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Abstract

The discrete hungry Lotka-Volterra (dhLV) system is already shown to be applied to matrix
eigenvalue algorithm. In this paper, we discuss a form of the dhLV system named as the
qd-type dhLV system and associate it with a matrix eigenvalue computation. Along a way
similar to the dqd algorithm, we also design a new algorithm without cancellation in terms of
the qd-type dhLV system.

Keywords discrete hungry Lotka-Volterra system, dqd algorithm, matrix eigenvalue

Research Activity Group Applied Integrable Systems

1. Introduction

Integrable systems have some relationships to numer-
ical algorithms. For example, the continuous time Toda
equation corresponds to one step of the QR algorithm [1]
for computing eigenvalues of a symmetric tridiagonal
matrix. A discretization of the Toda equation is just
the quotient difference (qd) algorithm [2]. The discrete
Toda (dToda) equation also leads to a new algorithm for
the Laplace transformation [3]. The discrete relativistic
Toda equation is applicable for continued fraction ex-
pansion [4].

Some of the authors designed new algorithms named
the dLV algorithm for computing singular values of a
bidiagonal matrix in terms of the integrable discrete
Lotka-Volterra (dLV) system [5]. For k = 1, 2, . . . , 2m−1
and n = 0, 1, . . . ,

u
(n+1)
k (1 + δ(n+1)u

(n+1)
k−1 ) = u

(n)
k (1 + δ(n)u

(n)
k+1), (1)

u
(n)
0 ≡ 0, u

(n)
2m ≡ 0,

where δ(n) is the n-th discrete step-size and u
(n)
k de-

notes the number of k-th species at the discrete time
∑n−1

j=0 δ(j). It is shown in [6] that u
(n)
2k−1 and u

(n)
2k con-

verge to certain positive constant and zero, respectively,
as n → ∞. The dLV algorithm is also surveyed in a
recent review paper [7].

Now we introduce new variables

q
(n)
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1

δ(n)
(1 + δ(n)u

(n)
2k−2)(1 + δ(n)u
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2k−1), (2)

e
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(n)
2k−1u

(n)
2k . (3)

Then, the dLV system (1) yields the recursion formula
of the qd algorithm
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k+1 = q
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(n)
k+1,

e
(n+1)
k = e
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q
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q
(n+1)
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.
(4)

As mentioned above, this recursion formula is equivalent
to the dToda equation. Namely, the dLV system has a
relationship to the dToda equation. Rutishauser intro-
duced a modified version, named the dqd (differential
qd) algorithm [2], for the purpose of avoiding numerical
instability of qd algorithm.

Recently, in [8,9], we designed a new algorithm named
the dhLV algorithm for computing complex eigenval-
ues of a certain band matrix. The dhLV algorithm
is derived from the integrable discrete hungry Lotka-
Volterra (dhLV) system [10]. For k = 1, 2, . . . ,Mm and
n = 0, 1, . . . ,

u
(n+1)
k

M∏

j=1

(1+δ(n+1)u
(n+1)
k−j ) = u

(n)
k

M∏

j=1

(1+δ(n)u
(n)
k+j), (5)

u
(n)
1−M ≡ 0, . . . , u

(n)
0 ≡ 0, u

(n)
Mm+1 ≡ 0, . . . , u

(n)
Mm+M ≡ 0,

where Mk := (k−1)M+k, and the meaning of u
(n)
k is the

same as that of the dLV system. The dLV system (1) is
a prey-predator model that the k-th species is predator
of the (k + 1)-th species. On the other hand, the dhLV
system (5) is derived by considering the case where the
k-th species is predator of the (k + 1)-th, (k + 2)-th,
. . . , (k + M)-th species. Of course, if M = 1 then (5)

– 36 –



JSIAM Letters Vol. 1 (2009) pp.36–39 Akiko Fukuda et al.

coincides with (1).
In this paper, we discuss a new algorithm for comput-

ing matrix eigenvalues from a viewpoint of the qd-type
dhLV system based on (5). See Section 3 for the qd-type
dhLV system. Along a way similar to the dqd algorithm,
we derive a recursion formula without subtraction.

This paper is organized as follows. In Section 2, we de-
scribe some properties of the dhLV system. In Section 3,
we show two invariants of the qd-type dhLV system. We
clarify a relationship between the qd-type dhLV system
and the matrix eigenvalue algorithm in Section 4. We
design an algorithm for computing eigenvalues without
cancellation and demonstrate a numerical example. In
the final section, we give concluding remarks.

