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Abstract

The Anderson method provides a significant acceleration of convergence in solving nonlinear
simultaneous equations by trying to minimize the residual norm in a least-square sense at
each iteration step. In the present study I use singular value decomposition to reformulate
the Anderson method. The proposed version contains only a single parameter which should
be determined in a trial-and-error way, whereas the original one contains two. This reduction
leads to stable convergence in real-world self-consistent electronic structure calculations.
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1. Introduction

In the past few years first-principles calculations based
on density functional theory [1] have gained enormous
interest among solid-state physists, materials scientists,
and quantum chemists. The Kohn-Sham equation [2],
which plays a vital role within the density functional
theory, is not only an eigenvalue problem, but also an
implicitly defined, nonlinear fixed-point problem of in-
terelecton potential [3–5] at least when local density ap-
proximation [2] is introduced. In other words, the Kohn-
Sham equation is solved when the self-consistent inter-
electon potential is found. The Anderson method [6] is
frequently employed for this purpose. It should be noted
that the Pulay method [7] and limited-memory modifica-
tions [8–11] of the second Broyden method [12] are essen-
tially equivalent to the Anderson method [13], while the
first Broyden method can also be cast into the limited-
memory form [14,15].

Suppose that for a system of nonlinear equations
~F (~x) = ~0, there are independent variable column vec-
tors,

{~xn, ~xn−1, . . . , ~xn−k} ,

which are hopefully approaching a solution, and accom-
panying residual column vectors,

{~yn, ~yn−1, . . . , ~yn−k} ,

where subscripts denote iteration steps. In a simple it-
eration method, the independent vector at the (n+1)th
iteration step is given by

~xn+1 = ~xn + α~yn, (1)

where α is a mixing factor ranging from a scalar to
a preconditioning matrix [16, 17] to a nonlinear proce-

dure [18,19]. In the Anderson method, however, a virtual
residual vector,

~y ⋆

n
= ~yn +

∑

1≤ν≤k

γν

~yn−ν+1 − ~yn−ν

‖~yn−ν+1 − ~yn−ν‖
, (2)

is introduced. Here γν are parameters to be so deter-
mined that the virtual residual norm ‖~y ⋆

n
‖ is minimized

in a least-square sense. Then an accompanying virtual
independent vector,

~x ⋆

n
= ~xn +

∑

1≤ν≤k

γν

~xn−ν+1 − ~xn−ν

‖~yn−ν+1 − ~yn−ν‖
, (3)

is defined on assumption of linearity. ~x ⋆
n

is expected

to be a minimizer for
∥

∥

∥

~F
∥

∥

∥
within the available sub-

space {~xn, ~xn−1, . . . , ~xn−k}. Last, the independent vari-
able vector for the next step is predicted by applying the
simple iteration method to ~x ⋆

n
and ~y ⋆

n
as

~xn+1 = ~x ⋆

n
+ α~y ⋆

n
. (4)

In practice, a specialized linear solver should be used
to determine the parameters γν reliably without encoun-
tering numerical instability. This means that a maxi-
mum condition number must be set for the linear solver
beforehand. Moreover a limit for the number of the pre-
vious independent and residual vectors considered must
be also set beforehand. Since the two parameters can-
not be obtained a priori, they are determined in an ad
hoc way. In the present study I eliminate the latter by
reformulating the Anderson method based on singular
value decomposition (SVD) [20]. This makes application
of the Anderson method a little easier. Furthermore, sta-
ble convergence is achieved in the sense that the num-
bers of iteration steps required by self-consistency are
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less sensitive with respect to the remaining parameters
as confirmed by test calculations.

2. Conventional Method

For simplicity I define a rectangular matrix as

Yn =

{

~yn − ~yn−1

‖~yn − ~yn−1‖
,

~yn−1 − ~yn−2

‖~yn−1 − ~yn−2‖
,

. . . ,
~yn−k+1 − ~yn−k

‖~yn−k+1 − ~yn−k‖

}

, (5)

and a column vector containing γν as

Γ =



















γ1

γ2

...
γk



















. (6)

I omit the right-pointing arrow above Γ to emphasize
that in general Γ is different form xν and yν in the num-
ber of rows. Using Yn and Γ, (2) is rewritten as

~y ⋆

n
= ~yn + YnΓ. (7)

The formal solution of Γ which minimizes ‖~y ⋆
n
‖ is given

by

Γ = −
(

Y T

n
Yn

)−1
Y T

n
~yn. (8)

Determining Γ using (8) literally should be discour-
aged, because of the potentially large condition number
of Y T

n
Yn. Instead, Γ is computed in a following way.

