
http://dx.doi.org/10.14236/ewic/HCI2017.26

 1

© Vithana et al. Published by BCS Learning and
Development Ltd.
Proceedings of British HCI 2017, Sunderland,
UK

Extensible Visual Programming Model for
Modular Systems Targeting Novices

 Yasura Vithana Hashini Senaratne
University of Moratuwa University of Moratuwa

Moratuwa, 10400, Sri Lanka Moratuwa, 10400, Sri Lanka
 yasura.10@cse.mrt.ac.lk hashini.10@cse.mrt.ac.lk

This paper presents a visual programming model with its entire flow starting from the visual program
creation to the execution of the program on the target system. The introduced visual programming
model is developed targeting modular hardware systems where the module specific execution of
tasks is offloaded to the respective module. This model can be used on systems like robot kits and
other module based programmable systems where modules have self-sufficient processing power,
specially targeting STEM education. The nature of the target system and the message passing model
of task execution have given this model the qualities like simplicity and extensibility. The generated
executable consists of instructions that can be executed by the interpreter-like execution engine that
resides in the central processing unit of the target system. This also gives the ability to directly
execute instructions on the system without going through the traditional program translation
process.

Extensible; Modular; SiFEB; STEM; Robot Kits; Visual Programming Language.

1. INTRODUCTION

Computing technologies have become the gateway
to the future. It is pointed out that ICT like
technological fields have an extraordinary potential
to enhance the learning and other development
processes of children, by providing them novel
opportunities [1]. Therefore, improving teaching and
learning in STEM (Science, Technology,
Engineering and Mathematics) education has
become an economic factor in almost every nation
[2]. Building robots has been identified as a
supported branch for STEM based activities as it is
capable of involving children in problem-based
learning while associating with concepts of physics,
electronics, mathematics and programming [3]. It
has now become a common practice especially in
the developed countries to introduce children to this
vast field of capabilities at a very young age. There
still is a hesitance in many developing nations to get
exposed to STEM related activities like computer
programming and robotics until higher education.
Poor conditions of laboratory facilities and
instructional media, lack of research collaboration
across STEM fields and lack of support from the
school system are some of the root causes
responsible for less exposure to STEM based
education in these countries [4]. This paper presents
part of the work done in developing SiFEB [5]; a low
cost robot kit targeting kids which was developed in
order to make robotics more appealing to the

entrants who do not have significant knowledge on
electronics or programming.

Computer programming has come a long way since
it was born. Approaches like machine code,
assembly code and high level programming
languages have been introduced at various levels of
complexity and capability. Visual programming
emerged as a simpler version of programming
opposed to the text based programming
approaches. It has been shown that visual
programming languages have the ability to improve
novice performance in programming activities [6].
With the invention of visual programming languages
like Scratch, Alice and Greenfoot and introduction of
them to school children, especially a younger crowd
joined the computer programming community [7, 8].
The visual programming model introduced in this
paper has been developed with the focus on certain
aspects that have not been addressed in the other
available solutions and specially targeting modular
systems like robot kits.

2. RELATED WORK

In programming modular systems like robot kits,
different programming approaches like conventional
textual programming, visual programming and
tangible programming are being used. Arduino
development board which is included with a text-
based programming language has become a
platform used by many educators around the world

mailto:yasura@enetlk.com
mailto:hashini.10@cse.mrt.ac.lk

Extensible Visual Programming Model for Modular Systems Targeting Novices
Vithana ● Senaratne

2

to cultivate STEM based education in students of
different ages [9, 10]. T_ProRob [11] and Tern [12]
are some of the tangible programming languages
developed targeting robot programming. T_ProRob
can be used to program NXT Lego robots while Tern
can be used with controlling LEGO MindstormsTM
RCX brick. Situated tangible robot programming is a
recent project carried out to program a robot by
placing specially designed tangible blocks in its
workspace [13]. Although tangible programming is
identified as an approach which is more enjoyable,
on the other hand with increased familiarization with
computers, visual programming languages are
considered as the easiest approach to use [11].
Another significant benefit of a visual programming
language is that unlike in tangible programming
frameworks, the number of blocks it can provide to
the user is unlimited and therefore it can be used to
develop programs of any length and any complexity.

