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Abstract

Through an extension of an ultradiscrete optimal velocity (OV) model, we introduce an ul-
tradiscretizable traffic flow model, which is a hybrid of the OV and the slow-to-start (s2s)
models. Its ultradiscrete limit gives a generalization of a special case of the ultradiscrete OV
(uOV) model recently proposed by Takahashi and Matsukidaira. A phase transition from free
to jam phases as well as the existence of multiple metastable states are observed in numeri-
cally obtained fundamental diagrams for cellular automata (CA), which are special cases of
the ultradiscrete limit of the hybrid model.
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1. Introduction

Studies on microscopic models for vehicle traffic pro-
vided a good point of view on the phase transition from
free to congested traffic flow. Related self-driven many-
particle systems have attracted considerable interests
not only from engineers but also from physicists [1, 2].
Among such models, the optimal velocity model [3],
which successfully shows a formation of “phantom traf-
fic jams” in the high-density regime, is a car-following
model describing an adaptation to the optimal velocity
that depends on the distance from the vehicle ahead.

Whereas the OV model consists of ordinary differ-
ential equations (ODE), cellular automata (CA) such
as the Nagel-Schreckenberg model [4], the elementary
CA of Rule 184 (ECA184) [5], the Fukui-Ishibashi (FI)
model [6] and the slow-to-start (s2s) model [7] are ex-
tensively used in analyses of traffic flow. Recently, Taka-
hashi and Matsukidaira proposed a discrete OV (dOV)
model, which enables an ultradiscretization of the OV
model [8]. The resultant ultradiscrete OV (uOV) model
includes both the ECA184 and the FI model as its spe-
cial cases. However, the s2s effect remains to be included
in their ultradiscretization. The aim of this letter is to
present an ultradiscretizable hybrid of the OV and the
s2s models.

2. The OV model and the s2s effect

Imagine many cars running in one direction on a
single-lane highway. Let xk(t) denote the position of the
k-th car at time t. No overtaking is assumed so that
xk(t) ≤ xk+1(t) holds for arbitrary time t. The time-
evolution of the OV model [3] is given by

dvk(t)

dt
=

1

t0
[vopt (∆xk(t)) − vk(t)] , (1)

where vk := dxk/dt and ∆xk := xk+1−xk are the veloc-
ity of the k-th car and the interval between the cars k
and k+1, respectively. A function vopt and a constant t0
represent an optimal velocity and sensitivity of drivers,
or the delay of drivers’ response, in other words.

Since the current velocity and the current interval be-
tween the car ahead determine the acceleration through
the time-evolution and the optimal velocity, we clas-
sify the OV model (1) as the acceleration-control type
(aOV). On the other hand, the OV model of the velocity-
control type (vOV) was proposed in earlier studies of the
car-following models [9],

vk(t) = vopt (∆xk(t − t0)) . (2)

Replacement of t in the above equation (2) with t + t0
and the Taylor expansion of vk(t + t0) yield

vopt (∆xk(t)) = vk(t + t0)

= vk(t) +
dvk(t)

dt
t0 +

1

2

d2vk(t)

dt2
t20 + · · · ,

which is rewritten as

dvk(t)

dt
+

1

2

d2vk(t)

dt2
t0 + · · · =

1

t0
[vopt (∆xk(t)) − vk(t)] .

Thus the aOV model (1) is given by neglecting the higher
order terms in the Taylor series (2). Though the aOV
model is more common in the studies on vehicle traf-
fic, we shall concentrate on an ultradiscretizable hybrid
of the vOV and the s2s models. Thus we call the vOV
model (2) simply as the OV model, hereafter.

Note that the input to the OV function vopt(x) in the
OV model (2) is the headway at a single point of time
t − t0 that is prior to the present time t. Thus we may
say that the OV model describes, in a sense, “reckless”

– 68 –



JSIAM Letters Vol. 1 (2009) pp.68–71 Kazuhito Oguma and Hideaki Ujino

drivers since the model pays no attention to the head-
way between the time t − t0 and the present time t. On
the other hand, “cautious” drivers governed by the s2s
model [7] keep watching and require enough length of
headway to go on for a certain period of time before they
restart their cars. The contrast between the two models
suggests the idea that the s2s effect and the OV model
can be brought together by appropriately choosing an ef-
fective distance ∆effxk(t) containing information on the
headway for a certain period of time going back from
the present as an input to the OV function vopt(x). We
shall see this idea works in what follows.

