experience

in development and maintenance of LEGOM and on the other domain experts. The latter define the various profiles
and represent LEGOM customers. They are the stakeholders that make maintenance requests as an application of
the product line is used.

3.2.3. Hypothesis Formulation
Operationally, the research goals have been evaluated through the metrics listed above. The baselines for the

measures were specified by the SME’s quality team according to their experience acquired in previous projects and
the past performances achieved in the enterprise. So, the measures were familiar within the enterprise. In the
following we briefly motivate their values.

• Maintainability (IM): for this indicator the expectation is that a system is more maintainable as the number
of reworks for a MR decreases. So, a low number of reworks is most likely related to a localized
modification. This indicator is expected to be less than 0.6, i.e. no more than three reworks for each five
maintenance requests were to be carried out (3 reworks / 5 MRs = 0,6 as shown in the tables in section
3.2.1). These considerations are also valid for the specific types of MRs (IM_CORR, IM_ADEG and IM_EVOL).

• Extendibility: IE/C evaluates the effort spent for extending or reducing functionalities of the product line, i.e.
the degree with which the SME’s developers are able to add or eliminate software components following
to a MR. On the other hand, ICM refers to the effort required for modifying components of the product line
impacted by a MR. If the MR doesn’t require creation/elimination (or modification) of components, IE/C
(respectively, ICM) will be zero, otherwise its value will increase as the effort for creating/eliminating (or
modifying) components decreases. The baseline for this indicator is of 0,1, i.e. we expect that each
created/eliminated (or modified) component does not require more than 10 person days (1 component /
10 person days = 0,1 as appears from the table in section 3.2.1.). The closer this indicator is to “1”, the
less the effort needed for creating/eliminating or modifying the components.

• Configurability: represents the degree to which each component is used within the applications of the
product line. Overall, we expect that the indicator of components usage tends to increase as the number
of applications increase. This would mean that the products of the product line and the components of
each product are used. Each time ICi is greater than 75%, the component becomes a core part of
LEGOM.

Hypothesis testing has been carried out to answer the research goals. The hypotheses have been tested with
respect to the MRs received during the three observation trimesters. They are defined with respect to the indicators
of the three quality characteristics previously mentioned:

• Hi0: There are no statistically significant differences in the values of the indicator Ii between the
trimesters of observation

• Hi1: There are statistically significant differences in the values of the indicator Ii between the
 trimesters of observation

Where the set of indicators Ii = {IM, IM_ADEG, IM_EVOL, IM_CORR, IE/C, ICM, ICi}, as shown in Figure 2. Also, as it arises from
the arrows in the figure, tests have been carried out between trimesters to identify significant differences of the
same indicator from one observation period to another.

I_Trim

II_Trim

III_Trim

Maintainability

IM

IM

IM_ADEG

IM

IM_ADEG

IM_ADEG

IM_EVOL

IM_EVOL

IM_EVOL

IM_CORR

IM_CORR

IM_CORR

Extendibility

IE/C ICM

IE/C ICM

IE/C ICM

I_Trim

II_Trim

III_Trim

IM

IM

IM_ADEG

IM

IM_ADEG

IM_ADEG

IM_EVOL

IM_EVOL

IM_EVOL

IM_CORR

IM_CORR

IM_CORR

IE/C ICM

IE/C ICM

IE/C ICM

Configurability

I

ICi

ICi

ICi

I

I

I_Trim

II_Trim

III_Trim

Maintainability

IM

IM

IM_ADEG

IM

IM_ADEG

IM_ADEG

IM_EVOL

IM_EVOL

IM_EVOL

IM_CORR

IM_CORR

IM_CORR

Extendibility

IE/C ICM

IE/C ICM

IE/C ICM

I_Trim

II_Trim

III_Trim

IM

IM

IM_ADEG

IM

IM_ADEG

IM_ADEG

IM_EVOL

IM_EVOL

IM_EVOL

IM_CORR

IM_CORR

IM_CORR

IE/C ICM

IE/C ICM

IE/C ICM

Configurability

I

ICi

ICi

ICi

I

I
Figure 2: Hypotheses testing

The indicators were expected to achieve the baseline values. However it is also reasonable for a slight
decrease in values over time, due to constant maintenance the system is subject to. So, if on one hand, over time
the components benefit from test carried out following to maintenance, leading to less effort for satisfying other
MRs of the same type, on the other, as stated by the laws on software maintenance/evolution [8, 9], it is inevitable
for a maintained software system to degrade in time. This means that, as the product line increases in terms of
products and components, its complexity increases and so does the effort for satisfying MRs. Overall, we expected
that such degradation occurred slowly, thanks to the product line structure of the application.