Visual programming languages simplify the
programming tasks by replacing the typed syntax
based languages by graphical blocks that represent
various aspects of the programming domain such as
variables, commands, loops and conditional blocks.
These graphical blocks can be arranged and
connected together in a visual programming editor.
Over the past decades many types of visual
programming languages have been developed
presenting different types of experiences to users.
Kodu is a rule based visual programming language
which is integrated in a realtime 3D gaming
environment with virtual robots and designed
specifically for young children to learn through
independent exploration [14]. UbiPlay, a technology
platform for programmable interactive playgrounds,
allows children to create and play games in
interactive playground environments using a finite
state machine based visual programming language
[15]. LabVIEW is a visual controlled dataflow driven
language [16] which is also can be used to program
Lego Mindstorms Kits. NXT-G is the visual
programming language used by the Lego
Mindstorms environment [17] where there are other
visual programming languages like Open Roberta
[18] that have emerged to program Lego
Mindstorms. Scratch [19] has become a popular
block based visual programming language among
children and robot kits like Lego WeDo, Lego
Mindstorms NXT and Finch have integrated with
Scratch in order to make programming easier for
novices. Modkit for Vex robot kit is another block
based visual programming language introduced for
novice users [20].

The visual programming model that we introduce in
this paper has been highly motivated from these
existing visual programming solutions, but has been
improved in certain areas to specifically suit the
target class of systems: modular systems with task
offloading ability in a distributed manner.

3. WORK DEVELOPED

The visual programming language in topic is a
command based model and the processing of each
of the command is expected to be done in a
distributed manner. Since this model was developed
targeting modular systems like robot kits, the main
motive was to coordinate tasks done by the
connected modules. These tasks can be standalone
tasks which can be simply started and ignored and
some other tasks in which the results are passed to
decision making. For example, in the context of a
robot kit, there can be a task which makes the robot
turn right and also a task to measure the distance to
an obstacle using a sensor. The visual programming
model is developed to program the central
controlling entity that can control all the other
connected modules by issuing commands and
analysing their results. The important point here is
that due to this configuration, the output of the visual
programming environment can be made extremely
simple and uniform as the native executions of the
tasks are offloaded to various modules which are
built with all the necessary algorithms and other
programming components. The visual programming
model that we introduce requires the target system
to have the above characteristics.

This visual programming environment contains a
library of programming blocks and an editor area
which is used to place and order the dragged and
dropped programming blocks in order to create the
intended program. These blocks can be divided into
three categories. One category is holders that
represent programming structures. These include
single task blocks, blocks with a task and terminating
condition, loops and conditional blocks. They alone
do not result in any useful output but need to be
utilized in the process of creating a program
combining the other two types of programming
blocks. These can be even nested when required.
The second category is the programming blocks that
represent the execution of a task. Each task that the
modules are capable of doing, but do not return a
result results in this type of a block. The third
category is the blocks that request the modules to
return a result with or without doing a specific task.
These are the blocks that are used in conditions for
control blocks. These blocks were sufficient for the
intended task of the original work, but the same
concepts can be extended to other blocks as
required.

3.1 Code Generation

All the types of blocks are translated to an ordering
of four basic instructions which are “execute”, “if”,
“jump” and “end”. The “end” instruction is to indicate
that the program has reached the end. The
“execute” instruction is used to initiate an action on
a module. The parameters of this instruction lets the
execution engine to know the module to which the

Extensible Visual Programming Model for Modular Systems Targeting Novices
Vithana ● Senaratne

3

instruction is targeted and also lets the module know
which action it needs to perform with which settings.
The “if” instruction too has the module it is targeting
and the input that is required from the module.
Additionally it has the necessary parameters for the
condition evaluation. If the comparison is valid the
execution engine goes on executing the next
instruction in the program. If the condition is not
valid, the execution engine will ignore the next
instruction and will move on to the instruction
appearing after that. The “jump” instruction has only
one parameter and the instruction forces the
execution engine to move its execution to the
instruction pointed by this parameter.

All these instructions are represented at the
execution engine as an array of bytes which has the
common format <instruction length>
<instruction_id> <parameters>. The program to be
executed is converted to a list of such instructions.
The following section explains how the above three
commands are used to generate executable
instructions for different programming blocks.

Each of the four types of holders found in
programming structure category has a code
template associated with it. The basic task of code
generator is to recursively go through the holders in
the program, fill code template for each holder with
the information of its content and finally merge all
these code snippets together to generate the final
code.

3.1.1. Single Task Holder
Single task holder can only has a self-terminating
action such as “Turn Right”. In this type of holders,
the following code snippet is used as the code
template.

Instruction No Instruction

i execute(module address, action
command, other_params);

3.1.2. Holder for Task with Terminating Condition
This holder can hold a constrained action such as
“Go Forward” and a condition such as “Distance is
n” that should be satisfied to terminate that action. In
this case, the code template is as follows.

