
JSIAM Letters Vol.1 (2009) pp.44–47 c©2009 Japan Society for Industrial and Applied Mathematics

Block BiCGGR: a new Block Krylov subspace method

for computing high accuracy solutions

Hiroto Tadano1, Tetsuya Sakurai1 and Yoshinobu Kuramashi2

Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
305-8573, Japan1

Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai,
Tsukuba, Ibaraki 305-8573, Japan2

E-mail {tadano, sakurai}@cs.tsukuba.ac.jp, kuramasi@het.ph.tsukuba.ac.jp

Received March 19, 2009, Accepted June 15, 2009

Abstract

In this paper, the influence of errors which arise in matrix multiplications on the accuracy
of approximate solutions generated by the Block BiCGSTAB method is analyzed. In order
to generate high accuracy solutions, a new Block Krylov subspace method named “Block
BiCGGR” is also proposed. Some numerical experiments illustrate that the Block BiCGGR
method can generate high accuracy solutions compared with the Block BiCGSTAB method.
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1. Introduction

Linear systems with multiple right hand sides

AX = B, (1)

where A ∈ C
n×n, B,X ∈ C

n×L, appear in many scien-
tific applications such as lattice quantum chromodynam-
ics (lattice QCD) calculation of physical quantities [1],
an eigensolver using contour integration [2]. To solve
these linear systems for X, some Block Krylov subspace
methods (e.g., Block BiCG [3], Block BiCGSTAB [4],
Block QMR [5]) have been proposed.

Block Krylov subspace methods can compute approxi-
mate solutions of linear systems with multiple right hand
sides efficiently compared with Krylov subspace methods
for single right hand side [5]. However, the gap between
the residual generated by the recursion of the Block
BiCGSTAB method and the true residual may arise. In
this paper, the gap which arises in the Block BiCGSTAB
method is analyzed. Then, a new Block Krylov subspace
method named “Block BiCGGR” for reducing the gap
is also proposed.

This paper is organized as follows. In Section 2, a
matrix-valued polynomial and an operation are defined.
The Block BiCGSTAB method is briefly described in
Section 3. In Section 4, the influence of errors which
arise in matrix multiplications on the accuracy of ap-
proximate solutions of the Block BiCGSTAB method.
In Section 5, the Block BiCGGR method is proposed for
reducing the gap between the residual generated by the
recursion and the true residual. Then the true residual
of the Block BiCGGR method is also evaluated. In Sec-
tion 6, the accuracy of approximate solutions generated
by both methods is verified by numerical experiments.
The paper is concluded in Section 7.

2. Matrix-valued polynomial

Let Mk(z) be a matrix-valued polynomial of degree k
defined by

Mk(z) ≡
k

∑

j=0

zjMj ,

where Mj ∈ C
L×L and z ∈ C. The operation ◦ is used

in this paper for the multiplication

Mk(A) ◦ V ≡
k

∑

j=0

AjV Mj ,

where V ∈ C
n×L. This operation satisfies the following

properties [4].

Proposition 1 Let M(z) and N (z) be matrix-valued

polynomials of degree k and let V and ξ be an n × L
matrix and an L×L matrix, respectively. Then, the fol-

lowing properties are satisfied.

(i) (M(A) ◦ V )ξ = (Mξ)(A) ◦ V,

(ii) (M + N )(A) ◦ V = M(A) ◦ V + N (A) ◦ V.

