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Magic squares are n*n square grids in which each row, column, and diagonal add to the same sum. 
The ‘magic line’, drawn by connecting each integer in numerical sequence, creates a pattern that can 
differ or be shared between instances. The dual purpose of this work is: 1. to produce a variety of 
artworks—printed, digital and animated that use the magic line as a departure point; and 2. to 
investigate mathematical processes (matrix transformations) that produce identical magic line 
patterns, with the aim of identifying all unique such patterns, and simplifying the classification of 
magic squares, using visual and programmatic methods. The ongoing creative process has led us to 
produce a web-based visualisation tool (squares.cubelife.org), with which we have explored different 
types of mathematical curve to visualise the magic line, and to identify certain useful groups. This can 
already produce an extensive variety of interesting aesthetic results that differ from existing ‘straight 
line’ visualisations of magic squares. As well as exploring the creative visual permutations, our 
methods also enable the measurement of certain properties, such as the length of the magic line and 
the results of certain transformations. 

 magic squares. digital art. data visualisation. recreational mathematics. scalable vector graphics. web technologies. 

 

1. INTRODUCTION 

“If we see nature is beautiful, then we are, in 
essence, seeing it in patterns. Pattern is the 
crystallisation of beauty. To understand beauty 
and to understand pattern are aspects of the 
same thing.” (Yanagi 2013) 

This work combines research and practice in 
process-based art, computer science and 
mathematics, the challenge being to understand 
each context sufficiently and identify overlaps 
between them, while considering multiple 
audiences and interest groups. The aims are to: 

• identify common magic line patterns; 
• simplify the classification of magic squares; 
• explore different vector-based approaches 

to draw the magic line creatively; 
• create online software as a vehicle for this 

visual and mathematical research. 

In a modest way, the aim is to advance knowledge 
within these fields, as well as produce artworks that 

merge and illustrate the creative and combinatorial 
research. 
 
Magic squares are matrices of n2 numbers 
arranged in square n*n grids (where n—the 
‘order’— is a number greater than 2), in which each 
row, column, and diagonal add to the same sum: 
the ‘magic constant’. The ‘magic line’ is drawn by 
connecting each integer in numerical sequence. 
Variations of magic squares produce sets of magic 
line patterns that appear either 
ordered/symmetrical, or visually 
disordered/asymmetrical. The attraction of both 
visually ordered and disordered patterns resulting 
from a common set of rules feeds into the creative 
intuition for balance between order and disorder. 
This balance has a parallel in complexity science in 
the ‘sweet spot’—where the interesting stuff 
happens between similar extremes (Everitt & 
Robertson 2007, Everitt 2011). 
 
Until the advent of the computer, magic squares 
were considered mainly as mathematical puzzles 
and—before that for many centuries—used in India  
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Figure 1: A still-shot of an extract of ‘quadline’ style order 4 magic squares partially animated.

and China since around 600 CE for ‘magical’ and 
ritual properties in talismans and other charms, a 
surviving practice in some cultures (Neel 2012).  
 
The order 4 magic square in Albrecht Dürer’s 
engraving ‘Melencolia I’ (1514) is well known. 
Cornelius Agrippa (1533) associated seven specific 
magic squares with the known planets of the time 
which popularised their usage in European culture 
and filtered into occult and now New Age practice. 

“It is affirmed by magicians that there are certain 
tables of numbers distributed to the seven 
planets” (ibid.) 

Although parallel mathematical investigations of 
magic squares ran alongside this occult use, 
computing has now advanced knowledge in the 
field by making the necessary calculations and 
analysis less laborious. Yet Agrippa’s ‘planetary’ 
magic squares still feature in some more recent 
creative work (see Maxwell-Davies, later). 
 
The analysis of magic squares we are undertaking 
falls into the branch of mathematics known as 
combinatorics, or the solution of problems that 
choose and arrange the elements of certain 
(usually finite) sets according to prescribed rules. 
Magic squares themselves contain many sub-
groups, some of which we use in this work. 
 
