

# High-rank attack on HMFEv

Yasufumi Hashimoto<sup>1</sup>

<sup>1</sup> Department of Mathematical Sciences, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa, Japan

E-mail hashimoto@math.u-ruukuu.ac.jp

Received October 18, 2017, Accepted February 19, 2018

#### Abstract

HMFEv is a new multivariate signature scheme proposed at PQCrypto 2017. This is a vinegar variant of multi-HFE (Chen et al., 2008). While the original multi-HFE is known to be insecure against the direct attack (Huang et al., 2015), the min-rank attack (Bettale et al., 2013) and the attack using a diagonalization approach (Hashimoto, 2017), HMFEv is considered to be secure enough against these attacks. However, the security against the high-rank attack had not been studied at all. In the present paper, we study the structure of HMFEv and discuss its security against the high-rank attack.

**Keywords** HMFEv, high-rank attack, multivariate public key cryptosystem (MPKC), postquantum cryptography

**Research Activity Group** Algorithmic Number Theory and Its Applications

## 1. Introduction

The multi-HFE [1] is one of public key cryptosystems whose public keys are sets of multivariate quadratic forms over finite fields. The quadratic forms in multi-HFE are generated by a set of multivariate quadratic forms over an extension field of the basic field. Unfortunately, the multi-HFE is known to be insecure against the direct attack [2], the min-rank attack [3] and the attack using a diagonalization approach [4].

Recently in PQCrypto 2017, a vinegar variant of multi-HFE, called HMFEv, was proposed by Petzoldt et al. [5]. This vinegar variant succeeds to enhance the security against the known attacks [2–4] and then HM-FEv had been expected to be one of signature schemes, secure and efficient enough under suitable parameter selections [5] (see Table 1). However, the security against the high-rank attack had not been studied yet at all.

In this paper, we study the structure of HMFEv and discuss the security of HMFEv against the high-rank attack. Based on the results of our experiments given in Table 2, we can conclude that the security of HMFEv is much less than expected.

#### 2. Multi-HFE and HMFEv

In this section, we describe the constructions of multi-HFE [1] and HMFEv [5].

#### 2.1 Multi-HFE

Let  $n, N, r \ge 1$  be integers with n = Nr and q a power of prime. Denote by k a finite field of order q and K an rextension of k. Define the quadratic map  $\mathcal{G}: K^N \to K^N$ by

$$X = (X_1, \dots, X_N)^t,$$
  

$$\mathcal{G}(X) = (\mathcal{G}_1(X), \dots, \mathcal{G}_N(X))^t,$$
  

$$\mathcal{G}_l(X) = \sum_{1 \le i \le j \le N} \alpha_{ij}^{(l)} X_i X_j + \sum_{1 \le i \le N} \beta_i^{(l)} X_i + \gamma^{(l)}$$

for  $1 \leq l \leq N$ , where  $\alpha_{ij}^{(l)}, \beta_i^{(l)}, \gamma^{(l)} \in K$ . The *secret key* is a pair of two invertible affine maps  $S,T:k^n \rightarrow k^n$  and the  $public\ key$  is the quadratic map  $F: k^n \to k^n$  defined by  $F:=T \circ \phi_N^{-1} \circ \mathcal{G} \circ \phi_N \circ S$ , where  $\phi_N: k^n \to K^N$  is a one-to-one map.

In the multi-HFE, a plain-text  $p \in k^n$  is encrypted by  $c = F(p) \in k^n$ , and the cipher-text  $c \in k^n$  is decrypted as follows. First, compute  $Z = (Z_1, \ldots, Z_N)^t :=$  $\phi_N(T^{-1}(c)) \in K^N$ . Next, find a common solution  $X \in$  $K^N$  of the equations

$$\mathcal{G}_1(X) = Z_1, \quad \dots, \quad \mathcal{G}_N(X) = Z_N.$$
 (1)

The plain-text  $p \in k^n$  is given by  $S^{-1}(\phi_N^{-1}(X))$ .

To find X with (1), one needs to solve a system of N quadratic equations of N variables. Since the complexity of solving it is in exponential for N (see e.g. [6,7]), the number N can not be taken large.