First, if the SVD is employed, Yn is factorized into

Yn = YnΣnV T

n
, (9)

where Yn and Vn are matrices containing the left and
right singular vectors of Yn, respectively, while Σn is a
diagonal matrix of the singular values. Then a corre-
sponding truncated factorization,

Yn ≈ Y n = YnΣnV
T

n
, (10)

is considered. Here Σn is a diagonal matrix of the l

largest singular values of Σn, while Yn and V
T

n
contain

the l column vectors of Yn and the l row vectors of V T
n

corresponding to the l largest singular values, respec-
tively. l, the effective rank of Yn, is the largest integer
so determined that the condition number of Σn does not
exceed the first predetermined limit smax. Of course, l
can be equal to k. Last, Γ is given by

Γ = −V nΣ
−1

n
Y

T

n
~yn. (11)

At the next iteration step, Yn+1 may be set to be

Yn+1 =

{

~yn+1 − ~yn

‖~yn+1 − ~yn‖
, Yn

}

=

{

~yn+1 − ~yn

‖~yn+1 − ~yn‖
,

~yn − ~yn−1

‖~yn − ~yn−1‖
,

. . . ,
~yn−k+1 − ~yn−k

‖~yn−k+1 − ~yn−k‖

}

. (12)

The usual practice is, however, that if k has reached the
second predetermined limit kmax, the rightmost (oldest)

column of the right-hand side of (12) is removed as

Yn+1 =

{

~yn+1 − ~yn

‖~yn+1 − ~yn‖
,

~yn − ~yn−1

‖~yn − ~yn−1‖
,

. . . ,
~yn−k+2 − ~yn−k+1

‖~yn−k+2 − ~yn−k+1‖

}

, (13)

to avoid excessive growth.

3. Proposed Method

Along with (5), I define a rectangular matrix contain-
ing the independent variable vectors as

Xn =

{

~xn − ~xn−1

‖~yn − ~yn−1‖
,

~xn−1 − ~xn−2

‖~yn−1 − ~yn−2‖
,

. . . ,
~xn−k+1 − ~xn−k

‖~yn−k+1 − ~yn−k‖

}

. (14)

Since Yn = YnV nΣ
−1

n
holds, a similar quantity,

Xn = XnV nΣ
−1

n
, (15)

is introduced. ~x ⋆
n

and ~y ⋆
n

are computed by working with
Xn and Yn as

~x ⋆

n
= ~xn + XnΓ′ (16)

and

~y ⋆

n
= ~yn + YnΓ′, (17)

respectively, where Γ′ is obtained by

Γ′ = −Y
T

n
~yn. (18)

At the next iteration step, Xn+1 and Yn+1 are updated
by

Xn+1 =

{

~xn+1 − ~xn

‖~yn+1 − ~yn‖
,Xn

}

(19)

and

Yn+1 =

{

~yn+1 − ~yn

‖~yn+1 − ~yn‖
,Yn

}

, (20)

respectively. Xn and Yn consist of the l column vectors
while by construction l ≤ k holds. Therefore Xn+1 and
Yn+1 are unlikely to fatten endlessly even if no limit is
imposed. No column in Xn+1 and Yn+1 has to be dis-
carded artificially.

Since Yn represents a numerically effective subspace
spanned by Yn, replacing (12) with (20) makes little in-
formation carried in Yn+1 be lost even in the case of
l < k. This no longer holds when the leftmost column
is discarded as in the case of (13). Nevertheless if kmax

is set too large with smax kept moderate in the con-
ventional method, the predicted xn+1 may be contam-
inated by excessively old xν and yν , because Γ in (11)
is a minimum-norm least-square solution. Therefore the
proposed method is expected to outperform the conven-
tional one.