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

3.3. Case Study Design
The case study is planned in three observation periods, each of three months. We will therefore refer to

trimesters of observation: I_Trim, II_Trim, III_Trim. During each observation period, maintenance requests (MR)
were made by the stakeholders (customers) of the various LEGOM products. So considering that MR={MR1, …,
MRN} is the set of maintenance requests satisfied in an observation period, the case study design was defined as
follows: :

I_Trim II_Trim III_Trim

Tr1 O1, Tr2
O2, …, Trk Ok

Trk+1 Ok+1,
…, Trj Oj

Trj+1 Oj+1, …,
TrN ON

Table 2: case study design

Tri
Trc = treatment of corrective maintenance
Tra = treatment of adaptive maintenance
Tre = treatment of evolutional maintenance

Oi Observation of the indicators according to the
type of Tri.

Table 3: classification of maintenance interventions

Tri is a maintenance intervention that can be classified as in Table 3. Each time a maintenance request begins in
the i-th trimester and ends in the i+1-th trimester, it is considered as part of the i+1 trimester.

3.4. Operation
After migrating the client-server version of LEGOM to a product line, it was installed and configured according to

each customer profile. Each application was then put in practice. As each one was used, customers forwarded
their MRs which were satisfied by the SME’s producers/maintainers during the three observation periods. As MRs
were made and satisfied, dependent variables were collected.

Note that, being the investigation a case study carried out on an ongoing project, it had a low level of control. In
particular the MRs could not be decided previous to operation, rather they were defined as the LEGOM product
line applications were put in practice. The strength, however, is given by the fact that the MRs are representative of
real context needs.

Tri is a maintenance intervention that can be classified as in Table 3. Each time a maintenance request begins in
the i-th trimester and ends in the i+1-th trimester, it is considered as part of the i+1 trimester.

4. DATA ANALYSIS

The project has recently ended and data analysis is still in execution. Moreover, till now we have analyzed
results on two of the indicators (maintainability and extendibility). We are not able to make any considerations on
configurability of the LEGOM product line. So, this section includes our preliminary results on the analyzed data.

First of all descriptive statistics have been used for graphically representing collected data. We have used box
plots for comparing the trend of maintainability and extendibility indicators between successive trimesters.

For what concerns hypothesis testing, from section 3.2.3. it can be seen that the test hypotheses compared
more than two samples made up of observations coming from distinct treatments. For this reason we planned to
use an ANOVA - ANalysis Of Variance test. This test verifies for significant differences between means of samples.
However, since the samples were not normally distributed, a non parametric alternative to the ANOVA was
adopted, i.e. Kruskal-Wallis. The Kruskal-Wallis ANOVA [10] by ranks test assumes that the variable under
consideration is continuous and measured on at least an ordinal scale. The test assesses the hypothesis that the
different samples in the comparison were drawn from the same distribution or from distributions with the same
median. Thus, the interpretations of the Kruskal-Wallis test is basically identical to that of the parametric one-way
ANOVA, except that it is based on ranks rather than means. For hypothesis testing an α = 5% was considered.

4.1. Discussion of Obtained Results
Throughout the three observation periods, a total of 8 applications of the product line were implemented among

5 different customers who forwarded 63 MRs distributed throughout each trimester as described in Table 4. Figure 3
plots the trend of the indicators calculated according to the MRs received during the observation period.

 Corrective Adaptive Evolutional

I_Trim 3 6 11

II_Trim 2 5 15

III_Trim 1 7 13

Table 4: Distribution of MRs along the three trimesters

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

Line Plot (Spreadsheet2 in No duplicati - Analisi.stw 33v*115c)

 Im Corr
 Im Evol
 Im Adeg
 Im
 I E/C
 I CMCase 1

Case 6
Case 11

Case 16
Case 21

Case 26
Case 31

Case 36
Case 41

Case 46
Case 51

Case 56
Case 61

Case 66

0

1

2

Figure 3: trend of indicators with respect to MRs during the three trimesters

It is evident how in I_Trim (case 1 – case 20) the data is quite discordant from the rest of the period. Such poor
data was attributed to a confusion made between the two concepts of product families and product lines.
Moreover, within the first trimester the difference was not yet acquired by the developers (producers & maintainers)
of the SME, and what they thought was a product line version of LEGOM actually was a family of programs.