What is crucial in the ultradiscretization of the aOV
model [8] is the choice of the OV function,

vopt(x) := v0

(
1

1 + e−(x−x0)/δx
−

1

1 + ex0/δx

)
, (3)

where v0, x0 and δx are positive constants. In terms of
the auxiliary functions,

ṽopt(x) := v0
dx̃opt(x)

dx
(4)

x̃opt(x) := δx log
(
1 + e(x−x0)/δx

)
(5)

the OV function (3) is expressed as

vopt(x) = ṽopt(x) − ṽopt(x = 0).

A naive discretization of the auxiliary function (4),

ṽd
opt(x) :=

x̃opt(x) − x̃opt(x − v0δt)

δt
,

introduces the OV function for the discrete OV (dOV)
model,

vd
opt(x) = ṽd

opt(x) − ṽd
opt(x = 0)

=
δx

δt
log

(
1+e(x−x0)/δx

1+e−x0/δx

/
1+e(x−x0−v0δt)/δx

1+e−(x0+v0δt)/δx

)
,

(6)

which is found to be ultradiscretizable [8].
Let xn

k := xk(t = nδt) and vn
k := (xn+1

k −xn
k )/δt where

n(= 0, 1, 2 · · · ) and δt(> 0) are the integral time and the
discrete time-step, respectively. Employing the effective
distance as

∆d
effxn

k := δx log

(
n0∑

n′=0

e−∆xn−n
′

k
/δx

n0 + 1

)−1

, (7)

where n0 := t0/δt, we extend the OV model (2) in a
time-discretized form as

vn
k = vd

opt

(
∆d

effxn
k

)
, (8)

which is equivalent to

xn+1
k

= xn
k + δx



log


1 +

(
n0∑

n′=0

e−(∆xn−n
′

k
−x0)/δx

n0 + 1

)−1



− log


1 +

(
n0∑

n′=0

e−(∆xn−n
′

k
−x0−v0δt)/δx

n0 + 1

)−1



− log
(
1+e−x0/δx

)
− log

(
1+e−(x0+v0δt)/δx

)


 .

It is straightforward to confirm that the continuum limit
δt → 0 of the above discrete s2s–OV (ds2s–OV) model
(8) reduces to the integral-differential equation which we
call the s2s–OV model,

dxk(t)

dt
= vopt (∆effxk(t))

= v0

(
1 +

1

t0

∫ t0

0

e−(∆xk(t−t′)−x0)/δxdt′
)−1

− v0

(
1 + ex0/δx

)
−1

, (9)

where the corresponding effective distance is given by

∆effxk := δx log

(
1

t0

∫ t0

0

e−∆xk(t−t′)/δxdt′
)−1

.

We shall see that the s2s effect is indeed built into the
OV model in the ultradiscrete limit of the ds2s–OV
model.

3. Ultradiscretization

Ultradiscretization [10] is a scheme for getting a
piecewise-linear equation from a difference equation via
the limit formula

lim
δx→+0

δx(eA/δx + eB/δx + · · · ) = max(A,B, · · · ).

In order to go forward to the ultradiscretization of the
ds2s–OV model (8), it will be a good choice for us to be-
gin with the ultradiscrete limit δx → +0 of the auxiliary
function (5):

x̃u
opt(x) := lim

δx→+0
x̃opt(x) = max(0, x − x0). (10)

In the same way that the OV function for the dOV model
(6) is obtained from the auxiliary function (5), we obtain
the OV function for the uOV model [8] as

vu
opt(x) = ṽu

opt(x) − ṽu
opt(x = 0)

= max

(
0,

x−x0

δt

)
−max

(
0,

x−x0

δt
−v0

)
, (11)

where ṽu
opt(x) := (x̃u

opt(x)− x̃u
opt(x−v0δt))/δt. The effec-

tive distance (7), on the other hand, is ultradiscretized
in the same manner:

∆u
effxn

k := lim
δx→+0

∆d
effxn

k = −
n0

max
n′=0

(
−∆xn−n′

k

)