3. The Block BiCGSTAB method

The (k+1)th residual Rk+1 ∈ C
n×L of the Block

BiCGSTAB method is defined by

Rk+1 = B − AXk+1 ≡ (Qk+1Rk+1)(A) ◦ R0, (2)

where R0 = B −AX0 is an initial residual. The matrix-
valued polynomial Rk+1(z) of degree (k+1) which ap-
pears in (2) can be computed by the following recursions

R0(z) = P0(z) = IL,

Rk+1(z) = Rk(z) − zPk(z)αk,

Pk+1(z) = Rk+1(z) + Pk(z)βk,
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X0 ∈ C
n×L is an initial guess,

Compute R0 = B − AX0,

Set P0 = R0,

Choose R̃0 ∈ C
n×L,

For k = 0, 1, . . . , until ‖Rk‖F ≤ ε‖B‖F do:

Vk = APk,

Solve (R̃H
0 Vk)αk = R̃H

0 Rk for αk,

Tk = Rk − Vkαk,

Zk = ATk,

ζk = Tr
ˆ

ZH
k Tk

˜

/Tr
ˆ

ZH
k Zk

˜

,

Xk+1 = Xk + Pkαk + ζkTk,

Rk+1 = Tk − ζkZk,

Solve (R̃H
0 Vk)βk = −R̃H

0 Zk for βk,

Pk+1 = Rk+1 + (Pk − ζkVk)βk,

End

Fig. 1. Algorithm of the Block BiCGSTAB method.

where Pk+1(z) is an auxiliary matrix-valued polynomial
of degree (k+1), IL is an L×L identity matrix, αk and
βk are L×L complex matrices. The polynomial Qk+1(z)
of degree (k+1) is defined as follows:

Q0(z) = 1,

Qk+1(z) = (1 − ζkz)Qk(z),

where ζk ∈ C. The residual Rk+1 can be computed by
the following recursions,

Rk+1 = Tk − ζkATk, (3)

Pk+1 = Rk+1 + (Pk − ζkAPk)βk,

Tk = Rk − APkαk, (4)

where matrices Pk+1 and Tk are defined by Pk+1 ≡
(Qk+1Pk+1)(A) ◦ R0 and Tk ≡ (QkRk+1)(A) ◦ R0, re-
spectively. The Proposition 1 is used to derive the above
recursions. From the Eqs. (2), (3), and (4), recursion for
the approximate solution Xk+1 can be obtained by

Xk+1 = Xk + Pkαk + ζkTk. (5)

The L×L matrices αk and βk are determined so that
bi-orthogonal conditions:

R̃H
0 Aj(Rk(A) ◦ R0) = OL, j = 0, 1, . . . , k−1, (6)

R̃H
0 Aj+1(Pk(A) ◦ R0) = OL, j = 0, 1, . . . , k−1, (7)

are satisfied. Here, R̃0 is an n × L arbitrary nonzero
matrix, OL is an L × L zero matrix, and ‖ · ‖F denotes
the Frobenius norm of a matrix. Typically, R̃0 is set to
R0, or given by random numbers. The scalar parameter
ζk is determined so that ‖Rk+1‖F is minimized. Fig. 1
shows the algorithm of the Block BiCGSTAB method.
Here, Tr[ · ] denotes the trace of a matrix, and ε > 0 is
a sufficiently small value for the stopping criterion.

4. Evaluation of the true residual of the

Block BiCGSTAB method

In this section, it is assumed that computation errors
arise in the multiplications with α0, α1, . . . , αk which ap-

pear in the Block BiCGSTAB method. The influence of
these errors on the true residual of the Block BiCGSTAB
method is considered. A matrix enclosed by a symbol
〈 · 〉 denotes the perturbed matrix. Throughout this sec-
tion, it is assumed that no calculation errors arise except
for multiplications with α0, α1, . . . , αk.

The perturbed matrices 〈Pjαj〉 and 〈(APj)αj〉 are re-
quired for the computation of Xj+1 and Rj+1, respec-
tively. These matrices can be written as follows:

〈Pjαj〉 = Pjαj + Fj , (8)

〈(APj)αj〉 = APjαj + Gj , (9)

where Fj and Gj denote error matrices.
From the Eqs. (5) and (8), Xk+1 is written as

Xk+1 = Xk + 〈Pkαk〉 + ζkTk

= X0 +

k
∑

j=0

(Pjαj + ζjTj) +

k
∑

j=0

Fj . (10)