This confusion led to a product line difficult to manage, with 50 variant conditions, many of which binary. So the
total number of possible products that could be defined was outrageous (250). Such a situation presents many
issues:

• it is difficult to specify a product line, and validate the correctness of the specifications;
• with such a high number, it is impossible to test all the resulting products;
• maintenance requires a lot of effort;
• collaboration with customers and stakeholders for identifying the most suitable product for their profile is

onerous.
As the application was migrated to what developers thought was a product line, the error made was that

characterizing parameters referred to both variant features (software product line requested by customers) and
variants of software components (flexibility desired by designers). The distinction of these two concepts then
suggested to produce a product line with a reasonable amount of products during the specification phase, and in
the design phase components were identified. After this improvement intervention, the data in the following two
trimesters (II_Trim and III_Trim) reflected our expectations.

Since the data in the first trimester were biased, they were excluded from further data analysis. For space
reasons we will not report the data related to this trimester. Consequently, hypothesis testing was carried out on
the remaining two trimesters, and a Mann-Whitney U test [10] was carried out instead of a Kruskal Wallis ANOVA
as planned in the case study design, because the treatments were two and no longer three. This test assumes that
the variable under consideration was measured on at least an ordinal scale. The interpretation of the test is
essentially identical to the interpretation of the result of a t-test for independent samples, except that the U test is
computed based on rank sums rather than means. The U test is the most powerful (or sensitive) nonparametric
alternative to the t-test for independent samples.

4.1.2. Hypothesis Testing
Maintainability: This indicator is expected to be less than 0.6, i.e. no more than three reworks for each five

maintenance requests were to be carried out. These considerations are also valid for the specific types of MRs as
specified in 3.2.3. Given the low number of corrective MRs, the sample was considered too small to be significant
for testing. Below, box plots and Mann Whitney tests carried out on each of the maintainability indicators are
reported.

In general, the indicators satisfy the expected baselines in time. Also, it seems that IM_ADEG and IM_EVOL are quite
stable between II_Trim and III_Trim as it appears in Figure 4 and

Figure 5. The following considerations can be made:
- the difference between adaptive and evolutional maintenance can be attributed to the fact that it is

reasonable for an adaptive MR, implying modification of existing features, to require less rework than an
evolutional maintenance request, which involves enriching the product line with new features;

- in case of adaptive maintenance, modifications impact features that developers are familiar with. They are
supported by documentation and test cases for regression tests after integrating the component in the
product line.

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

- in case of evolutional maintenance, the risk is that requested functionalities are not part of the enterprise
assets, and are therefore more difficult to understand. In each case, statistical tests, in accordance to our
expectations, do not point out significant differences.

The mean values of IM_ADEG are of 0,36 and 0,4 respectively in II_Trim and III_Trim; for IM_EVOL they are 0,8 and
0,78. Such difference is more evidenced in the IM indicator because it groups all the types of MRs and better points
out the consequences of software degradation following to maintenance interventions. In fact, in Figure 6 there is a
more sensible difference between II_Trim and III_Trim, due to the fact that all types of requests are considered.
For this reason the differences are also statistically significant, as shown in Table 7. Then again, this is a calculated
risk when a product line approach is used, where addition of new features and the consequent evolution of the
entire system may be more costly than modification of existing ones because the first must be designed following
the product line approach and safeguard the current components. The mean values of the maintenance indicator in
the two trimesters are respectively of 0,6 and 0,71. The increase in the second trimester is attributable to the
reasons discussed above. So, given the baseline for this indicator (0.6), we can consider the RG1 achieved.
Discussion is done in the next section.