There are three basic types: odd, odd-even and 
even, each having several construction techniques. 
These three groups comprise magic squares where 
the value of n is as in the following sequences: 

• odd: 3, 5, 7, 9, 11… 
• odd-even: 6, 10, 14, 18, 22… 
• even: 4, 8, 12, 16, 20… 

For increasing values of n across the three groups, 
the permutations of unique magic squares grow 
exponentially. While there is a single unique order 

3 magic square and 880 order 4s, calculations give 
275305224 of order 5; for order 6 this rises to an 
almost inconceivable estimate of around 
1.775392(12)·1019 variations (Trump 2018, 
Grogono 2010). 
 
There are further classification groups within each 
set of order n magic squares, named variously by 
researchers as associative, pandiagonal, 
ultramagic, most-perfect and other often 
overlapping categories. 
 
Although current work is focussed mainly on order 
4s, the software we have developed for analysis 
and visual display accepts higher-numbered orders 
(we have examples up to order 20) and can render 
the magic line for the comparison of differing orders 
(see figure 2). 
 

 

Figure 2: An order 8 (left), 7 (middle), 9 (right) 

2. THE SPECIFIC FOCUS OF THIS WORK 

Given these cross-disciplinary elements, the focus 
of this research is to: 

• produce a variety of artworks—printed, 
digital and animated—from the order 4 
magic square data set, manipulated 
programmatically in a web-based interface 
with various display options that generate 
SVGs (Scalable Vector Graphics) for 
resolution-independent PDFs and fine-
quality prints. The software accepts any 
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magic square or whole series, drawing 
and/or animating the resulting magic lines 
in various styles; 

• investigate the matrix transformations or 
other mathematical processes that produce 
identical magic line patterns, and work 
these into formulae that describe and group 
the transformations into sets. 

One of the central research questions is to check 
whether some of the magic squares in the 
accepted ‘unique’ set of 880 have identical shared 
magic line patterns. Visual inspection makes it 
apparent that many do. The next step is to analyse 
these duplications, group them and categorise 
whether the identical magic line patterns were also 
rotated or reflected. The final analysis is to 
determine which numerical matrix transformations 
produce these identical patterns, the artistic aim 
being to create a new set of ‘thoroughly unique’ 
magic squares in which each magic line pattern is 
different. 

3. CONTEXT 

Other artists have used magic squares as data for 
generative or procedural artworks, the most notable 
being Vera Molnar (Baby & Banz n.d.)—whose 
work is the subject of various re-creations or 
‘hommagesʼ (Lange 2013)—but also others e.g. 
Paul Heimbach (n.d.) and Margaret Kepner (n.d., 
2017), who referred to her work with magic squares 
as a “visual expression of systems” (Happersett 
2014). Sir Peter Maxwell-Davies also used 
Agrippa’s order 9 magic square of the Moon for his 
setting of the choral plainsong ‘Ave Maris Stella’ 
(1975), the order 8 of Mercury for ‘A Mirror of 
Whitening Light’ (1977, Roberts 2016) and other 
magic squares for compositions, which he saw as 
“dance patterns, whose steps pass through ‘mazes’ 
and consequently as note patterns, memorable 
without reference to numbers” (McGregor 2004). 
He elaborates on this in his writings: 

“I would claim, with only the authority by instinct, 
and some listeners' experiences of the work that 
Ave Maris has assumed some of the healing 
qualities also associated with this square” 
(Maxwell-Davies 2017). 

Inspired by Maxwell-Davies, composer Oliver 
Thurley has a brief but interesting blog post on his 
own more programmatic use of magic squares for 
musical composition (2012). Although these uses 
are innovative in the creative sense, they do not 
engage deeply with mathematical properties or 
explore some possible alternative methods of 
rendering the magic line visually. 
 
It is taken as incidental that this work also draws on 
the approach of established figures in the wider 

field of systems, algorithmic or generative art, such 
as Paul Brown, Ernest Edmonds, Roman Verotsko, 
Peter Beyls, etc. 
 
It is worth noting that magic matrices also exist in 
3-dimensional (see figure 3) or even higher 
spaces—4D, 5D… 

 

Figure 3: Order 3 magic cube (left) and order 5 magic 
cube from earlier work (right) 

Previous work from one of the authors used magic 
cubes (3D magic matrices) to generate visuals for 
the interactive heartbeat-driven work ‘cubeLife’—
see a still-shot in figure 4 (Everitt & Turner 1999, 
Edmonds et. al. 2004). 
 
