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Abstract

In this paper, we design new algorithms for eigendecomposition. With the help of the New-
ton iterative method, we solve a nonlinear quadratic system whose solution is equal to an
eigenvector on a hyperplane. By choosing normal vector of the hyperplane in the orthog-
onal complement of the space spanned by already obtained eigenvectors, all eigenpairs are
sequentially obtained by solving the quadratic systems.
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1. Introduction

The quadratic method is known as one of the methods
for all eigenpairs [1]. In this method, the eigenvalue prob-
lem is replaced with the nonlinear quadratic systems.
For an eigenpair, the solution of the quadratic system is
computed by using the Newton iterative method. For all
eigenpairs, the continuation method is proposed in [1].
The continuation method requires not only a quadratic
system to be solved for original eigenvalue problem but
also many perturbative ones. And furthermore it often
fails in finding the desired eigenpairs. Even if it succeeds,
the obtained eigenpairs are not always computed with
high accuracy. In this paper, we design new eigendecom-
position algorithms, which are different from the contin-
uation method, through solving the quadratic systems
with the help of the Newton method. Our algorithms
are not also equivalent to the standard inverse iteration
method. In some numerical experiments, we show that
all eigenvectors are computable by our algorithms.

2. Quadratic method

In this paper, we consider the eigenvalue problem

Ax = λx, A ∈ C
n×n, (1)

where λ ∈ C and x ∈ C
n denote the eigenvalue and the

corresponding eigenvector of A, respectively.
Let z be an n-dimensional vector. Let (z,x) = zHx

= C for some nonzero constant C, where (·, ·) and the
superscript H denote the inner product of two vectors
and the complex conjugate of matrix, respectively. The
case where z = ek is discussed in [1] where ek is a unit
vector whose kth entry is the unity. Noting that λ =
λ(x) = (AHz,x)/C for suitable z, then the eigenvector

x is given by solving the nonlinear quadratic system

F (x) := Ax −
(w,x)

C
x = 0, w = AHz. (2)

With the help of the Newton iterative method, the so-
lution x is computable by the recurrence formula
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(z, x̂(ℓ+1))
, ℓ = 0, 1, . . . , ℓmax,

x̂
(ℓ+1) = x(ℓ) − J(x(ℓ))−1F (x(ℓ)),

J(x(ℓ)) = A − λ(x(ℓ))I −
x(ℓ)wH

C
,

λ(x(ℓ)) =
(w,x(ℓ))

C
,

(3)

where I is an n-dimensional unit matrix and x(0) is an
initial vector. See Section 3 for the setting of x(0). Let
ℓ∗ be the number in (3) such that

‖Ax(ℓ∗) − λ(x(ℓ∗))x(ℓ∗)‖∞ < ǫitr‖x
(ℓ∗)‖2 (4)

for small ǫitr. Then x(ℓ∗) becomes a good approximation
of x in (2). By the normalization x(ℓ) → x(ℓ)/‖x(ℓ)‖2

for each ℓ in (3), the inequality (4) becomes

‖Ax(ℓ∗) − λ(x(ℓ∗))x(ℓ∗)‖∞ < ǫitr. (5)

Note here that ‖x(ℓ)‖2 = 1 for each ℓ. Moreover, by
replacing C with C(ℓ) = (z,x(ℓ)) in (2) and (3), it follows
that
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, ℓ = 0, 1, . . . , ℓmax,

x̂
(ℓ+1) = x(ℓ) − J(x(ℓ))−1F (x(ℓ)),

J(x(ℓ)) = A − λ(x(ℓ))I −
x(ℓ)wH

(z,x(ℓ))
,

λ(x(ℓ)) =
(w,x(ℓ))

(z,x(ℓ))
.

(6)
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At each ℓ, the hyperplane (z,x(ℓ)) = C(ℓ) is translated
without changing its normal vector. We call the algo-
rithm for an eigenpair based on (6) the neig J algo-
rithm. By applying the Sherman-Morrison formula

(M + uvH)−1 =

(

I −
M−1uvH

1 + (v,M−1u)

)

M−1 (7)

to the inverse J(x(ℓ))−1 in (6), we have

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x̂
(ℓ+1) =

λ(x(ℓ))

(w, x̃(ℓ))/(z,x(ℓ)) − 1
x̃(ℓ),

x̃(ℓ) = (A − λ(x(ℓ))I)−1x(ℓ).

