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Abstract

A contour integral method is proposed to solve nonlinear eigenvalue problems numerically.
The target equation is F (λ)x = 0, where the matrix F (λ) is an analytic matrix function of λ.
The method can extract only the eigenvalues λ in a domain defined by the integral path, by
reducing the original problem to a linear eigenvalue problem that has identical eigenvalues in
the domain. Theoretical aspects of the method are discussed, and we illustrate how to apply
of the method with some numerical examples.
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1. Introduction

We consider a numerical method using contour inte-
grals to solve nonlinear eigenvalue problems. The non-
linear eigenvalue problem (NEP) involves finding eigen-
pairs (λ,x) that satisfy F (λ)x = 0, where the matrix
F (λ) is an analytic matrix function of λ. NEPs appear
in a variety of problems in science and engineering, such
as accelerator designs [1] and delay differential equa-
tions [2].

We herein propose a numerical method using contour
integrals to solve eigenvalue problems for analytic matrix
functions. The method is closely related to the Sakurai-
Sugiura (SS) method for generalized eigenvalue prob-
lems [3], and inherits many of its strong points including
suitability for execution on modern distributed parallel
computers. We have already extended the SS method
to polynomial eigenvalue problems [4]. In this paper, we
will further generalize the SS method to eigenvalue prob-
lems of analytic matrix functions. In the SS method, the
original problem is converted to a generalized eigenvalue
problem whose dimension is smaller than the original
one. The converted problem is obtained numerically by
solving a set of linear equations. These linear equations
are derived from the original problem and can form a
large system, but they are independent and can be solved
in parallel. Moreover, the proposed method is free from
the fixed point iterations required in Newton’s method.
In this paper, the extension of the SS method for NEPs
is discussed from a theoretical point of view. Some nu-
merical examples are also reported, with results that are
consistent with the theory.

The reminder of the present paper is organized as fol-
lows. In the next section, we introduce the Smith form
for analytic matrix functions, which is a natural exten-
sion of the Smith form for matrix polynomials [5]. In
Section 3, we present the numerical method for solving
NEPs by means of the SS method and discuss theoret-
ical results related to the proposed method. In Section
4, we present the algorithm of the SS method for the
case where the integral path is given by a circle and nu-
merical integration is performed using the trapezoidal
rule. Some numerical examples are shown in Section 5.
Finally, conclusions and suggestions for future research
are presented in Section 6.

2. Canonical form for matrix analytic

functions

Let F (z) be an analytic matrix function defined in a
simply connected region in C. The matrix F (z) is called
regular if the determinant of F (z) is not identically zero
in a domain Ω.

We introduce the Smith form for analytic matrix func-
tions [5].

Theorem 1 Let F (z) be an n × n regular matrix ana-

lytic function. Then, F (z) admits the representation

P (z)F (z)Q(z) = D(z), (1)

where D = diag(d1(z), . . . , dn(z)) is a diagonal matrix of

analytic functions dj(z) for j = 1, 2, . . . , n and such that

dj(z)/dj−1(z) are analytic functions for j = 2, 3, . . . , n.

In addition, P (z) and Q(z) are n × n regular analytic
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matrix functions with constant nonzero determinants.

The eigenpairs of the NEP are formally derived from
the Smith form. Let qj(z) be the column vectors of Q(z):

Q(z) = (q1(z) . . . qn(z)), (2)

and pj(z) be

P (z)H = (p1(z) . . . pn(z)). (3)

Let λ1, . . . , λs be distinct zeros of dn(z) in Ω. Because
dj(z)/dj−1(z) is an analytic function, dj(z) can be rep-
resented in terms of λi as

dj(z) = hj(z) ·
s

∏

i=1

(z − λi)
αji , j = 1, 2, . . . , n,

where hj(z) are analytic functions and hj(z) 6= 0 for
z ∈ Ω. In addition, αji ∈ Z

+ (non-negative integer) and
αji ≤ αj′i for j < j′.

The eigenpairs of the NEP are related to the λi and
the qj(λi) above as follows.

Lemma 2 Let qj(z) be the vector in (2), and λi be a

zero of dj(z). Then, the eigenpair (λi, qj(λi)) is a solu-

tion for the NEP F (λ)x = 0.

Proof Because P (z) and Q(z) are invertible,

F (λi)qj(λi) = P (λi)
−1D(λi)Q(λi)

−1(Q(λi)ej)

= dj(λi)P (λi)
−1

ej .

Since dj(λi) = 0, we have the result of the lemma.
(QED)

Note that if the eigenvalue λi is simple and not de-
generate, i.e., λi is a simple zero of det F (z), we have
αji = 0 for j 6= n and αni = 1.

3. An eigensolver using contour integrals

In this section, we propose a numerical method us-
ing contour integrals for eigenvalue problems of analytic
matrix functions.