As well as a basic magic cube visualiser shown in 
figure 3 on the right (Everitt & Daglish n.d.), this 
artwork was preceded by a simple desktop 
application designed to collect and visualise the 
magic line—the translation of which into modern 
web-based code (using JavaScript) was the 
starting-point for the current more fully-featured 
web application. 

 

Figure 4: An early still-shot from CubeLife. 

4. THE METHOD 

For the numerical base data, we initially used the 
880 order 4 magic squares collated by Mutsumi 
Suzuki (collated by Rivera 2019) based on the 
original set published in 1693 by Frénicle de 
Bessey (cited in Heinz 2010), widely accepted to 
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be complete in that each magic square is 
numerically unique. 
 
Henry Dudeney proposed 12 groups (1917), later 
named after Greek deities by Jim Moran (1982). 
The patterns shown in figure 5 illustrate how each 
complementary pair of numbers (i.e. 1-16, 2-15, 
3-14…) relate to each other within the matrix; but 
note that these are not transformation diagrams—
they simply show the positional relationships 
between each number. It remains to be seen if they 
are useful for our process. 

 

Figure 5: Hera, Asteria, Niobe, Elara, Hestia, Demeter 
(top); Arges, Moros, Thaumas. Nemesis, Cottus, Eris 

(bottom) 

Rotations and reflections of the magic square 
matrix are considered trivial and excluded from any 
set of unique magic squares of any order. In 
mathematics these are called the octic group or 
dihedral group of 4, abbreviated to ‘D4’ (Weisstein 
2020). We refer to them as: identity (ID), rotate 90 
(R1), rotate 180° (R2), rotate -90° (R3), mirror 
vertically (MV) and horizontally (MH); mirror along 
diagonal 1 (MD1) and diagonal 2 (MD2). 
 
To simplify magic square types by pattern analysis, 
the sequence of investigation has been to: 

• scan the magic line patterns visually; 
• see if the various SVG line renderings 

retain pattern similarity and symmetry; 
• measure line lengths to select possible 

similar patterns; 
• attempt tests with fully automated image 

comparison algorithms; 
• determine how matrix transformations 

account for some identical patterns. 

The generative artistic aims have been to create an 
extensively customisable work that outputs: 

• synchronous/asynchronous animations, 
from single squares to whole sets; 

• curated partial renderings and still shots; 
• complete renderings with optional settings; 
• style projected, printed, or online versions; 
• magic lines of any order to explore 

complexity and shared or unique patterns; 
• different data sets with search capabilities; 
• renderings from manual user input. 

5. CODE 

The public-facing project is built with the browser-
based web technologies HTML, CSS, with client-
side JavaScript to generate Scalable Vector 
Graphics (SVGs) (https://squares.cubelife.org). The 
source code—under ongoing development—is in a 
public code repository on GitHub (Raczinski 2020). 

 

Figure 6: Order 5 numbers and the five magic line styles: 
‘straight’, ‘quadvertex’, ‘quadline’, ‘arc’, and ‘altarc’. 

In addition, using the Haskell language (better than 
JavaScript for large datasets) we generated all 
possible order 4 magic squares programmatically 
for completeness (total 7040) using an algorithm 
that includes the 8 D4 transformations. Excluding 
these reduced numbers to the expected 880, 
following a simple numerical order that differs from 
that used by Suzuki (Rivera 2019). 
 
The software contains various sets order 4 
squares: the Suzuki set (ibid.); our own set 
(7040/880); plus smaller incomplete collections of 
larger order magic squares. These are processed 
to build detailed data structures containing indices 
for various computational processes (to accelerate 
drawing and animation). Specifically, the process of 
generating a visualisation is as follows. 

• Each unique number sequence is 
converted to an array of coordinates ready 
for drawing the magic line as an SVG. 

• For the ‘straight’ style (the usual magic line 
diagram, see figure 12) the points on these 
coordinates are connected in order and 
then back to the start to form a continuous 
zig-zag line. 

• The ‘quadvertex’ style (see figures 
2,8,9,10,11) essentially rounds the sharp 
edges of the traditional straight line, using 
quadratic Bézier curves (W3C 2011). These 
need 3 points to produce the final curve, so 
two further coordinates are calculated 
between the original vertices. 

• The ‘quadline’ style (see figure 1) omits the 
intermediate coordinates of the quadvertex 
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style, using only the points available; 
essentially turning every second vertex into 
a curve to produce an interesting mixture 
between the straight and the fully curved 
magic line diagrams. 