=
n0

min
n′=0

(
∆xn−n′

k

)
. (12)

Thus we obtain an ultradiscrete equation

vn
k = vu

opt (∆u
effxn

k ) , (13)

which is equivalent to

xn+1
k = xn

k + max

[
0,

n0

min
n′=0

(
∆xn−n′

k

)
− x0

]

− max

[
0,

n0

min
n′=0

(
∆xn−n′

k

)
− x0 − v0δt

]
,
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as the ultradiscrete limit of the ds2s–OV model (8).
We name it the ultradiscrete s2s–OV (us2s–OV) model.
When the monitoring period n0 is fixed at zero, the us2s–
OV model reduces to a special case of the uOV model [8].
As we can see from (11), (12) and (13), the velocity vn

k

is determined by the optimal velocity for the minimum
headway in the period between n− n0 and n. Thus cars
will not restart nor accelerate, unless enough clearance
goes on for a certain period of time. On the other hand,
cars immediately stop or slow down when their head-
ways become too small to keep their velocities. The s2s
effect and a “cautious” manner of driving are built into
the uOV model in this way.

Now let us see how a CA comes out from the us2s–OV
model. Let x0 be the discretization step of the headway
∆xn

k , or equivalently, the size of the unit cell of the CA.
Then with no loss of generality, we may set x0 = 1.
Assume that the number of vacant cells between the cars
k and k + 1, ∆̃xn

k := ∆xn
k − x0, must be non-negative,

∆̃xn
k ≥ 0, which prohibits car-crash. Then the us2s–OV

model (13) reduces to

xn+1
k = xn

k + min

[
n0

min
n′=0

(
∆̃xn−n′

k

)
, v0δt

]
. (14)

Fixing v0δt at an integer, we call this model the s2s–
OV cellular automaton (CA). The s2s–OV CA reduces
to the FI model [6] when n0 = 0 and to the ECA184 [5]
when n0 = 0 and v0δt = 1(= x0). The s2s model [7] also
comes out from the s2s–OV CA by choosing n0 = 1 and
v0δt = 1(= x0). Thus the s2s–OV CA is regarded as a
hybrid of the FI model and an extended s2s model.

4. Numerical experiments

We shall numerically investigate the s2s–OV CA (14).
Throughout this section, the length of the circuit L is
fixed at L = 100 and the periodic boundary condition is
assumed as well so that xn

k + L is identified with xn
k .

Spatio-temporal patterns showing trajectories of each
vehicle are given in Fig. 1. We choose the parameters and
initial conditions so that jams appear in the trajectories.
The two figures in the top share the same monitoring pe-
riod n0 = 2 but their maximum velocities are different.
The top left trajectories show that the velocities of the
vehicles are zero or one, which is less than or equal to
its maximum velocity v0δt = 1. In the top right trajec-
tories whose maximum velocity v0δt = 3, on the other
hand, the velocities of the vehicles read zero, one, two
and three. Thus we notice that the vehicles driven by
the s2s–OV CA can run at any allowed integral velocity
which is less than or equal to its maximum velocity v0δt.

The other two figures in the bottom in Fig. 1 share the
same maximum velocity v0δt = 2, but their monitoring
periods are different. As is observed in the bottom two
figures, the longer the monitoring period is, the longer
it takes for the cars to get out of the traffic jam. The
jam front is observed to propagate against the stream
of vehicles at constant velocity x0/{(n0 + 1)δt}, since
cars have to wait n0 + 1 time-steps to restart after their
preceding cars restarted, as is depicted in Fig. 2.

Fig. 3 shows fundamental diagrams giving the relation
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Fig. 1. The spatio-temporal patterns of the s2s–OV CA. For all
four patterns, the number of cars K is fixed at K = 30. The
maximum velocities v0δt and the monitoring periods n0 for these
patterns are (top left) v0δt = 1, n0 = 2, (top right) v0δt = 3,

n0 = 2, (bottom left) v0δt = 2, n0 = 1 and (bottom right)
v0δt = 2, n0 = 3, respectively.