4. Test Calculations

The conventional and proposed methods are com-
pared by applying them to first-principles calculations
for wurzite ZnO based on plane-wave, pseudopotential
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Table 1. Iterations required to reach self-consistency for wurzite ZnO with various maximum singular values smax and history data
limits kmax. Maximum numbers of history data reached in the proposed method are shown in parentheses. Note that lattice parameters
and atomic positions in the unit cell are optimized.

α = 0.2

1/smax 3× 10−1 1× 10−1 3× 10−2 1× 10−2 3× 10−3 1× 10−3 3× 10−4 1× 10−4

kmax

5 74 67 65 49 51 48 50 50

10 74 54 56 46 47 42 42 45

20 55 62 51 47 47 42 47 43
Conventional

40 56 62 54 65 56 48 46 44

Proposed 43(14) 42(14) 42(15) 45(20) 52(27) 42(28) 42(28) 42(28)

α = 0.4

1/smax 3× 10−1 1× 10−1 3× 10−2 1× 10−2 3× 10−3 1× 10−3 3× 10−4 1× 10−4

kmax

5 53 52 46 45 45 45 44 44

10 50 45 44 42 39 38 37 38

20 58 42 44 47 42 41 40 39
Conventional

40 46 58 46 40 43 39 41 41

Proposed 38(12) 40(13) 36(15) 40(21) 40(23) 42(26) 41(27) 41(27)

α = 0.8

1/smax 3× 10−1 1× 10−1 3× 10−2 1× 10−2 3× 10−3 1× 10−3 3× 10−4 1× 10−4

kmax

5 39 33 33 31 32 31 32 32
10 36 34 34 31 30 31 31 31
20 35 35 37 35 33 32 34 34

Conventional

40 37 35 35 34 32 33 34 34

Proposed 32(6) 31(11) 32(16) 33(16) 34(20) 34(20) 34(20) 34(20)

α = 1.6

1/smax 3× 10−1 1× 10−1 3× 10−2 1× 10−2 3× 10−3 1× 10−3 3× 10−4 1× 10−4

kmax

5 100 59 50 46 45 45 45 45
10 139 59 42 40 40 37 39 39

20 167 63 45 40 41 37 38 37
Conventional

40 72 68 71 47 45 37 38 40

Proposed 41(13) 37(13) 38(18) 38(20) 39(23) 40(25) 40(26) 40(26)

approach [21, 22]. Lattice parameters and atomic posi-
tions in the unit cell are also optimized. Remaining tech-
nical details are explained elsewhere [23]. The mixing
factor α is chosen to be a scalar parameter.

The parameters and results are shown in Table 1. For
α = 0.8, both the methods have achieved fast conver-
gence of iteration steps below 40. Clearly, however, the
proposed method is the less sensitive to the selection
of α and smax. Almost always the self-consistency is
reached within about 40 steps. In contrast, when the
parameters are chosen poorly, for example at α = 1.6
and 1/smax = 3 × 10−1, the conventional method re-
quires more than 100 iteration steps depending on kmax.
More importantly, finding the optimal kmax seems to
be difficult, because though the iteration steps increase
with kmax ≤ 20, the fastest convergence is achieved at
kmax = 40. As a whole whereas the larger smax is de-
sirable for the conventional method, a guiding principle
for kmax is unclear. Table 1 shows also the maximum l
reached within the proposed method. These values might
be taken as the best kmax for the conventional method.
At kmax near these values, however, the conventional
method does not necessarily show the comparable per-
formance of the proposed one. This is likely because dis-
carding the oldest column is not the best strategy to

keep Xn and Yn from excessive growth as pointed out in
the previous section.

5. Conclusion

Reformulation of the Anderson method for a system
of nonlinear equations has been described. The Ander-
son method in practice requires two empirical parame-
ters commanding to what extent stably the least-square
problem appearing at each iteration step is solved and
how many vectors containing the convergence history
information are retained. In the proposed method the
SVD is used to extract the effective information from
the history vectors, rather than as a black-box tool for
solving the least-square problem. The extracted vectors
are chosen to play a role of storage space for the history
information. Thereby the latter empirical parameter is
no more needed. This makes the proposed method be
the less sensitive to the selection of the remaining pa-
rameter and the mixing factor and the more efficient
because of a smarter way of discarding a redundant part
of the history information, as supported by the stable
convergence in the test calculations.
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