2. Some properties for the dhLV system

In this section, we explain some properties for the
dhLV system briefly. The matrix representation of (5)
is given as

R(n)L(n+1) = L(n)R(n), (6)

L(n) := (e2, . . . , eM+1, U
(n)
1 e1 + eM+2, . . . ,

U
(n)
Mm−1eMm−1 + eMm+M , U

(n)
Mm

eMm
), (7)
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eM+2, . . . ,
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eMm
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ek := ( 0, . . . , 0, 1
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k

, 0, . . . , 0 )⊤, (9)
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V
(n)
k :=
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(1 + δ(n)u
(n)
k−j). (11)

Eq. (6) is called Lax form of the dhLV system (5), cf. [11,

12]. Assume that 0 < u
(0)
k < K0 for k = 1, 2, . . . ,Mm,

then we have 0 < u
(n)
k < K as is shown in [8, 9], where

K0 is an arbitrary and K is a related positive constant.

In (11), if δ(n) > 0 holds for n = 0, 1, . . . , then V
(n)
k ≥ 1

holds for k = 1, 2, . . . ,Mm + M in the Lax matrix (8).
Hence, there exists the inverse matrix of R(n), and (6)
can be rewritten as

L(n+1) = (R(n))−1L(n)R(n). (12)

This is a similarity transformation from L(n) to L(n+1).
Namely, the eigenvalues of L(n) are invariant under the
evolution from n to n + 1. Moreover, the eigenvalues of
L(n)+dI are invariant for any n, where I is a unit matrix
and d is an arbitrary constant.

The asymptotic behavior of the dhLV system is as
follows.

lim
n→∞

u
(n)
Mk

= ck, k = 1, 2, . . . ,m, (13)

lim
n→∞

u
(n)
Mk+p = 0, p = 1, 2, . . . ,M. (14)

See [9] for the proof of (13) and (14). By combining (10)
and (11) with (13) and (14), it is obvious that the limits

of U
(n)
k and V

(n)
k also exist. As n → ∞, the Lax matrix

L(n) + dI converges to

L(d) := lim
n→∞

(L(n) + dI)

=









L1(d) 0EM L2(d)

. . .
. . .

0 EM Lm(d)









, (15)

where Lk(d) and EM are (M+1)×(M+1) block matrices
defined by

Lk(d) :=








d ck

1 d
. . .

. . .

0 1 d








, EM :=








0 · · · 0 1

0
0
...

0








.

It is of significance to note that L(n) +dI can be divided
into several block matrices. The characteristic polyno-
mial of L(d) is given as

det(λI − L(d)) =

m∏

k=1

{
(λ − d)M+1 − ck

}
.

Therefore, we obtain the eigenvalues λk,l of L(0) + dI as
follows.

λk,l = M+1
√

ck

{

cos

(
2lπ

M + 1

)

+ i sin

(
2lπ

M + 1

)}

+ d,

l = 1, 2, . . . ,M + 1, k = 1, 2, . . . ,m,

where i =
√
−1. For a sufficiently large n, λk,l becomes

the approximate value of the eigenvalues of L(0) +dI. As
a result, the dhLV algorithm is designed for computing
eigenvalues of L(0) + dI in [8, 9].

3. Invariants of the qd-type dhLV system

In this section, we investigate some properties of a
recursion formula derived from the Lax form (6).

By comparing the both sides of (6), the variables U
(n)
k

in (7) and V
(n)
k in (8) satisfy the following relations

δ(n)U
(n+1)
k + V

(n)
k+M+1 = δ(n)U

(n)
k+M+1 + V

(n)
k+M , (16)

V
(n)
k U

(n+1)
k = U

(n)
k V

(n)
k+M , k = 1, 2, . . . ,Mm. (17)

We call (16) and (17) the qd-type dhLV system. Let us
here impose the boundary condition

V
(n)
k−M ≡ 1, U

(n)
k−M ≡ 0, k = 0, 1, . . . ,M,

V
(n)
Mm+M+k ≡ 1, U

(n)
Mm+k ≡ 0, k = 1, 2, . . . ,M.

The existence of invariants is one of characteristic
properties in integrable systems. Now we give two propo-
sitions concerning invariants independent of the discrete
variable n.

Proposition 1 Variable U
(n)
k satisfies

Mm∑

k=1

U
(n+1)
k =

Mm∑

k=1

U
(n)
k . (18)

– 37 –



JSIAM Letters Vol. 1 (2009) pp.36–39 Akiko Fukuda et al.

