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Abstract

We propose a discrete traffic flow model with discrete time. Continuum limit of this model is
equivalent to the optimal velocity model. It has also an ultradiscrete limit and a piecewise-
linear type of traffic flow model is obtained. Both models show phase transition from free
flow to jam in a fundamental diagram. Moreover, the ultradiscrete model includes the Fukui–
Ishibashi model in a special case.
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1. Introduction

There are various models of different levels of discrete-
ness to analyze the traffic congestion [1]. Macroscopic
model is defined by a partial differential equation based
on fluid dynamics and it describes a traffic flow by the
motion of continuous media. For example, Musha and
Higuchi used the Burgers equation to describe a fluctu-
ation of traffic flow [2].

System of ordinary differential equations (ODEs),
coupled map lattice (CML) and cellular automaton (CA)
are often used as microscopic model to describe each ve-
hicle motion directly. About ODE models, time t and
vehicle position x are continuous, and vehicle num-
ber k is discrete. CML is similar to ODE but time
is discretized [3]. All dependent and independent vari-
ables are discrete for CA models. For example, Nagel–
Schreckenberg model [4], elementary CA of rule number
184 (ECA184) [5], Fukui–Ishibashi (FI) model [6] and
slow-start model [7] are known as effective traffic model.
Though evolution rule of CA model is simple due to
its discreteness, a mechanism of congestion formation is
presented sharply.

Bando et al. proposed a noticeable ODE model [8].
The model is now called ‘optimal velocity model’ (OV
model) and is defined as follows. Assume a finite number
of vehicles moving on a one-way circuit of single lane as
shown in Fig. 1. The length of the circuit is L and total
number of vehicles is K. Introduce a one-dimensional
coordinate along the circuit with an appropriate origin.
Define xk(t) by a position of vehicle with vehicle number
k (k = 1, 2, · · · , K) at time t. The vehicle number is
given sequentially to each vehicle as the preceding one
has a larger number. Note that the preceding vehicle of
k = K is k = 1. Then the evolution equation on xk(t) is

ẍk = A{V (xk+1 − xk)− ẋk}, (1)
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Fig. 1. Circuit and vehicles.

where A is a constant representing a driver’s sensitivity
and V (∆x) is an optimal velocity representing a desired
velocity of a driver with a distance ∆x between his vehi-
cle and the vehicle ahead. The acceleration of kth vehicle
is determined by (1) and is proportional to the difference
between its optimal velocity and its current real velocity
ẋk.

The typical profile of optimal velocity is shown in
Fig. 2. This profile reflects a driver’s behavior; if the
distance from the vehicle ahead is short (long), he wants
to keep low (high) speed. When the distance becomes
long enough, he wants to keep a speed limit of the road.
The results obtained by the optimal velocity model agree
with real traffic data well.

Nishinari and Takahashi reported an interesting re-
lation between the Burgers equation and ECA184 [9].
They proposed a difference equation called ‘discrete
Burgers equation’ and showed that the Burgers equa-
tion and ECA184 were obtained by continuum and ul-
tradiscrete limit respectively from the discrete Burgers
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Fig. 2. Typical profile of optimal velocity.

equation. Ultradiscretization is a method utilizing a non-
analytic limit defined by the following formula [10].

lim
ε→+0

ε log(eA/ε + eB/ε + · · · ) = max(A,B, · · · ). (2)

We obtain an equation of piecewise-linear type called
‘ultradiscrete equation’ by ultradiscretizing a difference
equation. There is a correspondence between basic op-
erations of difference equation and of ultradiscrete one.
Usual operations +, × and / of difference equation corre-
spond to max, + and − of ultradiscrete one respectively.
Thus we can make ‘analytic evaluation’ for ultradiscrete
equation as we do for difference equation.

Moreover dependent variables can be discretized us-
ing appropriate initial data and constants of ultradis-
crete equation. Therefore ultradiscrete equation is a
completely discretized equation in this sense. Utilizing
this feature, we can show that ECA184 originally defined
by a binary table is equivalent to ultradiscrete Burg-
ers equation. Thus asymptotic behavior of solutions to
ECA184 can be proved by the analytic evaluation reflect-
ing that of Burgers equation. As seen by this example,
ultradiscretization gives a direct relation between CA
and differential equation via difference one and proposes
a new perspective for CA which can not be obtained if
we make a closed analysis.

In this letter, we propose a difference equation rele-
vant to the OV model and call it ‘discrete OV (dOV)
equation’ . If we take a continuum limit for this equa-
tion, we obtain (1) with a specific V (∆x). If we take an
ultradiscrete limit, we obtain ‘ultradiscrete OV (uOV)
equation’ including ECA184 or FI model in a special
case. Since uOV equation is of second-order on time dif-
ference, it can express an acceleration effect. Both dOV
and uOV equations show a phase transition from free
flow to jam.