(8)

Hence the following recurrence formula also generates
the evolution from ℓ to ℓ + 1 of x(ℓ).
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(9)

In [2, p. 194], (9) is called as a generalized Rayleigh quo-
tient iteration. If λ(x(ℓ)) = λ is given, then the iteration
(9) becomes

x(ℓ+1) =
x̃(ℓ+1)

‖x̃(ℓ+1)‖2

, x̃(ℓ+1) = (A − λI)−1x(ℓ). (10)

This is well-known as the inverse iteration for com-
puting eigenvector. The iteration (9) may be regarded
as one of inverse iterations with updating λ(x(ℓ)) at
each ℓ by a generalized Rayleigh quotient λ(x(ℓ)) =
(z, Ax(ℓ))/(z,x(ℓ)). We call the algorithm based on (9)
the neig I algorithm. Though the computed eigenpair
by the neig I algorithm is theoretically the same as that
by the neig J algorithm, the neig I algorithm is obvi-
ously different from the neig J algorithm with respect
to numerical accuracy. See Section 4 for numerical accu-
racy.

3. Eigendecomposition algorithm

An eigenpair (λ,x) is computable if suitable initial
vector x(0) is given in (6), (9). The other eigenpairs are
also computed by changing x(0) in (6), (9). Namely, we
can theoretically compute all eigenpairs by using the
neig ∗ algorithm. It is, however, not easy to compute
all eigenpairs if x(0) is randomly given. It is well-known
that the fractal graph is given from the relationship be-
tween the initial vector x(0) and the limit limℓ→∞ x(ℓ)

in the Newton iteration method (cf. [3, pp. 237–242]).
Namely, it is not expected to choose x(0) for computing
the desired eigenpair in the neig ∗ algorithm.

Let x1, . . . , xk be the already obtained eigenvectors
where k < n . We here consider the subspace Wk := 〈x1,
· · · , xk〉C and its orthogonal complement W⊥

k . Since the
normal vector z of the hyperplane (z,x(ℓ)) = C(ℓ) is
changeable, we may adopt the vector in W⊥

k as z. It is
remarkable that W⊥

k does not include x1, . . . , xk. Let
us assume that x(ℓ) converges as ℓ → ∞. Then it is obvi-
ous that, for ℓ = 1, 2, . . . , C(ℓ) 6= 0 and limℓ→∞ C(ℓ) 6= 0.

This implies that limℓ→∞ x(ℓ) /∈ Wk. Hence x(ℓ) → xk+1

and λ(x(ℓ)) → λk+1 as ℓ → ∞. Namely, the eigenpair
(λk+1,xk+1) is computable by the neig ∗ algorithm.
Similarly, the others are obtained only if x(ℓ) converges
as ℓ → ∞ for each k. Therefore, all eigenpairs are se-
quentially computed by the following algorithm.

Algorithm 1

01 function [X,D]=sneig ∗(A)
02 t := 0
03 Q = (q1 · · · qn) := I
04 for k = 1, 2, . . . , n
05 z := qk ∈ W⊥

k−1

06 f := 0
07 do
08 x(0) := random vec(n)
09 [xk, λk, Ek] := neig ∗(A,x(0),z, ℓmax)
10 θ := minj=1,...,k−1 angle(xk,xj)
11 t := t + 1; f := f + 1
12 if f ≥ fmax then stop % failed
13 while(Ek ≥ ǫgood or θ ≤ θsame)
14 r̃k := xk

15 for j = 1, . . . , k − 1
16 r̃k := r̃k − αj(hj , r̃k)hj

17 end
18 [hk, αk] := householder vec(r̃k)
19 Q := Q − αk(Qhk)hH

k

20 end
21 X := (x1 · · · xn); D := diag(λ1, . . . , λn)

Here we call Algorithm 1 the sneig ∗ algorithm. The
sneig J, the sneig I algorithms employ the neig J, the
neig I algorithms, respectively.

In the 8th line of Algorithm 1, we make choice of the
initial complex vector x(0) randomly. In the 9th line, by
the neig ∗ algorithm, we compute the kth eigenvalue
λk, the corresponding eigenvector xk and the residual
norm Ek := ‖Axk −λkxk‖∞. As discussed in the above,
the neig ∗ algorithm does not converge for unsuitable
x(0). We regard that the neig ∗ algorithm does not con-
verge if Ek ≥ ǫgood for small ǫgood. And then we perform
the neig ∗ algorithm after the change of x(0). The op-
erations from the 7th line to the 13th line are repeated
until Ek < ǫgood. Theoretically, xk is not equal to one of
x1, . . . ,xk−1. This property is not always guaranteed in
the double precision arithmetic. In the 10th line, we com-
pute the minimal angle θ := minj=1,...,k−1 angle(xk,xj)
where

angle(xk,xj) :=
180

π
cos−1

(

|(xk,xj)|

‖xk‖2‖xj‖2

)

. (11)

We regard that xk is equal to one of x1, . . . ,xk−1 if
θ ≤ θsame for small θsame, and then we perform the
neig ∗ algorithm after the change of x(0). Let f be the
iteration number of the neig ∗ algorithm for an eigen-
pair. Then we regard that only a part of eigenpairs is
computed by the sneig ∗ algorithm if f ≥ fmax for
the maximal iteration number fmax. In this case, the
sneig ∗ algorithm is coercively stopped in the 12th line.