By using the Eq. (9), the residual Rk+1 generated by the
recursion (3) is also written as

Rk+1 = Rk − 〈(APk)αk〉 − ζkATk

= R0 −
k

∑

j=0

(APjαj + ζjATj) −
k

∑

j=0

Gj . (11)

By using the Eqs. (10) and (11), the true residual
B−AXk+1 of the Block BiCGSTAB method is given by

B − AXk+1 = R0 −
k

∑

j=0

(APjαj + ζjATj) −
k

∑

j=0

AFj

= Rk+1 +

k
∑

j=0

Ej , (12)

where the matrix Ej is defined by Ej ≡ Gj −AFj . From
the Eqs. (8) and (9), the matrix Ej can be written as

Ej = 〈(APj)αj〉 − A〈Pjαj〉.

The error matrices E0, E1, . . . , Ek appear in (12) when
the computation errors arise in the multiplications with
α0, α1, . . . , αk. The Eq. (12) implies that the true resid-
ual B − AXk+1 of the Block BiCGSTAB method ap-

proaches to
∑k

j=0
Ej when the residual norm ‖Rk+1‖F

is sufficiently small.

5. The Block BiCGGR method

The error matrices Fj and Gj generate the gap be-
tween the residual and the true residual. To negate the
influence of these matrices, a condition Gj = AFj should
be satisfied. In this section, a new Block Krylov subspace
method is proposed to reduce the gap.

5.1 Construction of an algorithm

There are two ways of constructing the recursion for
the residual Rk+1 = (Qk+1Rk+1)(A) ◦ R0. In the Block
BiCGSTAB method, firstly, the polynomial Qk+1 is ex-
panded. In this case, as shown in the Eq. (12), the true
residual B − AXk+1 is not equal to the residual Rk+1
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generated by the recursion. In the proposed method,
firstly, the polynomial Rk+1 is expanded for computing
Qk+1Rk+1. The recursion of this polynomial is given by

Qk+1Rk+1 = QkRk − ζkzQkRk − zQk+1Pkαk.

The polynomials Qk+1Pk and Qk+1Pk+1 are computed
by the following recursions:

Qk+1Pk = QkPk − ζkzQkPk,

Qk+1Pk+1 = Qk+1Rk+1 + Qk+1Pkβk.

From the above recursions, the residual Rk+1 and aux-
iliary matrices can be computed by

Rk+1 = Rk − ζkARk − AUk, (13)

Pk+1 = Rk+1 + Ukα−1

k βk, (14)

Sk = Pk − ζkAPk,

where Sk ≡ (Qk+1Pk)(A) ◦ R0 and Uk ≡ Skαk. From
the Eqs. (2) and (13), Xk+1 can be computed by

Xk+1 = Xk + ζkRk + Uk. (15)

In the proposed method, the generation of the gap be-
tween the residual and the true residual can be avoided
by computing the multiplication of Sk and αk before the
computation of Xk+1 and Rk+1.

Matrices αk and βk are determined so that the bi-
orthogonality conditions (6) and (7) are satisfied. From
the Eq. (6), the matrix αk can be computed by

αk = (R̃H
0 APk)−1R̃H

0 Rk. (16)

By the bi-orthogonality condition (7) and the relation

R̃H
0 Rk+1 = −ζkR̃H

0 ATk,

the matrix βk can be obtained by

βk = (R̃H
0 APk)−1R̃H

0 Rk+1/ζk. (17)

The matrix γk ≡ α−1

k βk is appeared in the Eq. (14). By
using the Eqs. (16) and (17), γk can be obtained by

γk = (R̃H
0 Rk)−1R̃H

0 Rk+1/ζk.

If the parameter ζk is determined so that ‖Rk+1‖F is
minimized, then extra multiplications with A are re-
quired in the proposed method. To avoid the multiplica-
tions with A, the parameter ζk is computed by

ζk = Tr
[

(ARk)HRk

]

/Tr
[

(ARk)HARk

]

.