Let F (z) be an n×n regular analytic matrix function.
For nonzero vectors u and v ∈ C

n, we define

f(z) := u
HF (z)−1

v

for z ∈ Ω such that |F (z)| 6= 0, namely dn(z) 6= 0.
The existence of the Smith form allows us to prove the
following theorem.

Theorem 3 Let D(z) = diag(d1(z), . . . , dn(z)) be the

Smith form for F (z), and let P (z) and Q(z) be defined

by (1). Then, f(z) admits the representation

f(z) =
n

∑

j=1

χj(z)

dj(z)
, (4)

where χj(z) are analytic functions in Ω.

Proof By Theorem 1, we obtain

f(z) = u
HQ(z)D(z)−1P (z)v

=

n
∑

j=1

u
H
qj(z)pj(z)Hv

dj(z)

=

n
∑

j=1

χj(z)

dj(z)
,

where χj(z) := u
H
qj(z)pj(z)Hv.

(QED)

Let Γ be a positively oriented closed Jordan curve
in Ω. Without loss of generality, we may assume that
λ1, . . . , λm(m ≤ s) are distinct eigenvalues in the inte-
rior of Γ ⊂ Ω. Assume that these eigenvalues are simple
and not degenerate. Then we can suppose that αji = 0
for j 6= n and αni = 1.

Definition 4 For a non-negative integer k, the moment

µk is defined as

µk :=
1

2πi

∫

Γ

zkf(z)dz, k = 0, 1, . . . . (5)

Definition 5 Two m×m Hankel matrices H<
m and Hm

can be defined as

Hm := [µi+j−2]
m
i,j=1, H<

m := [µi+j−1]
m
i,j=1.

The following theorem is one of the main results of
the present paper.

Theorem 6 If χn(λl) 6= 0 for 1 ≤ l ≤ m, then

the eigenvalues of the pencil H<
m − λHm are given by

λ1, . . . , λm.

Proof By Theorem 3 and (5), we obtain

µk =
1

2πi

∫

Γ

zkf(z)dz

=

n
∑

j=1

1

2πi

∫

Γ

χj(z)

dj(z)
zkdz

=

m
∑

l=1

νlλ
k
l ,

where νl := χn(λl)/d′n(λl).
Let Vm be the Vandermonde matrix

Vm :=











1 1 · · · 1
λ1 λ2 · · · λm

...
...

...
λm−1

1 λm−1
2 · · · λm−1

m











.

Let Dm := diag(ν1, . . . , νm), Λm := diag(λ1, . . . , λm).
One can easily verify that

H<
m − λlHm = VmDm(Λm − λlI)V T

m . (6)

If χn(λl) 6= 0 for 1 ≤ l ≤ m, then νl 6= 0 for 1 ≤ l ≤ m.
Therefore, λ1, . . . , λm are the eigenvalues of the pencil
H<

m − λHm.
(QED)

Therefore, we can obtain eigenvalues λ1, . . . , λm of the
analytic matrix function F (z) by solving the general-
ized eigenvalue problem H<

mw = λHmw. The proof of
the above theorem for generalized eigenvalue problems
is given in [3].

Now, we evaluate eigenvectors. Let

sk :=
1

2πi

∫

Γ

zkF (z)−1
vdz, k = 0, 1, . . . ,m − 1, (7)

– 53 –



JSIAM Letters Vol. 1 (2009) pp.52–55 Junko Asakura et al.

and let S := (s0 . . . sm−1). We obtain the following re-
lationship between S and qn(z) of (2).

Lemma 7 Let qn(z) be the vector in (2) and let (λl,wl)
(1 ≤ l ≤ m) be the eigenpairs of the pencil H<

m − λHm.

Then,

qn(λl) = clSwl, cl ∈ C\{0}

for l = 1, 2, . . . ,m.

Proof From (6), we have

0 = (H<
m − λlHm)wl = VmDm(Λm − λlI)V T

mwl.

Since Vm and Dm are nonsingular, and Λmel = λlel,
V T

mwl admits the following representation:

V T
mwl = αlel, αl ∈ C\{0}.

Here, el is the lth unit vector. Let pn(z) be the vector
in (3) and let

βl :=
pn(λl)

H
v

d′n(λl)

for l = 1, . . . ,m. Note that βl 6= 0 if χn(λl) 6= 0. As in
the proof of Theorem 3.4, we can derive the following
equation.

S = (s0 . . . sm−1) = (β1qn(λ1) . . . βmqn(λm))V T
m .

Therefore,

qn(λl) =
1

βl
SV −T

m el =
1

βl
S

1

αl
wl = clSwl,

with cl = 1/(αlβl) for l = 1, 2, . . . ,m.
(QED)

From Lemma 2 and Lemma 7, we have the following
theorem.