2. Discrete Optimal Velocity Model

Let us assume the same situation as of OV model (1).
The only difference is that a time variable is discrete.
Assume a time step denoted by n (n = 0, 1, · · · ) and an
interval of time step by δ (> 0). Using these notations,
dOV equation is defined by

xn+1
k − 2xn

k + xn−1
k = A{ log

(
1 + δ2V (xn

k+1 − xn
k )

)
− log

(
1 + δ(exn

k−xn−1
k − 1)

)
}.
(3)

If 1 + δ2V (xn
k+1 − xn

k ) or 1 + δ(exn
k−xn−1

k − 1) in the
logarithmic terms is 0 or negative, (3) is not well-defined.
However, if δ is small enough and if V (∆x) and initial
data are appropriately defined, we can easily exclude this
problem.

Replacing xn
k by xk(nδ) and assuming δ ∼ 0, we obtain

the following expansion.

ẍk = A{V (xk+1−xk)−ẋk}+
A

2
(ẍk−(ẋ)2)δ+O(δ2). (4)

Thus (1) is derived from (3) by the continuum limit
δ → 0 and (3) is a discrete analogue to (1). Consid-
ering this relation, V (∆x) is required to have the profile
roughly shown in Fig. 2. Moreover if we assume that
(3) can be ultradiscretized, V (∆x) is required to have a
more specific form. To realize both continuum and ul-
tradiscrete limit, we fix the following form for V (∆x),

V (∆x) = a
( 1

1 + e−b(∆x−c)
− 1

1 + ebc

)
, (5)

where a, b and c are positive constants. Fig. 3 shows an
example of profile of V (∆x). Fig. 4 shows an example
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Fig. 3. Profile of V (∆x) defined by (5) with a = 2, b = 4, c = 2.

of orbits of vehicles. Initial positions of vehicles are set
at nearly regular intervals with small disturbances. Co-
alescence of jams occurs at earlier time and three major
jams survive in this figure. Though not shown in this
figure, more coalescences occur after a long time passes.

The fundamental diagram is shown in Fig. 5 [1]. This
diagram shows a dependence of flow Q on density ρ.
Density ρ is a number of vehicles per unit length and
flow Q is equivalent to a total momentum of vehicles
per unit length. Both are defined by

ρ =
1
L

(number of vehicles),

Q =
1

(n1 − n0 + 1)Lδ

n1∑
n=n0

K∑
k=1

(xn
k − xn−1

k ).
(6)

We can observe three phases, that is, (a) free flow phase
in a low density region, (b) jam phase in a medium den-
sity region and (c) tight jam phase in a high density
region. Since these phases can be observed for the OV
model (1), we can consider that discretization of time
variable in the dOV model (3) works well.
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Fig. 4. Example of orbits of vehicles for L = 50, K = 25, δ = 0.1,
A = 1, a = 2, b = 4 and c = 2.

Fig. 5. Fundamental diagram with L = 50, δ = 0.1, A = 1,
a = 2, b = 4, c = 2, n0 = 90000 and n1 = 100000. Plotted
points are obtained for 1 ≤ K ≤ 50.

3. Ultradiscrete Optimal Velocity Model

The dOV equation (3) with optimal velocity (5) can
be ultradiscretized. Let us introduce transformation of
variable and constants including a new parameter ε de-
fined by

xn
k →

xn
k + nδ

ε
, δ → e−δ/ε, a → e(a+2δ)/ε, c → c

ε
.

(7)

Substituting the transformation into (3) and (5), we ob-
tain

xn+1
k − 2xn

k + xn−1
k

= A
{

ε log
(
1 +

ea/ε

1 + e−b(xn
k+1−xn

k−c)/ε
− ea/ε

1 + ebc/ε

)
− ε log

(
1 + e(xn

k−xn−1
k )/ε − e−δ/ε

)}
. (8)

If a, b, c, δ are positive and a < bc, we obtain the fol-
lowing ultradiscrete equation by taking a limit ε → +0.

xn+1
k − 2xn

k + xn−1
k

= A{max(0, a−max(0,−b(xn
k+1 − xn

k − c)))

−max(0, xn
k − xn−1

k )}. (9)

Moreover this equation is equivalent to

xn+1
k − 2xn

k + xn−1
k

= A{V (xn
k+1 − xn

k )−max(0, xn
k − xn−1

k )}, (10)

where

V (∆x) = max(0, b(∆x−c)+a)−max(0, b(∆x−c)). (11)

Note that (10) does not include the parameter δ in (3),
since it can not be an arbitrary independent parameter
when we take the ultradiscrete limit and can be excluded
by introducing a background speed δ into xn

k and replac-
ing δ by e−δ/ε as shown in (7). And we also comment
that the condition a < bc is necessary to keep the lower
speed part of profile of V (∆x) for a small ε in the region
of ∆x > 0.

