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This study uses machine learning methods to analyse Kinect body gestures involved in the user 
interaction with exergaming systems designed for physical rehabilitation. We propose a method to 
improve gesture recognition accuracy and motion analysis, by extracting from the full body motion 
data recorded by the Kinect sensor three important features which are relevant to physical therapy 
exercises: body posture, movement trajectory and range of motion. By applying the Hidden Markov 
Model (HMM) and Dynamic Time Warping (DTW) algorithms, we obtained an improved accuracy by 
selecting specific features from the public UTD-MHAD full body gestures database (with up to 56% 
for HMM and 32% for DTW). Preliminary results show a positive correlation between the movement 
amplitude and the envelope feature (r = 0.92). Thus, this approach has the potential to improve 
gesture recognition accuracy and provide user feedback on how to improve the movement 
performed, in particular the movement amplitude. We propose further improvements and method 
validations to be the basis of creating an intelligent virtual rehabilitation assistant. 
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1. INTRODUCTION 

Exergames are video games specifically designed 
to incorporate exercises used in physical therapy 
and rehabilitation. One such example of a system 
is MIRA (see Mira (2017)), a software medical 
platform that gamifies physiotherapy, using the 
Microsoft Kinect sensor (see Kinect (2017)) for 
remote interaction and motion tracking. The system 
provides important statistics about the user’s 
performance while exergaming (such as game 
points, time, involvement, number of repetitions), 
as well as direct feedback about the correctness of 
the exercises during game play. 

In this study we aim to improve exergaming 
systems’ interaction by performing an advanced 
gesture analysis which provides detailed feedback 
to the user regarding the correctness of the 
exercise performed, in particular on movement 
amplitude. The idea is to detect the correctness of 
a movement, providing also intelligently-derived 
information and recommendations on how to 
improve on the range of motion component of the 
exercise. The long-term purpose is to create a 
virtual rehabilitation assistant that would aid users 
while exercising. 

In the following, we present the methods used to 
extract significant features from the movements 
performed, by separating from each gesture three 
main components: body pose (posture), movement 
amplitude (range) and movement pattern 
(trajectory). Next, we present testing results and 
their importance.  

2. RELATED WORK 

Literature reveals a number of studies using Kinect 
based gesture recognition. However, most of them 
are focused on multi-joint static postures or on one-
joint time series. Capturing key poses which define 
a specific exercise/gesture, Wang (2015) obtains 
an overall classification accuracy of up to 94% and 
Călin (2016a) up to 99%. For one-joint time series 
gestures, Lin (2012) presents a feature-guided 
HMM algorithm to segment data on joint angles 
and angular velocity of rehabilitation movements, 
obtaining an accuracy of up to 91%. Călin (2016b) 
classifies right hand time series data obtaining an 
accuracy of up to 97% with DTW and HMM. 

One study referring to multi-joint time series data is 
Grimm (2016), approaching a movement analysis 
based on a 7 degree gravity-compensating arm 
exoskeleton. It determines compensatory 
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movement strategies of patients and monitor their 
kinematic evolution throughout rehabilitation. 

Our study is, to the best of our knowledge, among 
the first to approach movement analysis on multi-
joint times series gestures using Kinect. 

3. PROPOSED METHOD 

In the following, we propose a method to process 
and analyse time series gestures in order to obtain 
a better accuracy of classification. This method was 
then tested on a publicly available dataset of 27 
gestures collected with Kinect 1 (20 joints in 3D, 
which means 60 dimensions/features) named UTD-
MHAD (see Chen (2015)). 

For the purpose of extracting information regarding 
the correct amplitude of the movement, we created 
two open-source databases of time series 
gestures, Kinect DB (2016). It contains equally 
distributed classes, representing different variations 
(in terms of range of motion) of a specific 
movement: 

• Circles Database (CDB) contains 6 classes 
of user created circle shapes: big, medium 
and small circles, vertical and horizontal 
ellipses, and a class of misshaped circles. 

• Flexion Database (FDB) contains 2 classes 
with shoulder forward flexion: one 
performing at an angle of 90° and the other 
one at 180°. 

We used Kinect (Windows SDK 2.0) to collect 3D 
gestures of the 25 body joints for the two 
databases CDB and FDB. We obtained 75 
dimensions/features for each sample, with 15 
samples per class. 