Boxplot by Group
Variable: Im Adeg

 Median
 25%-75%
 Min-Max II III

Trimester

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Im
 A

de
g

Figure 4: Box Plot for Adaptive Maintenance Indicator

(IM_ADEG) in II_Trim and III_Trim

Boxplot by Group
Variable: Im Evol

 Median
 25%-75%
 Min-Max II III

Trimester

0,4

0,6

0,8

1,0

1,2

1,4

1,6

Im
 E

vo
l

Figure 5: Box Plot for Evolutional Maintenance Indicator

(IM_EVOL) in II_Trim and III_Trim
Mann-Whitney U Test (Spreadsheet2 in Analisi Ease.stw)
By variable Trimester
Marked tests are significant at p <,05000

variable
Rank Sum

II
Rank Sum

III
U Z p-level Z

adjusted
p-level Valid N

II
Valid N

III
2*1sided
exact p

Im Adeg 30,50000 47,50000 15,50000 -0,324799 0,745333 -0,348095 0,727769 5 7 0,755051
Table 5: Mann-Whitney test for IM_ADEG

Mann-Whitney U Test (Spreadsheet2 in Analisi Ease.stw)
By variable Trimester
Marked tests are significant at p <,05000

variable
Rank Sum

II
Rank Sum

III
U Z p-level Z

adjusted
p-level Valid N

II
Valid N

III
2*1sided
exact p

Im Evol 232,0000 174,0000 83,00000 0,667947 0,504168 0,674063 0,500272 15 13 0,524956
Table 6: Mann-Whitney test for IM_EVOL

Boxplot by Group
Variable: Im

 Median
 25%-75%
 Min-Max II III

Trimester

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Im

Figure 6: Box Plot for Maintenance Indicator (IM) in II_Trim and III_Trim

Mann-Whitney U Test (Spreadsheet2 in Analisi Ease.stw)
By variable Trimester
Marked tests are significant at p <,05000

variable
Rank Sum

II
Rank Sum

III
U Z p-level Z

adjusted
p-level Valid N

II
Valid N

III
2*1sided
exact p

Im 403,0000 543,0000 150,0000 -1,96801 0,049067 -1,97316 0,048478 22 21 0,049777
Table 7: Mann-Whitney test for IM

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

Extensibility: The baseline for this indicator is of 0,1, i.e. we expect that each created/eliminated (or modified)
component does not require more than 80 person hrs. Below, the box plots for both indicators are reported,
together with the Mann Whitney test results.

Boxplot by Group
Variable: I E/C

 Median
 25%-75%
 Min-Max II III

Trimester

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40
I E

/C

Figure 7: Box Plot for IE/C in II_Trim and III_Trim

Boxplot by Group
Variable: I CM

 Median
 25%-75%
 Min-Max II III

Trimester

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

I C
M

Figure 8: Box Plot for ICM in II_Trim and III_Trim

Mann-Whitney U Test (Spreadsheet2 in Analisi Ease.stw)
By variable Trimester
Marked tests are significant at p <,05000

variable
Rank Sum

II
Rank Sum

III
U Z p-level Z

adjusted
p-level Valid N

II
Valid N

III
2*1sided
exact p

I E/C 518,5000 427,5000 196,5000 0,838228 0,401903 0,860545 0,389489 22 21 0,405763
Table 8: Mann-Whitney test for IE/C

Mann-Whitney U Test (Spreadsheet2 in Analisi Ease.stw)
By variable Trimester
Marked tests are significant at p <,05000

variable
Rank Sum

II
Rank Sum

III
U Z p-level Z

adjusted
p-level Valid N

II
Valid N

III
2*1sided
exact p

I CM 501,0000 445,0000 214,0000 0,413040 0,679577 0,449272 0,653236 22 21 0,691465
Table 9: Mann-Whitney test for ICM

From Figure 7 and Figure 8 it appears that these two indicators are similar with respect to II_Trim and III_Trim. In
fact the mean values for IE/C are respectively 0.08 and 0.058, while for ICM they are 0,07 and 0,049. Furthermore,
the differences between trimesters of each sample are not statistically significant. The following considerations can
be made:

- although the complexity of the system inevitably changes in time due to maintenance interventions,
creation/elimination and modification of components are not significantly impacted;

- this was attributed to the product line structure given to LEGOM.
Considering the expected baseline for these indicators (0.1), we can consider the RG2 achieved. Discussion is
demanded to the next section.

5. CONCLUSIONS

This paper has focused on investigating a product line approach and the value generated for its stakeholders
(Customers, Maintainers, Producers). The investigation was carried out through an industrial case study in an
Italian SME. The aim of the case study was to: migrate an existing application for legal office management of banks
and insurance companies (LEGOM) to a product line architecture; evaluate the resulting architecture together with
the processes used for its development and evolution with respect to three quality characteristics (Maintainability,
Extendibility, Configurability) of interest for the LEGOM stakeholders.