Instruction No Instruction

i

i+1

i+2

execute(module address, action
command, other_params);

if(module address, condition
command, comparison_type,
response_size, ref_value,
other_params);

jump(i+4);

i+3

i+4

jump(i+1);

execute(module address, stop
action command,
other_params);

3.1.3. Repeat (Loop) Holder
Repeat Holder contains a condition block and a set
of holders that will be executed repeatedly until the
condition becomes true. The following code
template is used in such situation.

Instruction No Instruction

i

i+1

i+2 to n-1

n

n+1

if(module address, condition,
compare_type, response_size,
ref_value, other_params);

jump(n+1);

//recursively go through the child
holders

jump(i);

//next command

3.1.4. If-Else (Conditional) Holder
If-Else holder can have a condition and two sets of
child holders in which the first set will be executed if
the condition is true and the second set will be
executed otherwise. The following code template is
used for the code generation for an If-Else holder.

Instruction No Instruction

i

i+1

i+2 to m

m+1

m+2 to n

n+1

if(condition.device.address,
condition.command,
condition.comparison_type,
condition.response_size,
condition.ref_value,
other_params);

jump(m+2);

//recursively go through the set
of child holders under “else”

jump(n+1);

//recursively go through the set
of child holders under “if”

//next command

Figure 1 shows a sample visual program and the
result after converting it to the list of instructions.

3.2 Execution Engine

The execution engine lies in the central controller of
the system. This is a software component which is
capable of executing the instructions generated by

Extensible Visual Programming Model for Modular Systems Targeting Novices
Vithana ● Senaratne

4

the visual programming environment. The execution
engine acts more like an interpreter. This starts from
the first instruction of the program and then controls
the flow of execution accordingly. When an
“execute” instruction is reached, the engine decodes
the instruction and passes the necessary
parameters to the respective module mentioned in
the instruction itself. Then the engine goes on to the
next instruction. Similarly when an “if” instruction is
reached, the engine passes the necessary
parameters to the respective module and evaluates
the response according to the parameters of the
instruction. If the condition is not valid, the execution
engine skips the next instruction. When a “jump”
instruction is reached, the execution engine simply
goes on to execute the instruction pointed by the
parameter of the “jump” instruction. When the “end”
instruction is reached, the execution engine stops
executing instructions further.

Figure 1: Sample Visual Program and the
Corresponding Instruction Translation

3.3 Other Special Features

Since the task specific knowledge is distributed
among the various modules of the system, the
programming environment sees all the tasks or
commands in a similar format. This omits the
requirement of revising the programming
environment. In the context of a robot kit, when a
module of a new model needs to be used in
programming, the user can simply enter the
necessary parameters for each capability of the
module and the environment may generate a set of
new blocks for the new model. Similarly it needs to
be mentioned that the existing capabilities too can
be customized to cater one’s needs by tuning the
parameters of each instruction generated
representing capability blocks.

The program is not compiled to be run directly on
hardware. Instead, there is an interpreter-like
execution engine to execute each instruction. Due to
this abstraction, this model can even be used to
execute instructions at will. This doesn’t make sense
for the “if”, “jump” and “end” instructions, but it may
be useful to have this facility for the execution of the
“execute” instruction. In the context of robot kits, we
can use this to test certain capabilities. Project
SiFEB [5] incorporates this feature to help the kids
understand what each demonstrable capability of a
module is about.

Another important thing is that the programming
environment consists of a very lightweight and
simple compiler alternative that transforms the
visually developed program into a program
executable on the target hardware. This allows the
application to be less resource consuming thus
fitting in more setups.

4. CONCLUSION

The visual programming model introduced in this
paper is a programming model especially targeting
the modular systems where processing is offloaded
among various modules connected to a central
processing unit with a master-slave communication
capability with the central processing unit as the
master. This model is not much adaptive to a single
point general purpose processing but has its
benefits when implemented targeting a modular
systems like robot kits, but the applications of this
model are not limited to robot kits. If a system can
be looked into as a modular system where each
module is self-equipped to accept and execute
commands, then this model can be adapted to that
system. This model results in a very lightweight
compiler alternative which can be extended easily
without modifying any of the core components.
Project SiFEB [5] turned out to be a successful
project which had a great contribution from this
visual programming model.

Extensible Visual Programming Model for Modular Systems Targeting Novices
Vithana ● Senaratne

5

5. REFERENCES

[1] Kalas I. (2013) Integration of ICT in Early
Childhood Education. The World Conference on
Computers in Education, Poland, 2-5 July 2013,
pp. 217–225.

[2] Kennedy T. J. and Odell R. L. (2014) Engaging
Students in STEM Education. Science Education
International, Vol. 25, No. 3, pp. 246-258.

