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Abstract

Exact solutions of the ultradiscrete Sine-Gordon equation which have oscillating structure

are constructed. They are considered to be a counterpart of the breather solution of the

Sine-Gordon equation. They are given by setting specific parameters in the discrete soliton

solutions and ultradiscretizing the resulting solutions.
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1. Introduction

Cellular automaton (CA) is a discrete dynamical sys-
tem which consists of a regular array of cells. Each cell
takes a finite number of states updated by a given rule in
discrete time steps. Although the updating rule is usu-
ally simple, CAs may give very complex evolution pat-
terns (see for example [1]). Moreover, CAs are suitable
for computer experiments since all variables take dis-
crete values. Hence CAs may be good models to capture
the essential mechanisms for physical, social or biological
phenomena by simple rules.

Ultradiscretization [2] is a procedure transforming a
given difference equation into a CA or an ultradiscrete
system. In general, to apply this procedure, we first re-
place a dependent variable in a given equation xn with
a new variable Xn by

xn = eXn/ε (1)

upon introduction of a parameter ε > 0. Then in the
limit ε ↓ 0, addition, multiplication and division of the
original variables are replaced with max, addition and
subtraction for the new ones, respectively. Note that xn

should be positive definite for (1) and that no general
way to cover subtraction in a discrete equation. In ad-
dition to overcoming these difficulty, it is also an open
problem how to capture oscillatory phenomena in ultra-
discrete systems. A partial answer is given in [3] and [4],
in which ultradiscretization of the elliptic functions is
discussed. The authors and coworkers reported an ultra-
discrete analogue of the Airy function as the solution of
an initial value problem in [5].

It has already been reported that some ultradiscrete
systems constructed from discrete soliton equations pos-
sess soliton solutions similar to those of the discrete
or corresponding continuous systems (see for example
[2,6,7]). However, an ultradiscrete solution propagating

with oscillation, as the breather solution of the Sine-
Gordon (SG) equation, has not been reported. In this
letter, we propose solutions of an ultradiscrete analogue
of the SG (udSG) equation [8] which have oscillating
structure. They are considered to be a counterpart of
the breather solution. They are constructed by proper
setting of parameters in the known discrete soliton solu-
tions and ultradiscretizing the resulting solutions.

2. Ultradiscrete Sine-Gordon Equation

The SG equation, one of the well-known soliton equa-
tions,

∂2ϕ

∂x∂t
= sin ϕ (2)

is famous for possessing the breather solution, which de-
scribes oscillatory phenomena and is given as the special
case of the 2-soliton solution. Hirota proposed an inte-
grable discrete analogue of the SG equation [9]

sin
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4

)

(3)

through the bilinearizing technique. Note that this equa-
tion also has the breather solution.

For the purpose of constructing an udSG equation,
the authors and coworkers proposed another discrete SG
equation [8]
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This equation is reduced to the trilinear form
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through the variable transformation

um
n =

τm+1

n+1 τm−1

n−1

τm−1
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n−1

. (6)

If we set

δ = tanh

(

L

2ε

)

, τm
n = eT m

n /ε, um
n = eUm

n /ε (7)

and take the limit ε ↓ 0, we have the udSG equation for
Um
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from (4) and for T m
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from (5) and the relation between T m
n and Um

n

Um
n = T m+1

n+1 + T m−1

n−1 − T m−1

n+1 − T m+1

n−1 (10)

from (6). Refer to [8] for more detail about the udSG
equation and its soliton solutions.

3. Oscillatory Solution

For the purpose of our discussion, we give the 2-soliton
solution of (5). Let pj , qj be parameters satisfying the
dispersion relation

δ2(pj
2 + 1)(qj

2 + 1) = (pj
2 − 1)(qj

2 − 1) (11)

and aj be arbitrary phase constants. Phases xj and in-
teraction factors bjk are defined by

xj = pj
nqj

m, (12)

bjk =
(pj

2 − pk
2)2

((pjpk)2 − 1)2
, (13)

respectively. In terms of these notations, the 2-soliton
solution is written as

τm
n = 1 + a1x1 + a2x2 + a1a2b12x1x2. (14)

Now, we construct the 2-periodic solution by specific
setting of parameters in (14). Let us set

p2 = −p1, q2 = q1, a1 = α1 + α2, a2 = α2. (15)

Then (14) is reduced to

τm
n =

{

1 + (α1 + 2α2)x1 (n : even),

1 + α1x1 (n : odd).
(16)

The phase constant in (16) depends on whether n is an
even number or an odd number. This structure plays a
crucial role for 2-periodic behaviour of the solution.