## 2.2 HMFEv

Let  $n, m, N, r, v \ge 1$  be integers with m := Nr, n :=m + v and q a power of prime. Denote by k the finite field of order q and K the r-extension of k. Define the map  $\mathcal{G}: K^N \times k^v \to K^N$  by

$$X = (X_1, \dots, X_N)^t, \quad u = (u_1, \dots, u_v)^t,$$
  

$$\mathcal{G}(X, u) = (\mathcal{G}_1(X, u), \dots, \mathcal{G}_N(X, u))^t,$$
  

$$\mathcal{G}_l(X, u) = \sum_{1 \le i \le j \le N} \alpha_{ij}^{(l)} X_i X_j + \sum_{1 \le i \le N} \beta_i^{(l)}(u) X_i + \gamma^{(l)}(u)$$
(2)

for  $1 \leq l \leq N$ , where  $\alpha_{ij}^{(l)} \in K$ ,  $\beta_i^{(l)} : k^v \to K$  is an affine form and  $\gamma^{(l)} : k^v \to K$  is a quadratic form.

The secret key is a pair of two invertible affine maps  $S: k^n \to k^n, T: k^m \to k^m$  and the public key is the quadratic map  $F: k^n \to k^m$  defined by

$$F := T \circ \phi_N^{-1} \circ \mathcal{G} \circ \phi_{N,v} \circ S,$$

where  $\phi_N : k^m \to K^N, \phi_{N,v} : k^n \to K^N \times k^v$  are one-

Table 1. Parameter Selection of HMFEv [5].

| q   | n   | m   | N | r  | v  | Security |
|-----|-----|-----|---|----|----|----------|
| 31  | 44  | 36  | 2 | 18 | 8  | 80bit    |
| 256 | 39  | 27  | 3 | 9  | 12 | 80bit    |
| 31  | 68  | 56  | 2 | 28 | 12 | 128bit   |
| 256 | 61  | 45  | 3 | 15 | 16 | 128 bit  |
| 31  | 97  | 80  | 2 | 40 | 17 | 192bit   |
| 256 | 90  | 69  | 3 | 23 | 21 | 192bit   |
| 31  | 131 | 110 | 2 | 55 | 21 | 256bit   |
| 256 | 119 | 93  | 3 | 31 | 26 | 256bit   |

to-one maps.

In the signature scheme HMFEv, a given message  $y \in k^m$  is signed as follows. First, compute  $Z = (Z_1, \ldots, Z_N)^t := \phi_N(T^{-1}(y))$  and choose  $u \in k^v$ . Next, find a common solution  $X \in K^N$  of the equations

$$\mathcal{G}_1(X,u) = Z_1, \quad \dots, \quad \mathcal{G}_N(X,u) = Z_N.$$
 (3)

The signature for  $y \in k^m$  is  $S^{-1}(\phi_{N,v}^{-1}(X, u))$ . The signature  $x \in k^n$  is verified if F(x) = y holds.

To find X with (3), one needs to solve a system of N quadratic equations of N variables. Then, similar to the multi-HFE, the number N cannot be large since the complexity of solving it is exponential for N. In [5] (see Table 1), Petzeldt et al. selected the parameters of HM-FEv with N = 2,3 as a signature scheme secure and efficient enough for practical use.

We note that the constant parts of S, T do not contribute to enhance the security. In fact, for  $s \in k^n$ ,  $t \in k^m$ ,  $S_0(x) := x + s$  and  $T_0(y) := y + t$ , the map  $\phi_N \circ T_0 \circ G \circ S_0 \circ \phi_{N,v}^{-1}$  is also a quadratic map similar to (2). Then we can consider that S, T are linear maps without loss of generality.

## 3. Security analysis

In this section, we study the structure of HMFEv and discuss the security against the rank attacks. We first study the structures of polynomials in HMFEv.

#### 3.1 Polynomials in HMFEv

For integers  $n_1, n_2 \geq 1$  and a finite field k, let  $M_{n_1,n_2}(k)$  be the set of  $n_1 \times n_2$  matrices of k-entries. Denote by  $I_n \in M_{n,n}(k)$  the identity matrix and by  $0_{n_1,n_2} \in M_{n_1,n_2}(k)$  the zero matrix. For simplicity, we write  $M_n(k) := M_{n,n}(k)$  and  $0_n := 0_{n,n}$ . For an integer  $l \geq 1$  and a matrix  $A = (a_{ij})_{i,j}$ , we denote by  $A^{(l)} := (a_{ij}^l)_{i,j}$ .