The HMM and DTW algorithms, implemented by 
the Gesture Recognition Toolkit (GRT, Nick (2014)) 
to have multi-dimensional support, were utilized for 
multi-class classification, as they have presented 
good results in previous work (Călin (2016b)). 

Several  features  were  extracted  (from the  initial 
75  in  CDB  and  FDB,  and  from  the initial  60 
in the UTD-MHAD) as per our proposed method 
presented below. Validation was done using 7-fold 
cross validation, as the GRT library did not support 
cross validation with a higher number of folds, such 
as 10, on our large sample data. The statistical 
average of 30 tests was computed across the 
classes representing gestures. 

We propose a method, as described in Figure 1, 
that is able to separate movement components of 
the full body gestures, by extracting two new 
derived features using two GRT feature extraction 
algorithms. The Movement Index Feature (MI) 
algorithm computes the amount of movement or 

variation for a N-dimensional signal over a time 
frame (as described in Nick (2014)). We use MI to 
separate the features representing active joints and 
passive joints respectively, using a threshold of 
30% of the maximum MI value. The former define 
the Motion of the gesture (in our case, on the CDB, 
five 3D joints of the arm, resulting in 15 
dimensions). The latter define the Pose of the 
gesture (the remaining 20 joints, resulting in 60 
dimensions). 

We also selected the joint (in 3D) with the 
maximum value of the MI as the most relevant one 
in describing the movement pattern (the 
Trajectory). As the UTD database contains various 
types of gestures, we have split them into 3 
subsets, according to which joints compose the 
trajectory of the movement: RH (11 classes in 
which the right hand or the wrist is the joint with the 
MI value greater than 70% of the maximum MI 
value computed on all joints), BH (8 classes in 
which both right and left hands or wrists have MI 
values over 70% of the maximum MI) and FB (8 
classes in which the significant joint is the spine or 
that have more than 30 active joints with MI over 
20% of the maximum MI). From RH we have 
derived CH (a custom subset of RH with 6 
coordination movements). The subsets are: 

• Coordination Hand Gestures (CH): wave, 
throw, draw X, draw circle clockwise, draw 
circle counter clockwise, draw triangle. 

• Right Hand Gestures (RH): CH gestures, 
swipe left, swipe right, tennis swing, knock, 
catch. 

• Both Hands Gestures (BH): clap, arm 
cross, basketball shot, boxing, baseball 
swing, arm curl, tennis serve, push. 

By applying the Envelope Feature (EF) in CDB and 
FDB, we obtained data that was correlated with the 
amplitude of the movement. The EF used here is 
computed as the smooth curve outlining the upper 
extremes of the motion data signals. Next, we 
correlated the EF derived mean values with the 
mean amplitude of the corresponding movements 
for the two databases.  

4. RESULTS AND DISCUSSION 

4.1. Improving Gesture Classification Accuracy 

Figure 2 displays the results obtained by classifying 
the 6 gestures of the CDB and the 2 gestures of the 
FDB respectively, based on all 25 skeleton joints 
provided by the Kinect and on the selection of 
features (15 of the right arm or 3 of the hand tip). In 
the two gestures, the right arm is the active body 
part that defines the movement and its amplitude, 
the hand provides the specific trajectory pattern
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Figure 1: The extraction of movement components exemplified on the CDB (with 6 classes), using the Movement Index 
Feature (MIF) and the Envelope Feature (EF).

 

Figure 2: Multi-class classification accuracy for CDB and 
FDB, when using (1) all features, (2) the active joints 
(15D of the right arm joints) or (3) the trajectory joint 

having the maximum MI (3D of the right hand). 

joint which contains also information about the 
amplitude of the motion, and the rest of the body, 
excluding the right arm, is part of the base pose. 

Figures 3 and 4 present the results obtained on the 
UTD-MHAD and its subsets (RH, BH and CH) for 
which the improvement is much more consistent for 
both HMM and DTW. The most significant increase 
for DTW is for CH, increasing accuracy from 22% 
to 54%. As for HMM, the probabilistic model does 
not support large time series data with a lot of 
features, being unusable, however by selecting the 
important features we obtain the highest 
improvement for BH reaching 68.7% accuracy. 
Results show an increase in accuracy of 
classification when selecting only the active body 
parts, with best results on the joint with the 
maximum value of the MI for RH. HMM performs 
better the more specific the extracted features are, 
as it is based on a state probability model, for 
which   reason   it  performs   very   poorly on  large 

 

Figure 3: Classification accuracy on RH and BH. The 
active joints (12D of the right arm joints); maximum MI 
(3D of the right hand) for RH; both hands (6D for left 

hand and right hand) for BH. 