In the 5th line of Algorithm 1, we choose z in the
orthogonal complement W⊥

k−1. In this paper, for the
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choice of z we use the QR decomposition based on the
Householder transformation. Let Xk−1 = Qk−1Rk−1 be
the QR decomposition of Xk−1 = (x1 · · · xk−1), where
Qk−1 = (q1 · · · qn) ∈ C

n×n, Rk−1 = (r1 · · · rk−1) ∈
C

n×(k−1) are the unitary, the upper triangle matrices,
respectively. Let Wk−1 = 〈q1, · · · , qk−1〉C. Then it is
obvious that W⊥

k−1 = 〈qk, · · · , qn〉C. This implies that z

should be the linear combination of the basis qk, . . . ,
qn. In Algorithm 1, we set z = qk. From the view-
point of the running time, it is not desirable that we
compute the QR decomposition of Xk for each k. It
is of significance to note here that the columns from
the 1st to the (k − 1)th of Rk, Qk are equal to those
of Rk−1, Qk−1, respectively. Hence, in the kth House-
holder transformation, we compute only the kth column
of Rk. In the lines from the 14th to the 17th, we com-
pute the kth column r̃k = (r1,k · · · rk−1,k r̃k,k · · · r̃n,k)T

of QH
k−1Xk = (r1 · · · rk−1 r̃k) from xk. In the 18th line,

we derive hk and αk from r̃k for computing the House-
holder matrix Hk := I − αkhkh

H
k as follows:

hk = (0 · · · 0 − ζξ r̃k+1,k · · · r̃n,k)T , (12)

ζ :=
r̃k,k

|r̃k,k|
, η :=

√

|r̃k,k|2 + · · · + |r̃n,k|2, (13)

ξ :=
|r̃k+1,k|

2 + · · · + |r̃n,k|
2

|r̃k,k| + η
, αk =

1

ξη
, (14)

where Hk : r̃k 7→ rk = (r1,k · · · rk−1,k ζη 0 · · · 0)T

and HH
k QH

k−1Xk = Rk = (r1 · · · rk−1 rk). In the 19th
line, we compute Qk as Qk = Qk−1Hk = Qk−1 −
αk(Qk−1hk)hH

k . It is remarkable that q1, . . . , qk−1 are
not changed in the 19th line since hk has 0 from the 1st
entry to the (k − 1)th entry. As a result, the sneig ∗
algorithm requires only the operations for a QR decom-
position. The Lanczos method is also shown in [4] as
the vector orthogonormalization method by using the
Householder transformation without saving the upper-
triangle matrix.

4. Numerical experiments

In this section, we show some numerical experiments
with respect to the sneig ∗ algorithm and the inverse
iteration based on (10). Let us call the inverse itera-
tion based on (10) the sii algorithm for simplicity. Nu-
merical experiments have been carried out on our com-
puter with OS: Linux 2.6.26, CPU: Intel Core i7, RAM:
2GB. We also use GNU C Compiler 4.3.2 and LAPACK
3.1.1 [5]. As test matrix, we adopt the Toeplitz matrix

A =
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In [6], the Toeplitz matrix (15) appears in numeri-
cal test for the solvers of the linear equations. In the
sneig ∗ algorithm, we set ǫitr = 10−13, ℓmax = 50,
ǫgood = 5 × 10−13, θsame = 0.3◦, fmax = 2n. The inverse
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Fig. 1. Maximal residual norm Emax in the case of test matrix
(15) with γ = 1.6. © : sneig J, △ : sneig I, × : sii.
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Fig. 2. Ratio of the iteration number t to the matrix size n in the
case of test matrix (15) with γ = 1.6. © : sneig J, △ : sneig I,

× : sii.
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Fig. 3. Minimal angle θmin among the eigenvectors in the case

of test matrix (15) with γ = 1.6. © : sneig J, △ : sneig I, × :
sii, – : Maple.

matrices appeared in (6), (9), (10) are computed by us-
ing the solver of the linear equations with the help of
the LAPACK routine zgesv. In the sii algorithm, an
eigenvalue and its corresponding eigenvector are com-
puted by the LAPACK routine zgeev and the inverse
iteration based on (10), respectively. The initial vector
x(0) in (10) is changed if Ek ≥ ǫgood or θ ≤ θsame. Let t
be the iteration number of (6), (9), (10) for computing
all eigenpairs.