Theorem 8 Let (λj ,wj)(j = 1, . . . ,m) be the eigen-

pairs of the pencil H<
m − λHm. Then, (λj ,xj)(j =

1, . . . ,m) are the eigenpairs for the NEP F (λ)x = 0,

where

xj = Swj , j = 1, . . . ,m.

4. A case where Γ is given by a circle

Let Γ = γ + ρeiθ(0 ≤ θ < 2π) be a circle in Ω with
center γ and radius ρ. To retain numerical accuracy, we
use the shifted and scaled moments

µk :=
1

2πi

∫

Γ

(

z − γ

ρ

)k

f(z)dz, k = 0, 1, . . . (8)

instead of (5). We evaluated the integral using the N -
point trapezoidal rule, leading to the approximations for
µk,

µk ≈ µ̂k :=
1

N

N−1
∑

j=0

(

ωj − γ

ρ

)k+1

f(ωj),

where ωj = γ + ρe2πi(j+1/2)/N for j = 0, 1, . . . , N − 1.
Note that due to the shift and scaling, the eigenvalues
λl(l = 1, . . . ,m) are also shifted and scaled. The eigen-
values of the original NEP can be recovered from γ+ρλl.

The block version of the SS method for generalized
eigenvalue problems was proposed in [6]. The numerical

examples in [6] indicate that the block SS method has
the potential to achieve greater accuracy.

Let U and V be n × L matrices, the column vec-
tors of which are linearly independent. The block SS
method is defined by replacing f(z) in (5) with the ma-
trix UHF (z)−1V . Accordingly, the kth moment µk in
(5), the Hankel matrices Hm, H<

m, the vector sk in (7)
and the matrix S = (s0 . . . sm−1) are replaced by the
corresponding block versions:

Mk :=
1

2πi

∫

Γ

zkUHF (z)−1V dz, k = 0, 1, . . . , (9)

Hm̃L := [Mi+j−2]
m̃
i,j=1, H<

m̃L := [Mi+j−1]
m̃
i,j=1,

Sk :=
1

2πi

∫

Γ

zkF (z)−1V dz, k = 0, 1, . . . ,

and S = (S0 . . . Sm̃−1), respectively. Here m̃ is a positive
integer such that m̃L ≥ m. Note that Mk = UHSk by
definition. Using the N -point trapezoidal rule, we obtain
the following approximation for Sk:

Ŝk :=
1

N

N−1
∑

j=0

(

ωj − γ

ρ

)k+1

F (ωj)
−1V, k = 0, 1, . . . .

(10)

The algorithm for the block SS method is shown below.

Algorithm of the block SS method

Input: U, V ∈ C
n×L, N, K, L, δ, γ, ρ

Output: λ̂1, . . . , λ̂m′ , x̂1, . . . , x̂m′

1. Set ωj ← γ + ρexp(2πi(j + 1/2)/N), j = 0, 1, . . . , N − 1

2. Compute F (ωj)
−1V , j = 0, 1, . . . , N − 1

3. Compute Ŝk, k = 0, . . . , 2K − 1 by (10)

4. Form M̂k = UHŜk, k = 0, 1, . . . , 2K − 1

5. Construct ĤKL and Ĥ<
KL ∈ C

KL×KL

6. Perform a singular value decomposition of ĤKL

7. Omit small singular value components σj < δ ·maxi σi

so that

Ĥm′ = ĤKL(1 : m′, 1 : m′), Ĥ<
m′ = Ĥ<

KL(1 : m′, 1 : m′),

where m′
≤ KL

8. Compute the eigenpairs (ζ1, w1), . . . , (ζm′ , wm′) of the

pencil Ĥ<
m′ − λĤm′

9. Construct S = (Ŝ0 . . . Ŝm′−1)

10. Compute x̂j = Swj , j = 1, 2, . . . , m′

11. Set λ̂j ← γ + ρζj , j = 1, 2, . . . , m′

In practice, we assign random matrices to U and V .
We can obtain the eigenvectors corresponding to the
eigenvalues whose algebraic multiplicity is less than L
by the proposed method.

5. Numerical Examples

In this section, we confirm the validity of the proposed
method using some nonlinear eigenvalue problems. The
algorithm was implemented in MATLAB 7.4. We gen-
erated a matrix V := (v1 . . . vL) using the MATLAB
function rand and set U = V . The MATLAB com-
mand mldivide was used to evaluate F (z)−1V numeri-
cally. The evaluated eigenvectors are normalized so that
‖x̂‖2 = 1.