In the proposed method, the three multiplications
with A are required in each iteration. To reduce the
number of multiplications with A, the matrix APk+1 is
computed by the following recursion

APk+1 = ARk+1 + AUkγk.

5.2 Evaluation of the true residual

Similar to the previous section, assume that no cal-
culation errors arise except for the multiplications with
α0, α1, . . . , αk. The multiplication with αj is appeared
in the computation of Uj = Sjαj . By using the symbol
〈 · 〉, the perturbed matrix 〈Sjαj〉 is represented as

〈Sjαj〉 = Sjαj + Hj , (18)

X0 ∈ C
n×L is an initial guess,

Compute R0 = B − AX0,

Set P0 = R0 and V0 = W0 = AR0,

Choose R̃0 ∈ C
n×L,

For k = 0, 1, . . . , until ‖Rk‖F ≤ ε‖B‖F do:

Solve (R̃H
0 Vk)αk = R̃H

0 Rk for αk,

ζk = Tr
ˆ

WH
k Rk

˜

/Tr
ˆ

WH
k Wk

˜

,

Sk = Pk − ζkVk,

Uk = Skαk,

Yk = AUk,

Xk+1 = Xk + ζkRk + Uk,

Rk+1 = Rk − ζkWk − Yk,

Wk+1 = ARk+1,

Solve (R̃H
0 Rk)γk = R̃H

0 Rk+1/ζk for γk,

Pk+1 = Rk+1 + Ukγk,

Vk+1 = Wk+1 + Ykγk,

End

Fig. 2. Algorithm of the Block BiCGGR method.

where Hj is an error matrix. From the Eqs. (15) and
(18), the approximate solution Xk+1 is written as

Xk+1 = Xk + ζkRk + 〈Skαk〉

= X0 +
k

∑

j=0

(ζjRj + Sjαj) +
k

∑

j=0

Hj . (19)

By using the Eqs. (13) and (19), Rk+1 is represented as

Rk+1 = Rk − ζkARk − A〈Skαk〉

= R0 −
k

∑

j=0

(ζjARj + ASjαj) −
k

∑

j=0

AHj

= B − A



X0 +

k
∑

j=0

(ζjRj + Sjαj) +

k
∑

j=0

Hj





= B − AXk+1.

By regarding the matrices Hj and AHj as Fj and Gj ,
it is confirmed that the proposed method satisfies Ej =
Gj − AFj = O. Since the proposed method can reduce
the gap between the residual and the true residual, this
method is named “Block Bi-Conjugate Gradient Gap-
Reducing (Block BiCGGR)”. The algorithm of the Block
BiCGGR method is shown in Fig. 2.

6. Numerical experiments

Test matrices used in numerical experiments were
PDE900, JPWH991, and CONF5.4-00L8X8-1000 [6].
The size and the number of nonzero elements of these
matrices are shown in Table 1. The coefficient matrix
of CONF5.4-00L8X8-1000 is constructed by In − κD,
where D is an n × n non-Hermitian matrix and κ is a
real valued parameter. This parameter was set to 0.1782.

The initial solution X0 was set to the zero matrix.
The shadow residual R̃0 was given by a random number
generator. The right hand side B of (1) was given by
B = [e1,e2, . . . ,eL], where ej is a jth unit vector. The
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Table 1. The size and the number of nonzero elements of test
matrices. NNZ denotes the number of nonzero elements.

Matrix name Size NNZ

PDE900 900 4,380
JPWH991 991 6,027

CONF5.4-00L8X8-1000 49,152 1,916,928

Table 2. Results of the Block BiCGSTAB method.

PDE900
L #Iter. Time/L [s] Res. True Res.
1 53 0.0096 4.8 × 10−15 4.8 × 10−15

2 46 0.0067 1.1 × 10−15 2.0 × 10−13

4 41 0.0031 4.8 × 10−15 1.8 × 10−12

JPWH991
L #Iter. Time/L [s] Res. True Res.