• The ‘arc’ style (see figure 7 left) connects 
each individual coordinate with a circular 
arc. 

• The ‘altarc’ style (see figure 7 right) is 
artistically more experimental, drawing an 
arc between every second vertex, 
producing quite distinct and more irregular 
shapes. 

The software also allows for pre-formatted printed 
output that fits neatly at certain sizes and can scale 
to any desired resolution. 
 
Overall, writing this interface created methods of 
displaying varying visual representations, with the 
option of showing the numerical grids that generate 
them (singly or in filtered groups and sets), as well 
as building a data library of coded sequences; in 
effect, a comprehensive catalogue of mathematical 
magic square data and visual patterns. 

6. FINDINGS 

Our first finding within the unique numerical 
arrangements of the 880 unique magic squares 
was that identical magic line patterns appear 
multiple times, shared between 2 or more magic 
squares, including several groups otherwise held to 
be numerically unique. For the creative work, this 
duplication needed to be eliminated for the desired 
visual output, but uncovering any underlying 
mathematical commonalities then became a major 
part of the algorithmic process. 

 

Figure 7: Arc (left) and altarc (right) style rendering of 
order 4 (extracts). 

It was immediately clear that certain pairs of magic 
squares—known as ‘complementaries’, in which 
the order of the numbers is simply reversed (i.e. 
16=1, 15=2, 14=3…) obviously produce identical 
magic lines. The reversal of the number sequence 
is graphically visible when the magic line is 
animated (start and end points are reversed), but 
the static magic line pattern is unchanged. It is still 

under investigation why some complementaries are 
contained in Suzuki’s set of 880 (but not our own). 
 
On further investigation, some numerically distinct 
magic squares also produce identical, rotated or 
reflected versions of a single magic line pattern, but 
in these cases the matrix transformations and 
resulting transposition of numbers require more 
investigation to assess how ‘trivial’ or not these 
cases might be considered mathematically or, if 
not, whether the shared magic line pattern can be 
considered as a distinct kind of ‘trivial’ within certain 
recognised magic square sub-groups. 

 

Figure 8: Quadvertex style rendering of order 4 (extract). 

Calculation of the length of the magic line serves as 
a preliminary step towards identifying these shared 
patterns programmatically (and is required for the 
animation process). The total length of differing 
magic lines varies and, while not a guarantee of 
homology, this starting-point identified a total of 267 
different possible line lengths from the set of 880 
(based on the quadvertex style), 35 of which have 
unique lengths, meaning the other 232 possible 
lengths are shared. This indicates that these 
groups contain potential duplicates of some kind, 
although differing patterns can also have a 
common length by coincidence. 
 
Careful manual analysis of groups with shared 
lengths identified 383 unique magic line patterns 
if visual D4 rotations and reflections are excluded 
from the original set of 880 (as distinct from D4 
transformations on the number sequences). 
 
Francis Gaspalou argued that the 7040 order 4 
magic squares can be grouped into 32 different 
categories producing a set of 220 essentially 
different squares (n.d.). We want to confirm this 
against our visual representation, so we are in the 
process of investigating and programming functions 
to represent and document this and other groups 
more distinctly, with the aim of moving towards the 
formulation of some general rules. 
 
Basically, we have identified a disconnect between 
the established theory of magic square numbers 
and magic lines. The known transformations on the 
number grid can produce duplicates of the original 
magic line, but these do not represent the same 
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number transformations. Yet because the integers 
in the grid are the primary focus in the existing 
literature, similarities in magic line patterns is an 
area not yet adequately covered. 
 
For example, if we apply the 8 D4 transformations 
to the numbers of Suzuki’s magic square #9, we 
get the eight magic lines shown in figure 9. It is 
apparent that the last seven represent what we 
would consider visually trivial equivalents of the first 
magic line pattern and they should not be included 
in the set of 880 unique magic squares. 

 

Figure 9: D4 transformations on Suzuki #9 

However, two of these magic lines appear in the 
set (in this case Suzuki #9 and #13, both of which 
have a line length of 1987). At this point there are 
three approaches to identify and remove visual 
duplicates. We can compare magic lines by running 
image comparison algorithms; and (from the 
calculation of the SVG magic line length for 
creative animations) identify groups that share the 
same magic line length so may possibly—but not 
definitely—be equivalent. We can also separately 
identify the mathematical transformations that 
generate equivalent magic lines. 