Example 1 We consider the NEP with F (z) that
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Table 1. Relative errors and residuals for Example 1.

k λ̂k |λ̂k − λk|
‖F (λ̂k)x̂k‖2

‖F (λ̂k)‖2‖x̂k‖2

1 −3.141592653589789 4.00 ×10−15 2.58 × 10−12

2 −1.570796326794277 6.20 ×10−13 1.67 × 10−12

3 0.000000000000661 6.61 ×10−13 1.52 × 10−11

4 1.570796326761298 3.36 ×10−11 1.11 × 10−10

5 1.945910151338245 2.28 ×10−9 3.11 × 10−8

6 3.141592653589055 7.39 ×10−13 3.57 × 10−11

Table 2. Residuals for Example 2.

k λ̂
1/2
k

‖F (λ̂k)x̂k‖F

‖F (λ̂k)‖F ‖x̂k‖F

1 0.059793132432759+0.000000862974322i 1.41 ×10−15

2 0.083768827897551+0.000019602073839i 6.38 ×10−17

3 0.084151690319656+0.000003399562592i 1.25 ×10−16

4 0.087765211962668+0.000038185170188i 3.47 ×10−17

5 0.088352686155210+0.000005726087041i 3.13 ×10−17

6 0.093424713463988+0.000393486671297i 5.55 ×10−17

was transformed using elementary transformations from
diag(cos(z), sin(z), ez − 7). The following list shows the
elements of F (z).

(1, 1) 2ez + cos(z) − 14
(1, 2) (z2 − 1) sin(z) + (2ez + 14) cos(z)
(1, 3) 2ez − 14
(2, 1) (z + 3)(ez − 7)
(2, 2) sin(z) + (z + 3)(ez − 7) cos(z)
(2, 3) (z + 3)(ez − 7)
(3, 1) ez − 7
(3, 2) (ez − 7) cos(z)
(3, 3) ez − 7

The integral path Γ taken was as follows:

Γ = γ + ρeiθ (γ = 0, ρ = 3.2).

There are six eigenvalues λ1 = −π, λ2 = −π/2, λ3 =
0, λ4 = π/2, λ5 = log 7(≈ 1.9459), λ6 = π in Γ. We took
N = 64, K = 8, L = 2, and δ = 10−12.

The numerical results are shown in Table 1. We com-
pared the eigenvalues {λ̂j} that are obtained by the
block SS method to the exact eigenvalues {λj}. As shown
in Table 1, we obtained all of the eigenvalues in Γ.

Example 2 We consider the problem that models a
radio-frequency gun cavity given in [1] with

F (λ) = A0 − λA1 + i
√

λ − σ2
1W1 + i

√

λ − σ2
2W2,

where A0, A1,W1,W2 ∈ R
9956×9956. We took σ1 = 0 and

σ2 = 0.043551. The integral path Γ taken was as follows:

Γ = γ + ρeiθ (γ = 0.00625, ρ = 0.00375).

We took N = 64, K = 8, L = 24, and δ = 10−12.
The numerical results are shown in Table 2. We

used Frobenius norm instead of 2-norm. Table 2 shows
that the proposed method found six eigenvalues in Γ.
The largest residual of the computed eigenpairs was
1.41 × 10−15.

Example 3 Lastly, we consider the problem derived
by the delay-differential equation with a single delay

Table 3. Residuals for Example 3.

k λ̂k
‖F (λ̂k)x̂k‖2

‖F (λ̂k)‖2‖x̂k‖2

1 17.773906360548423 2.41 ×10−16

2 14.471490519110109 2.14 ×10−16

3 8.961335387916407 3.43 ×10−16

4 0.941336550782964 1.43 ×10−15

5 −10.407305274429442 1.08 ×10−15

6 −31.755615500815374 9.43 ×10−16

given in [2]:

F (λ) = −λI + A0 + A1e
−τλ,

where A0, A1 ∈ R
1000×1000 are tridiagonal matrices and

I is the identity matrix. We took τ = 0.05. The integral
path Γ taken was as follows:

Γ = γ + ρeiθ (γ = −10, ρ = 30).

We took N = 48, K = 16, L = 4 and δ = 10−12. It is
known that a total of six real eigenvalues lie in [−40, 20].

The numerical results are shown in Table 3. As shown
in Table 3, the proposed method found all eigenvalues
in the specified domain. The largest residual of the com-
puted eigenpairs was 1.43 × 10−15.

6. Conclusion

In the present paper, we have proposed a numerical
method using contour integrals for nonlinear eigenvalue
problems of analytic matrix functions. The method is
considered as an extension of the numerical method for
polynomial eigenvalue problems proposed in [4]. The
method enables us to obtain the eigenpairs of analytic
matrix functions by solving the generalized eigenvalue
problem, which is derived by solving systems of linear
equations. Since these linear systems are independent of
each other, they can be solved in parallel. In addition,
the proposed method does not need fixed point iterations
such as Newton’s iteration. Error analysis for the pro-
posed method and the estimation of suitable parameters
remain as topics for future research.
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