Figs. 1–3 describe the numerical properties in the case
where γ = 1.6. No plotted points exist for the case
where the sneig ∗ algorithms stop without computing
all eigenpairs. Fig. 1 shows the maximal residual norm

Emax = max
k=1,...,n

Ek = max
k=1,...,n

‖Axk − λkxk‖∞. (16)
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Fig. 4. Computable matrix size nmax. © : sneig J, △ : sneig I,
× : sii.
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Fig. 5. Minimal angle θmin in the case of n = nmax. © : sneig J,

△ : sneig I, × : sii.

By using the sneig ∗, the sii algorithms, Emax be-
comes O(10−13). Though, in the sneig ∗ and the sii

algorithms, the eigenvectors seem to be computed with
high accuracy, it is necessary to investigate the angles
among the computed eigenvectors. This is shown in the
later discussion. Fig. 2 shows the ratio of t to the matrix
size n for several n. For n ≤ 40, t slightly increases in
the sneig ∗ algorithm. For n≥ 60, there is the observa-
tion that by both the neig ∗ algorithm and the inverse
iteration for an eigenpair, the computed eigenvector is
not with high accuracy, or, is almost equal to the al-
ready obtained ones. And then the sneig ∗, the sii

algorithms require the change of the initial vector x(0).
This flow is surely dependent on the angles among the
eigenvectors. Let θmin := min1≤i<j≤n angle(xi,xj) be
the minimal angle among the eigenvectors. Fig. 3 shows
the relationship between n and θmin. Fig. 3 also includes
the numerical results by Maple, where 100 digits arith-
metic is performed in Maple. For n ≥ 60, θmin is about
1◦. A part of eignevectors are nearly parallel. As the
matrix size n increases, θmin by Maple becomes smaller.
All eigenvectors computed by the sneig ∗ algorithm are
near to those by Maple. The minimal angle θmin by the
sii algorithm are different from that by Maple. Let θ∗min

be the minimal angle among the eigenvectors by Maple.
In the sii algorithm, for n ≥ 90, θmin does not satisfy
|θmin − θ∗min| < 0.03◦.

Next we investigate the computable maximal matrix
size nmax as the entry γ in (15) becomes larger. We re-
gard that the algorithms fail if |θmin − θ∗min| ≥ 0.03◦

as the matrix size n grows larger. Fig. 4 shows the
relationship between γ and nmax. For γ > 1.2, nmax

in the sneig J algorithm is much larger than that in
the sneig I algorithm. And nmax in the sii algorithm
is about 0.79 times as that in the sneig J algorithm.
Fig. 5 shows the relationship between γ and θmin in
the case where the matrix size is equal to nmax. For
all γ, θmin in the sneig J algorithm are almost 0.46◦.
For γ > 1.2, θmin in the sneig I algorithm is larger
than that in the sneig J algorithm. And θmin in the
sii algorithm is slightly larger than that in the sneig J

algorithm. Compared with the results by Maple, it is ob-
vious that the sii algorithm is not with high accuracy.
Consequently, the sneig J algorithm generates the most
accurate eigendecomposition among three algorithms.

5. Conclusion

In this paper, we design new eigendecomposition al-
gorithms based on solving the nonlinear quadratic sys-
tems. In our algorithms, the existence space of eigenvec-
tors is restricted to the suitable hyperplane. The eigen-
value problem is replaced with solving the quadratic
systems. An eigenpair is computed through solving the
quadratic systems with the help of the Newton iterative
method. The normal vector of the hyperplane is given
from the orthogonal complement of the space spanned
by the already obtained eigenvectors. The solutions of
the quadratic systems are not equal to the already ob-
tained eigenvectors. Of course, for any initial vector, the
computed vector by the Newton iterative method does
not become the already obtained eigenvectors. Conse-
quently, all eigenpairs are sequentially computable. Our
algorithms are two types named the sneig J algorithm
with the Newton iterative method and the sneig I algo-
rithm with a modified inverse iteration. Our algorithms
are compared with the standard inverse iteration from
the viewpoint of numerical accuracy. It is shown that the
sneig J algorithm is the best algorithm for computing
all eigenvectors with high accuracy in the case where the
minimal angle among the eigenvectors is small.
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