Proof Taking a sum on both sides of (16) for k =
−M,−M + 1, . . . ,Mm, as

Mm∑

k=−M

(δ(n)U
(n+1)
k + V

(n)
k+M+1)

=

Mm∑

k=−M

(

δ(n)U
(n)
k+M+1 + V

(n)
k+M

)

.

Let us expand the above equation and substitute the
boundary condition, then we have (18).

(QED)

Proposition 2 Variable U
(n)
k satisfies

m∏

k=1

U
(n+1)
Mk

=

m∏

k=1

U
(n)
Mk

. (19)

Proof Let us recall that, in (12), L(n+1) has the same
eigenvalues as L(n) for n = 0, 1, . . . . Then it is obvious
that

det(L(n+1)) = det(L(n)), n = 0, 1, . . . . (20)

By cofactor expansion, the determinants of L(n) and
L(n+1) are given as

det(L(n)) = (−1)mMU
(n)
M1

U
(n)
M2

. . . U
(n)
Mm

,

det(L(n+1)) = (−1)mMU
(n+1)
M1

U
(n+1)
M2

. . . U
(n+1)
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,

respectively. Substituting the above expression into (20),
we have

(−1)mMU
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. . . U
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Mm

= (−1)mMU
(n)
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U
(n)
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.

This leads to (19).
(QED)

Let us assume that 0 < U
(0)
k < K̂0 for k = 1, 2, . . . ,

Mm, where K̂0 is an arbitrary positive constant. Then

0 <
∑Mm

k=1 U
(0)
k < K̂1 and 0 <

∏m

k=1 U
(0)
Mk

< K̂2, where

K̂1, K̂2 are positive constants related to K̂0. Proposi-

tions 1 and 2 also imply that, 0 <
∑Mm

k=1 U
(n)
k < K̂1 and

0 <
∏m

k=1 U
(n)
Mk

< K̂2. Under the assumption 0 < u
(0)
k <

K̂0, it is concluded that 0 < U
(n)
k < K̂3 for n = 0, 1, . . . ,

where K̂3 is a positive constant related to K̂0. Note that
the time evolution is performed in the arithmetic such
that positivity of variables is assured. This property is
important for designing numerical algorithms.

4. The qd-type dhLV system and matrix

eigenvalue

In this section, we propose an application of the qd-
type dhLV system to matrix eigenvalue computation.
Assume that there exists the limit of δ(n) as n → ∞,
and let δ∗ := limn→∞ δ(n). By taking account of (10) and

(11), the limits of U
(n)
k and V

(n)
k also exist as n → ∞.

Namely,

lim
n→∞

U
(n)
Mk

= ck, k = 1, 2, . . . ,m,

lim
n→∞

U
(n)
Mk+p = 0, p = 1, 2, . . . ,M,

lim
n→∞

V
(n)
Mk+p = δ∗ck + 1, p = 0, 1, . . . ,M.

We simply rewrite the qd-type dhLV system (16) and
(17) as the following recursion formula.

U
(n+1)
k =

U
(n)
k V

(n)
k+M

V
(n)
k

, (21)

V
(n)
k = δ(n)U

(n)
k + V

(n)
k−1 − δ(n)

U
(n)
k−M−1V

(n)
k−1

V
(n)
k−M−1

. (22)

The time evolution from n to n + 1 in (21) with (22) is
applicable for computing eigenvalues of L(0) + dI. For

U
(0)
k > 0 the time evolution in (21) with (22) generates

the same matrix as (15), where V
(0)
k is calculated if U

(0)
k

is given. In other words, computed eigenvalues by (21)
with (22) are theoretically equal to those by the dhLV
algorithm.

In finite arithmetic, it is doubtful whether the time
evolution in (21) with (22) is performed with high ac-
curacy. This is because that cancellation by subtraction
may occur. Subtraction also appears in the recursion for-
mula of the qd algorithm.