Let us ultradiscretize (16). First, we put

p1 = eP1/ε, q1 = eQ1/ε,

α1 = eA1/ε, α2 = eA2/ε (A1 < A2),
(17)

and take the limit ε ↓ 0. Then we have the ultradiscrete
analogue of (16),

T m
n =

{

max(0, P1n + Q1m + A2) (n : even),

max(0, P1n + Q1m + A1) (n : odd).
(18)

Note that P1 and Q1 should satisfy the dispersion rela-
tion

|P1 + Q1| = |L| + |P1 − Q1|, (19)

which is obtained by ultradiscretizing (11). Substitut-
ing (18) into (10), we have Um

n solving (8). For general
parameters, the solution describes travelling pulse with
oscillation. In order to emphasize its periodic behaviour,
we set P = Q = |L|/2, which satisfy (19), and introduce
new independent variables (k, l) by

n = k − l, m = k + l. (20)

Fig. 1–3 show behaviour of Um
n for various values of pa-

rameters A1, A2. In all cases, the solution gives local-
ized pulse for fixed time l. Each pulse is almost stable
and its shape changes for l in period 2. Hence, this so-
lution clearly describes oscillatory phenomena. Further-
more, its behaviour is similar to that of the breather
solution.
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Fig. 1. An example of oscillatory solution. L = 2, P1 = Q1 = 1,
A1 = 1, A2 = 2.
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Fig. 2. An example of oscillatory solution. L = 2, P1 = Q1 = 1,
A1 = 1, A2 = 5.
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Fig. 3. An example of oscillatory solution. L = 2, P1 = Q1 = 1,
A1 = 1, A2 = 10.

For the sake of constructing the solution with richer
structure, we consider the 4-soliton solution

τm
n = 1 +

4
∑
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4
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ajakbjkxjxk
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+ a1a2a3a4b12b13b14b23b24b34x1x2x3x4. (21)

If we put (15) and

p4 = −p3, q4 = q3, a3 = α3 + α4, a4 = α4, (22)

then we have
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(23)

Moreover, setting

pj = ePj/ε, qj = eQj/ε,

αj = eAj/ε (A1 < A2, A3 < A4)
(24)

and taking the limit ε ↓ 0, we have
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(25)

The solution Um
n constructed from (25) and (10) de-

scribes interaction among oscillating pulses. We consider
the specific case P1 = Q1 = |L|/2, P3 = Q3 = −|L|/2
and introducing independent variables (k, l) defined by
(20). We observe pulses which are almost stable and
change their shape in period 2 (see Fig. 4).

We can obtain a solution which describes larger num-
bers of oscillating pulse by starting from the (2N)-
soliton solution. We would, however, comment that we
have only two choices of P , Q such that P = Q and
(19) holds, namely P = Q = ±|L|/2. Hence, the oscilla-
tory solution constructed from the (2N)-soliton solution
may be understood as nonlinear superposition of the so-
lutions given in this section.
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Fig. 4. An example of oscillatory solution with richer structure.
L = 2, P1 = Q1 = 1, P3 = Q3 = −1, A1 = 1, A2 = 5, A3 = 1,
A4 = 10.

4. Concluding Remarks

We have given exact solutions of the udSG equation
which describe oscillatory phenomena. They are consid-
ered to be a counterpart of the breather solution. It is
an interesting problem to construct oscillatory solutions
for other ultradiscrete systems by applying the proce-
dure developed in Section 3. We also comment that the
period of oscillation of our solution is essentially 2 by its
construction. It is a future problem to find the ultradis-
crete system having solutions with arbitrary periods.
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