1 56 0.0159 5.7 × 10−15 1.2 × 10−14

2 49 0.0083 8.3 × 10−15 4.1 × 10−13

4 43 0.0034 6.3 × 10−15 5.9 × 10−12

CONF5.4-00L8X8-1000

L #Iter. Time/L [s] Res. True Res.
1 555 13.9408 8.9 × 10−15 9.5 × 10−15

2 452 7.5609 7.3 × 10−15 2.5 × 10−13

4 406 6.1544 8.7 × 10−15 2.8 × 10−13

value ε for the stopping criterion was set to 1.0× 10−14.
All experiments were carried out in double precision

arithmetic on CPU: Intel Core 2 Duo 2.4GHz, Memory:
4GBytes, Compiler: Intel Fortran ver. 10.1, Compile op-
tion: -O3 -xT -openmp. The multiplication with the co-
efficient matrix was parallelized by OpenMP.

The results of the Block BiCGSTAB method are
shown in Table 2. In this Table, #Iter., Res, and True
Res. denote the number of iterations, the relative resid-
ual norm ‖Rk‖F/‖B‖F, and the true relative residual
norm ‖B − AXk‖F/‖B‖F, respectively.

As shown in Table 2, the relative residual norms of
the Block BiCGSTAB method were satisfied the con-
vergence criterion. However, the true residual norms did
not reach 10−14 when L = 2, 4.

The relation between the true relative residual norm
and ‖

∑k

j=0
Ej‖F/‖B‖F for JPWH991 with L = 4 is

shown in Fig. 3. The true relative residual norm became
almost equal to the value ‖

∑k

j=0
Ej‖F/‖B‖F. The Eq.

(12) was verified through this numerical example.
The results of the Block BiCGGR method are shown

in Table 3. The true relative residual norms reached
10−14 except for JPWH991 with L = 1. By using the
Block BiCGGR method, the gap between the residual
and the true residual can be reduced compared with the
Block BiCGSTAB method.

7. Conclusions

In this paper, we have evaluated the true residual of
the Block BiCGSTAB method when the computation
errors arise in the multiplications with α0, α1, . . . , αk.
We have shown that the true residual of this method
approaches to the sum of error matrices when the resid-
ual norm is sufficiently small. Then, we have proposed
the Block BiCGGR method for reducing the gap be-

Table 3. Results of the Block BiCGGR method.

PDE900
L #Iter. Time/L [s] Res. True Res.
1 53 0.0107 3.2 × 10−15 3.3 × 10−15

2 46 0.0051 1.1 × 10−15 1.4 × 10−15

4 45 0.0031 5.5 × 10−15 5.6 × 10−15

JPWH991
L #Iter. Time/L [s] Res. True Res.

1 52 0.0134 8.4 × 10−15 1.3 × 10−14

2 51 0.0082 3.7 × 10−15 6.1 × 10−15

4 44 0.0035 1.5 × 10−15 2.3 × 10−15

CONF5.4-00L8X8-1000

L #Iter. Time/L [s] Res. True Res.
1 555 14.2714 7.4 × 10−15 8.5 × 10−15

2 456 8.1093 5.6 × 10−15 6.7 × 10−15

4 386 6.0348 7.4 × 10−15 8.6 × 10−15

Fig. 3. Relation between the true relative residual norm of

Block BiCGSTAB and ‖
Pk

j=0
Ej‖F/‖B‖F (JPWH991, L = 4).

--- : true relative residual norm ‖B−AXk‖F/‖B‖F,--- : rel-

ative residual norm ‖Rk‖F/‖B‖F, --- : ‖
Pk

j=0
Ej‖F/‖B‖F.

tween the residual and the true residual. Through some
numerical experiments, we have verified that the Block
BiCGGR method generates the high accuracy solutions
compared with the Block BiCGSTAB method.
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