 

Figure 10: Three pairs that share a common length each 
and appear equivalent shown with their transformation 

matrix: #9 and #13—XMV1 (top), #308 and #317—XMV2 
(middle), #418 and #808—XMV3 (bottom).  

Investigating this third mathematical approach 
shows that there are transformations outside the 
D4 set that can nevertheless produce equivalent 
magic lines. For example, reverse engineering the 
matrix transformation between #9 and #13 and two 

further examples produces interesting matrix 
transformations—see figure 10. To verify whether 
these transformations work universally or not we 
have applied all three to Suzuki #9 in figure 11. 

 

Figure 11: ID, XMV1, XMV2, XMV3 applied to Suzuki #9 

The first transformation (XMV1) clearly yields a 
vertically reflected version of the original not 
created by one of the D4 transformations. So, for 
this particular square, these transformations yield 
just one equivalent magic line.  
 
We suspect that these transformations relate in 
some way to the 12 classification groups 
mentioned earlier, although these are not actual 
transforms but illustrate relationships between 
complementary numbers. 
 
The investigation into these numerical matrix 
transformations has only just started (we have only 
codified three to date), so we may have more 
concrete results in due course. 
 
Another numerical transformation guarantees an 
identical magic line—the addition of n + 8 mod 16 
to each number reorders the matrix and creates a 
valid numerical transposition with a different start 
and end point; the magic line trajectory through the 
matrix from 1-16 remains identical. This has only 
been tested on a small sample, and although the 
results are consistent so far, this is no guarantee 
for the whole set. 

7. CONCLUSION 

Contributions to knowledge, reflecting the overall 
aims outlined in the bullet points from the 
introduction are as follows: 

• successfully identify common magic line 
patterns, and make progress towards 
identifying the underlying reasons for these; 

• propose at least one simplification for the 
classification of magic squares; 

• thoroughly explore a variety of creative 
vector-based methods to draw the magic 
line and output images; 

• complete the fully-functional online software 
as a mathematical and creative research 
vehicle. 

Regarding the first two points: we propose that 
complimentary squares (at the very least) should 
be removed from any set of visually unique 
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squares. Other cases in which the magic line 
represents shared relationships between differing 
magic square number grids requires more 
investigation. 
 
The last two points are fully satisfied, yet there is 
still plenty of room for experimentation. Some 
visual outputs of the full set of 880 magic squares 
in three styles from the scalable PDF files have 
already been exhibited (Everitt & Raczinski 2019) 
and although these were from earlier in the 
process, they were received well. 
 
Colour and magic line choice via the web interface, 
offers a vast variety of static results, including 
animated versions that can be ‘grabbed’ part-way 
through to generate complex interwoven patterns. 
The next step will be to exhibit live animations of 
the various processes; speed (from meditative to 
frantic) and other parameters can already be 
controlled, and animations run indefinitely and 
appear non-repetitive, as each magic line length 
cycles in its own time, yielding pleasing large-scale 
complex dynamic patterns. 

 

Figure 12: Straight style rendering (extract) of order 4. 

Finally, following the creative use of other kinds of 
data in previous public works (where solar weather 
was used to filter keywords from a corpus of diary 
entries) there is the opportunity to connect the 
exhibited and online displays to further data from 
sources yet to be selected, as well as to encourage 
user input e.g. ‘name a pattern’, ‘choose your 
colours’, ‘select a group to display’, etc. 
 
For the mathematical work, the priorities are: 

• a ‘magic carpet’ visualiser (where groups of 
magic squares merge into a numerically 
connected matrix); 

• user interaction and public access to all 
facets of the work; 

• confirmation of groups of identical patterns 
from image comparison. 

 
Although we are keen to address both creative and 
mathematical audiences in future work, it is 
important to combine the output so that the artistic 
output illustrates the underlying mathematical 
theory and, while this work is interdisciplinary, we 

also intend to identify specialist outlets to publish 
selected findings. 
 
One further line of inquiry has emerged from 
audience feedback: as soon as we added curved 
lines, people began to find meaning by declaring 
what the images suggest to them (for example, in 
figure 7). The role of symmetry and asymmetry in 
this perception is as yet unexplored. 
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