Data analysis has pointed out elements of interest:
- it is important to distinguish between software product lines and program families in that they differently

impact on consequent budget and schedule restrictions. We have acquired such differences during the
execution of the industrial project. In particular, the data collected in the first trimester, when such
difference was not clear to the producers and maintainers of LEGOM impacted on the collected indicators.
Moreover, in this period the data collected with refer to the three quality characteristics were useless and
not representative of the value of the Product Line for its Stakeholders. The confusion generated made the
MRs difficult to satisfy;

- for what concerns maintainability, in a product line values such as freedom of choice may lead to many
products. However, being a product line, changes impact on few components. If such components are part
of the variant assets, they refer to the application that is used by a specific customer; if the components are
part of the core assets, the maintenance is carried out only once and is extended to all the products used
by all customers;

- for what concerns extendibility, since applications of a product line are a combination of core and variant
assets, each time a new product is requested it can be chosen among existing components (in this case

Software Product Lines in Value Based Software Engineering

Evaluation and Assessment in Software Engineering

extensibility consists in configuring a new application by using existing components) or may require
development/choice of new ones (in this case, extensibility will require more effort and costs which will
most likely be mitigated by the fact that in the future, the same requests may be made by other customers).

While we have obtained results from data analysis on maintainability and extensibility indicators, we have not
analyzed data on configurability yet. However, it is the case to comment on our expectations and conjecture. In a
product line, an application has a specific configuration of common and variant parts. New configurations are
characterized by the same core of components and by a choice of variant components that belong to the product
line assets and that are documented. So we expect configurability to also be mitigated in a product line.

So, if the product line approach is correctly enacted, it is beneficial with respect to traditionally designed
applications. A product line structure allows to face requirements changeability with less effort in that each
customer is associated to a profile which leads to the most suitable application for their needs. Since each profile is
traceable and may change in time, producers/maintainers are able to face maintenance requests with reasonable
effort and identify components that should be created, eliminated or modified. So, overall, a system designed
following a product line approach and subject to continuous maintenance is less prone to degradation symptoms in
time.

This study has represented a first step towards analyzing the value that product lines represent for various
stakeholders. It has validated our conjecture that a properly designed product line assures the values desired by
customers in an enterprise application. Moreover, a product line mitigates the clashes between these values and
those of producers and maintainers.

In spite of the weaknesses of a case study, given the nature of the investigation, it encloses many benefits: the
study was carried out during an ongoing project, on a real product line application used by customers; maintenance
requests expressed actual requirements that customers had with respect to the application configured to their
specific needs; results apply to a real context.

REFERENCES.

[1] Biffl S., Aurum A., Bohem B., Erdogmus H., Grunbacher P.(2006) Value based Software engineering, Springer
Verlag, Berlin.
[2] CHAOS Report (1995), The Standish Group, (www.standishgroup.com).
[3] Faulk S.; Harmon R., Raffo D. (2000), Value-Based Software Engineering (VBSE): A Value-Driven Approach to
Product-Line Engineering, Software Product Lines: Proceedings of the First Software Product Line Conference
(SPLC1). Denver, Colorado, August 28-31, 2000. Boston, MA: Kluwer Academic Publishers, 205-224..
[4] Parnas D.L., (1976), On the design and development of program families, IEEE Transactions on Software
Engineering, Vol.SE-2 pp 1-9.
[5] Clements,Paul & Northrop, Linda. Software Products Lines: Practice and Patterns. Boston, MA: Addison –
Wesley, 2002.
[6] CMU/SEI-2001-TR-001, ESC-TR-2001-001 (2001), Product Line Analysis: A Practical Introduction, available at:
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tr001.pdf
[7] Wohlin C, Runeson P, Host M, Ohlsson M.C., Regnell B, Wesslèn A, (2002) Experimentation in Software
Engineering, Kluwer Academic Publishers.
[8] Lehman M.M., Ramil J.F., Wernick P.D., Perry D.E., Turski W.M., (1997), Metrics and Laws of Software
Evolution—The Nineties View, Proceedings 4th Int’l Metrics Symposium.
[9] Lehman M.M. (1978), Laws of Program Evolution-Rules and Tools for Programming Management, Proceedings
of the Infotech State of the Art Conference, Pergamon Press, April, pp.1-25
[10] Marasculio L.A., Serlin R.C., (1988), Statistical Methods for the Social and Behavioral Sciences, W.H.
Freeman and Company, New York, USA.
[11] Boehm B., (1981), Software Engineering Economics, Prentice Hall.