We show a typical profile of V (∆x) in Fig. 6. Fig. 7
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Fig. 6. Profile of V (∆x) in (11).

shows an example of orbits of vehicles. Positions of ve-
hicles are random integer at initial time step. However
xn

k is generally non-integer since A and a are not inte-
ger in this example. A fundamental diagram using the
same constants other than K is shown in Fig. 8. Surpris-
ingly three phases clearly exist as in Fig. 5. Note that
numerical experiments are executed by double precision
calculation of C program.

Fig. 7. Example of orbits of vehicles for (10) with L = 50, K =
25, A = 0.5, a = 1.9, b = 4, c = 3.
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Fig. 8. Fundamental diagram for (10) with L = 100, A = 0.5,
a = 1.9, b = 4, c = 3, n0 = 1000, n1 = 2000. Plotted points are
obtained for 1 ≤ K ≤ 100 and 50 trials are executed for every
K.

4. Special Case of Ultradiscrete Optimal

Velocity Model

In this section, we discuss two special cases of uOV
model.

4.1 No Overtaking
Assume that A, a, b, c in (10) and (11) are positive.

Then if AV (∆x) ≤ ∆x, we can derive

xn+1
k ≤ xn

k+1 +xn
k − xn−1

k −A max(0, xn
k − xn−1

k )︸ ︷︷ ︸
(a)

.

(12)
Moreover if A ≥ 1, (a) is always 0 or negative. Therefore
we get xn+1

k ≤ xn
k+1 on these assumptions. And further-

more, if velocity of all vehicles is non-negative, overtak-
ing does not occur. When we use the OV (dOV, uOV)
model as a numerical simulator of concrete traffic flow,
overtaking of vehicle can not occur in a one-way circuit
of single lane. Though we can avoid overtaking by choos-
ing appropriate constants and initial data, assurance of
no overtaking is important for a real application.

4.2 Cellular Automaton
If constants A, a, b, c and initial position x0

k are inte-
ger, any xn

k calculated by (10) is also integer. Therefore
all the dependent and independent variables in (10) are
discrete in this case. Moreover, if we set A = 1, (10)
reduces to

xn+1
k = xn

k + V (xn
k+1 − xn

k ) + min(0, xn
k − xn−1

k ). (13)

Let us assume V (∆x) ≥ 0 as in Fig. 6. Moreover if
xn

k − xn−1
k ≥ 0 for any k at a certain n, the last term

min(0, xn
k − xn−1

k ) in (13) becomes 0 and xn+1
k − xn

k =
V (xn

k+1 − xn
k ) ≥ 0 for any k. Therefore any vehicle does

not go backward if initial velocity of any vehicle is not
negative. Under this condition, (13) again reduces to the
first-order equation,

xn+1
k = xn

k + V (xn
k+1 − xn

k ). (14)

Moreover let us consider the case of A = 1, a = vmax,
b = 1, c = vmax + 1 where vmax is positive integer. Then
V (∆x) in (14) becomes

V (∆x) = max(0,∆x−1)−max(0,∆x−vmax−1). (15)

Assuming a size of vehicles is a unit cell size, xn
k+1−xn

k−1
is a distance between k-th and (k + 1)-th vehicles at
time step n. Therefore every vehicle moves forward by
its distance up to vmax. This model is nothing but the
FI model and ECA184 for vmax = 1. We note that an
analogy between OV and some CA models is commented
by the references [11] and [12].

5. Concluding Remarks

We propose a new discrete OV model with a discrete
time. Continuum limit of this model is equivalent to the
OV model. We show that orbits of vehicles and the fun-
damental diagram agree with those of OV model quali-
tatively. Moreover this model has an ultradiscrete limit
and a piecewise-linear type of evolution equation is ob-
tained. We show that the ultradiscrete OV model also
gives phase transition in its fundamental diagram by a
numerical calculation. It includes the FI model as a spe-
cial case.

We only show a definition, a few features and some
numerical results about dOV and uOV models in this
letter. Detailed analysis using various combinations of
constants is necessary to understand a dynamics of the
models fully. Comparison with other models and with
real data is also necessary. These points are future prob-
lems to be solved.
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