 

Figure 4: Classification accuracy results on CH and 
entire UTD-MHAD. 

sample data with a lot of features, as it is in our 
case. 

On the other hand, DTW, which works by finding 
the best mapping of each dimension on the time 
axis, may lose accuracy when certain features are 
removed (as in the case with the UTD, we have 
38.85% for 6D and 38% for 3D). This is likely due 
to the fact that this initial analysis does not consider 
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the pose component for classification, but will be 
included in our future work. 

4.2. Analysing Movement Amplitude 

The EF values, obtained from the 3D joint (X,Y,Z) 
with the highest MI, show good correlation with the 
movement amplitude on each of the X, Y and Z 
features (Figures 5 and 6). For FDB, correlating EF 
with the movement range of motion (angle of 90° or 
180°) resulted in the Pearson correlation coefficient 
r =0.8166937 for X, r =0.8296638 for Y and for Z a 
value r =0.864509. For CDB we correlated the EF 
of Y-X with the circle radius (initial correlation with 
X was negative and small r = -0.1092782, due to 
the existing negative values of the motion data, 
thus we combined Y and X) obtaining the Pearson 
correlation coefficient value r =0.8896081. We also 
correlated EF of Z with the circle radius, resulting in 
value r =0.9229759. The big circle had a radius of 
approximately 50cm, the medium circle 30cm and 
the small circle 15cm. 

 

Figure 5: EF of the Z feature showing correlation with 
the range of motion, in CDB (left) with the circle radius, 
having r=0.9229759; and in FDB (right) with the forward 

flexion angle, having r=0.8896081. 

 

Figure 6: EF of the Y feature with r=0.8660295 for CDB 
(left) and r=0.8296638 for FDB (right). 

These results show a good potential to determine 
the amplitude of the movement and inform the user 
on how their motion stands relative to the amplitude 
of the correct exercise to be performed. The 
system can determine using EF if the motion 
amplitude is too small/large and inform the user 
accordingly on how to improve their performance. 
This method provides a generalised approach that 
is able to improve the classification accuracy and 

provide the user with feedback on how to adjust 
their movement amplitude on a large range of 
exercises, not just arm or hand movements, but 
also lower limb, trunk or neck exercises. Yet further 
improvement and testing are necessary, by using a 
clustering algorithm to aggregate passive joints in 
order to combine the posture feature with motion 
trajectory and amplitude. 

This way the system would be able to generate 
other user feedback, besides that regarding 
movement amplitude, referring to trajectory (user 
should concentrate on the correct trajectory of the 
joint as required in the exercise) or posture (user 
posture should be corrected as instructed, for 
example standing, sitting, keeping the left arm in 
abduction at 90°), which we aim to implement 
further. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we proposed a generalised movement 
analysis method on time series gestures for 
physical rehabilitation. We tested this method on 
our own databases collected with Kinect 2 and on 
the UTD-MHAD publicly available database of 
gestures with Kinect 1. By extracting selective 
features and computing derived features (MI and 
EF) we separated three main components of the 
movement: pose, trajectory and range of motion. 
This way, we obtained better classification 
accuracy, with up to 56% for HMM and 32% for 
DTW. We also found a positive correlation between 
movement amplitude and the EF extracted feature 
(r =0.92), which can generate user feedback to 
help users improve on their exercise physical 
performance. 

However, the model requires further optimisation 
and validation on larger datasets. We intend to 
improve on the combination of extracted features, 
by using the Principal Components Analysis and 
Cluster Analysis methods for aggregating the pose 
component of the movement. 

Our aim is to extend and generalise this model for 
different types of physical therapy exercises in 
order to construct an intelligent virtual rehabilitation 
assistant for Kinect systems. This agent would 
provide users feedback on the exercises they 
perform to help them improve on different 
movement components (e.g. amplitude, trajectory, 
posture). 
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