( ( = 3) + 1) δt ( = 4) 0n

( = 1)0xdirection of the stream

5

4

3

2

1

0

jam fronttime

Fig. 2. Backward propagation of the jam front at constant ve-

locity x0/{(n0 + 1)δt} = 1/4 for the case v0δt = 2, n0 = 3 and
x0 = 1.

between the vehicle flow

Q :=
1

(n1 − n0 + 1)L

K∑

k=1

n1∑

n=n0

xn+1
k − xn

k

δt
,

which is equivalent to the total momentum of vehicles
per unit length, and the vehicle density ρ := K/L, where
K is the number of vehicles. The fundamental diagrams
clearly show phase transitions from free to jam phases
as well as metastable states, which are also observed
in empirical flow-density relations [1,2]. It is remarkable
that the fundamental diagrams have multiple metastable
branches. This feature is similar to that reported by
Nishinari et al. [11]. We observe that each fundamental
diagram has v0δt metastable branches and a jamming
line. The branches and the jamming line correspond to
integral velocities that are less than or equal to the maxi-
mum velocity v0δt. Let us confirm it with Fig. 3. The top
two figures share the same monitoring period n0 = 3, but
their maximum velocities are different. The top left dia-
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Fig. 3. The fundamental diagrams of the s2s–OV CA. The flows

Q are computed by averaging over the time period 800 ≤ n ≤
1000. The maximum velocities v0δt and the monitoring periods
n0 for these patterns are (top left) v0δt = 2, n0 = 3, (top right)
v0δt = 4, n0 = 3, (bottom left) v0δt = 3, n0 = 2 and (bottom

right) v0δt = 3, n0 = 4, respectively. The inclination of the free
line equals to the maximum velocity v0δt. The jamming line has
a negative inclination.

gram corresponding to v0δt = 2 has three branches. This
number equals to that of all the integral velocities, two,
one and zero, as is depicted in the diagram. The number
of the metastable branches in the top right diagram as
well as those of the bottom two are explained in the same
manner. This observation also suggests that the moni-
toring period is irrelevant to the number of metastable
branches.

All the end points of the branches as well as the jam-
ming line are on the line ρ+Q(= ρ+Q(δt/x0)) = 1. This
is because the density at the end point is the maximum
density ρmax(v) that allows the velocity of the slowest
car to be vδt. The maximum density ρmax(v) is deter-
mined by

ρmax(v) =
x0

vδt + x0
.

Since all the cars flow at the velocity vδt when ρ =
ρmax(v), the corresponding flow is given by Q(ρmax) =
vρmax. Thus the relation ρmax + Q(ρmax)(δt/x0) = 1
holds.

The free line is a branch whose inclination equals to
the maximal velocity v0δt. Any other metastable branch
and the jamming line branch out from the free line.
We observe that the density at the branch point of the
branch corresponding to the velocity vδt reads

ρb =
x0

(v0δt − vδt)n0 + v0δt + x0
.

This observation is explained as follows. Suppose one
car, say the car k, runs at the velocity v and the other
K − 1 cars run at the maximum velocity v0. At the mo-
ment the k-th car slows down to v, the headway between
the cars k and k + 1 is vδt + x0. Since it takes at least

n0 + 1 time-steps for the car k to speed up to v0, the
headway between the cars k and k + 1 expands up to
H = (v0δt − vδt)(n0 + 1) + vδt + x0 = x0/ρb ≥ v0δt
by the time the k-th car speeds up to v0. If all the cars
can obtain the headway H, slow cars running at the ve-
locity v disappear in the end. Thus the density at the
branch point of the branch corresponding to the velocity
vδt is given by ρb = x0/H. Note that the density at the
branch point becomes smaller as the monitoring period
becomes larger.

5. Concluding remarks

Through an extension of the ultradiscrete OV model
[8], we introduced the ds2s–OV (8) and s2s–OV (9) mod-
els as ultradiscretizable traffic flow models. The model is
a hybrid of the OV [3] and the s2s [7] models whose ul-
tradiscrete limit gives a generalization of a special case of
the uOV model by Takahashi and Matsukidaira [8]. The
phase transition from free to jam phases as well as the
existence of multiple metastable states were observed in
the numerically obtained fundamental diagrams for the
s2s–OV CA (14), which are special cases of the us2s–OV
model (13).

Detailed studies on the properties of the hybrid mod-
els (8), (9), (13) and (14) such as exact solutions, com-
parison with other traffic flow models as well as empirical
data remain to be investigated.
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