Rutishauser [2] recognized some numerical instability

of the qd algorithm (4) where variables q
(n)
k and e

(n)
k

are not related to the dLV variables u
(n)
k . So he intro-

duced an modified version, named the dqd (differential
qd) algorithm [2], for the purpose of avoiding numerical
instability. Along a way similar to the dqd algorithm, we
derive a recursion formula without subtraction. Let us
introduce a new variable

P
(n)
k := V

(n)
k−1 − δ(n)

U
(n)
k−M−1V

(n)
k−1

V
(n)
k−M−1

. (23)

Then P
(n)
k satisfies the recursion formula

P
(n)
k =

V
(n)
k−1

V
(n)
k−M−1

P
(n)
k−M−1, (24)

where we set P
(n)
k = 1 for k = −M,−M + 1, . . . , 0. By

using P
(n)
k , (22) is rewritten as

V
(n)
k = δ(n)U

(n)
k + P

(n)
k . (25)

Obviously, (24) and (25) have no subtraction, and the
cancellation does not occur. The recursion formula (21)
with (24) and (25) is essentially equivalent to the qd-
type dhLV system (16) and (17). Note that the ratio

V
(n)
k /V

(n)
k−M appears in both (21) and (24). Let Q

(n)
k :=

V
(n)
k /V

(n)
k−M , and set Q

(n)
0 = 1 for n = 0, 1, . . . . Then the

time evolution of the qd-type dhLV system is performed

by the following Procedure 1. In Procedure 1, U
(0)
k is

given by the entry of L(0) + dI and δ(n) for n = 0, 1, . . .
is an optional parameter. The time evolution requires
less operations in Procedure 1 than in original (21) with

(22). As shown in [8, 9], ck = limn→∞ U
(n)
Mk

is equal to

the eigenvalue of L(0) + dI. We call this algorithm the
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Table 1. Computed eigenvalues of the Toeplitz matrix T by the dhLV and the qd-type dhLV algorithms

by the dhLV algorithm by the qd-type dhLV algorithm

2.00000000000000 + i 1.788617417884120 2.00000000000000 + i 1.788617417884119
0.211382582115879 0.211382582115880
2.00000000000000 − i 1.788617417884120 2.00000000000000 − i 1.788617417884119
3.78861741788412 3.78861741788412
2.00000000000000 + i 1.333397829783662 2.00000000000000 + i 1.333397829783662
0.666602170216338 0.666602170216338
2.00000000000000 − i 1.333397829783662 2.00000000000000 − i 1.333397829783662
3.33339782978366 3.33339782978366
2.00000000000000 + i 0.5683177818055106 2.00000000000000 + i 0.5683177818055107
1.43168221819449 1.43168221819448
2.00000000000000 − i 0.5683177818055106 2.00000000000000 − i 0.5683177818055107
2.56831778180551 2.56831778180551

qd-type dhLV algorithm.

Procedure 1

set boundary conditions of U
(n)
k , V

(n)
k , P

(n)
k , Q

(n)
k

for n := 0, 1, . . . , nmax do
for k := 1, 2, . . . ,Mm + M do

P
(n)
k = Q

(n)
k−1P

(n)
k−M−1

V
(n)
k = δ(n)U

(n)
k + P

(n)
k

Q
(n)
k = V

(n)
k /V

(n)
k−M

end for
for k := 1, 2, . . . ,Mm do

U
(n+1)
k = Q

(n)
k+MU

(n)
k

end for
end for

Now we present a numerical experiment carried out
on our computer with OS: Windows XP, CPU: Gen-
uine Intel (R) 1.66GHz, RAM: 1.99GB. We also use
Wolfram Mathematica 6.0 with double-precision floating
point arithmetic. As a numerical example, we consider
a 12 × 12 Toeplitz matrix T as L(0) + dI with M = 3,

m = 3, d = 2 and U
(0)
k = 1.5 for k = 1, 2, . . . , 9. Let

δ(n) = 1.0 for n = 0, 1, . . . .
Table 1 shows computed eigenvalues by the dhLV al-

gorithm [8, 9] and the qd-type dhLV algorithm. We see
from Table 1 that both algorithms can compute the same
eigenvalues with almost the same accuracy. The opera-
tion number of the dhLV algorithm and of the qd-type
dhLV algorithm are 6M and 5 times, respectively, for
the evolution from n to n + 1 of one variable. From the
viewpoint of the operation number, the qd-type dhLV
algorithm is better than the dhLV algorithm.

5. Concluding remarks

In this paper, we discuss some properties of the qd-
type dhLV system. Based on the qd-type dhLV system
and its properties, we design a new algorithm for com-
puting complex eigenvalues of a certain band matrix,
similar to the dhLV algorithm. Along the way similar
to the dqd algorithm, we design the qd-type dhLV algo-
rithm without subtraction. We also confirm that the new
algorithm can compute same eigenvalues as the dhLV al-
gorithm through a numerical example. In order to com-
pare numerical accuracy and running time of the qd-

type dhLV algorithm with or without subtraction and
the dhLV algorithm, it is necessary to perform more nu-
merical experiments.
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