[3] Vanderborght B., Ciocci C., Vandevelde C. and
Saldien J. (2013) Overview of Technologies for
Building Robots in the Classroom. The
International Conf. on Robotics in Education,
Lodz, Poland, 2013, pp.122-130.

[4] Ejiwale J. A. (2013) Barriers to Successful
Implementation of STEM Education. Journal of
Education and Learning, Vol. 7, No. 2.

[5] Senaratne H., Gunatilaka P., Gunaratna U.,
Vithana Y., de Silva C. and Fernando P. (2014)
SiFEB - A Simple, Interactive and Extensible
Robot Playmate for Kids. 4th International
Conference on Artificial Intelligence with
Applications in Engineering and Technology,
Malaysia, 3-5 Dec. 2014, pp. 143-148. IEEE.

[6] Price T. W. and Barnes T. (2015) Comparing
Textual and Block Interfaces in a Novice
Programming Environment. The eleventh annual
International Conference on International
Computing Education Research, Nebraska, USA,
9-13 July 2015, pp.91-99. ACM, New York, USA.

[7] Utting I., Cooper S., Kolling M., Maloney J. and
Resnick M. (2010) Alice, Greenfoot, and Scratch
– A Discussion. ACM Transactions on Computing
Education, Vol. 10, No. 4.

[8] Maloney J., Resnick M., Rusk N., Silverman B.
and Eastmond E. (2010) The Scratch
Programming Language and Environment. ACM
Transactions on Computing Education, Vol. 10,
No. 4.

[9] Mellodge P. and Russell I. (2013) Using the
Arduino Platform to Enhance Student Learning
Experiences. The 18th ACM Conference on
Innovation and Technology in Computer Science
Education, England, UK, 1-3 July 2013, pp.338-
338. ACM, New York, USA.

[10] Rubio M. A., Hierro C. M. and Pablo A. P. (2013)
Using Arduino to Enhance Computer
Programming Courses in Science and
Engineering. The EDULEARN13 Conference,
Barcelona, Spain, 1-3 July 2013, pp 1527-1533.

[11] Sapounidis T. and Demetriadis S. (2013)
Tangible versus graphical user interfaces for
robot programming: exploring cross-age
children's preferences. Personal and Ubiquitous
Computing, vol. 17, no. 8, pp. 1775-1786.

[12] Horn M. S. and Jacob R. (2007) Tangible
programming in the classroom with tern. CHI '07
Extended Abstracts on Human Factors in
Computing Systems, San Jose, California, USA,
27 April – 3 May 2007, pp. 1965-1970.

[13] Sefidgar Y. S., Agarwal P. and Cakmak M.
(2017) Situated Tangible Robot Programming.
The 2017 ACM/IEEE International Conference on
Human-Robot Interaction, Vienna, Austria, 6-9
March 2017, pp. 473-482. ACM, New York, USA.

[14] MacLaurin M. B. (2011) The design of kodu: a
tiny visual programming language for children on
the Xbox 360. 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of
programming languages, Austin, 26-28 January
2011, pp.241-246. ACM, New York, USA.

[15] Mattila J. and Väätänen A. (2006) UbiPlay: an
interactive playground and visual programming
tools for children. Conference on Interaction
design and children, Tampere, Finland, 7-9 June
2006, pp.129-136.

[16] Cox P. T. and Gauvin S. (2011) Controlled
Dataflow Visual Programming Languages. The
2011 Visual Information Communication -
International Symposium, Hong Kong, China, 4-5
August 2011. ACM, New York, USA.

[17] Griffin T. (2010) The Art of Lego Mindstorms
NXT-G Programming, 1st ed. San Francisco.

[18] Jost B., Ketterl M. and Budde R. and Leimbach
T. (2014) Graphical Programming Environments
for Educational Robots: Open Roberta - Yet
another One?. IEEE International Symposium on
Multimedia, 10-12 December 2014, pp. 381-386.
IEEE.

[19] Resnick M., Maloney J., Monroyhernández A.,
Rusk N., Eastmond E., Brennan K., Millner A.,
Rosenbaum E., Silver J., Silverman B. and Kafai
Y. (2009) Scratch: programming for all.
Communications of the ACM, Vol. 52, No. 11 pp.
60-67. ACM, New York, USA.

[20] Millner A. and Baafi E. (2011) Modkit: Blending
and Extending Approachable Platforms for
Creating Computer Programs and Interactive
Objects. The 10th International Conf. on
Interaction Design and Children, Ann Arbor, USA,
20-23 June 2011, pp. 2–5. ACM, New York, USA.