Let  $\{\theta_1, \ldots, \theta_r\} \subset K$  be a basis of K over k and define  $\Theta_N := (\theta_j^{q^{i-1}} \cdot I_N)_{1 \leq i,j \leq r} \in \mathcal{M}_m(K)$  and  $\Theta_{N,v} := \begin{pmatrix} \Theta_N \\ I_v \end{pmatrix} \in \mathcal{M}_n(K)$ . The one-to-one maps  $\phi_N : k^m \to K^N$  and  $\phi_{N,v} : k^n \to K^N \times k^v$  are given by the matrices  $\Theta_N$  and  $\Theta_{N,v}$  respectively. In fact, it holds

$$\phi_N = \psi_N^{-1} \circ \Theta_N, \quad \phi_{N,v} = \psi_{N,v}^{-1} \circ \Theta_N,$$

for the two maps  $\psi_N: K^N \to K^{Nr}, \, \psi_{N,v}: K^N \times k^v \to K^{Nr} \times k^v$  defined by

$$\psi_N(\alpha_1,\ldots,\alpha_N) = (\alpha_1,\ldots,\alpha_N,\alpha_1^q,\ldots,\alpha_N^{q^{r-1}})^t, \psi_{N,v}(\alpha_1,\ldots,\alpha_N,u_1,\ldots,u_v) = (\alpha_1,\ldots,\alpha_N,\alpha_1^q,\ldots,\alpha_N^{q^{r-1}},u_1,\ldots,u_v)^t.$$

Then the public key F is described by

$$F = (T \circ \Theta_N^{-1}) \circ (\psi_N \circ \mathcal{G} \circ \psi_{N,v}^{-1}) \circ (\Theta_{N,v} \circ S),$$

namely

$$F(x) = (f_1(x), \dots, f_m(x))^t$$
  
=  $(T \circ \Theta_N^{-1}) \cdot (\mathcal{G}_1(\phi_{N,v}(S(x))), \dots, \mathcal{G}_N(\phi_{N,v}(S(x))), \mathcal{G}_1(\phi_{N,v}(S(x)))^q, \dots, \mathcal{G}_N(\phi_{N,v}(S(x)))^{q^{r-1}})^t.$  (4)

When we express the polynomials  $\mathcal{G}_1, \ldots, \mathcal{G}_N$  by

$$\mathcal{G}_{l}(X, u) = (X^{t}, u^{t}) \begin{pmatrix} A_{l} & B_{l} \\ B_{l}^{t} & C_{l} \end{pmatrix} \begin{pmatrix} X \\ u \end{pmatrix} + (\text{linear form})$$

as quadratic forms of X, u with matrices  $A_l \in M_N(K)$ ,  $B_l \in M_{N,v}(K), C_l \in M_v(K)$ , the polynomials  $\mathcal{G}_1(X, u)$ ,  $\ldots, \mathcal{G}_N(X, u), \mathcal{G}_1(X, u)^q, \ldots, \ldots, \mathcal{G}_N(X, u)^{q^{r-1}}$  in (4) are written as quadratic polynomials of

$$\bar{X} := \psi_{N,v}(X, u)$$

$$= (X_1, \dots, X_N, X_1^q, \dots, \dots, X_N^{q^{r-1}}, u_1, \dots, u_v)^t$$

in the forms

$$\begin{aligned} \mathcal{G}_{l}(X,u) &= \bar{X}^{t} \begin{pmatrix} A_{l} & B_{l} \\ 0_{m-N} & C_{l} \end{pmatrix} \bar{X} \\ &+ (\text{linear form of } \bar{X}), \\ \mathcal{G}_{l}(X,u)^{q} &= \bar{X}^{t} \begin{pmatrix} 0_{N} & B_{l}^{(q)} \\ A_{l}^{(q)} & 0_{m-2N} & B_{l}^{(q)} \\ \hline B_{l}^{(q)^{t}} & C_{l}^{(q)} \end{pmatrix} \bar{X} \\ &+ (\text{linear form of } \bar{X}), \\ \vdots \\ \mathcal{G}_{l}(X,u)^{q^{r-1}} &= \bar{X}^{t} \begin{pmatrix} 0_{m-N} & B_{l}^{(q^{r-1})} \\ \hline 0_{m-N} & B_{l}^{(q^{r-1})} \\ \hline 0_{m-N} & C_{l}^{(q^{r-1})} \\ \hline 0_{m-$$

$$\mathcal{G}_{l}(X,u)^{q^{r-1}} = \bar{X}^{t} \left( \begin{array}{c|c} A_{l}^{(q^{r-1})} & B_{l}^{(q^{r-1})} \\ \hline B_{l}^{(q^{r-1})^{t}} & C_{l}^{(q^{r-1})} \end{array} \right) \bar{X} + (\text{linear form of } \bar{X}).$$
(5)

This means that the quadratic forms in the public key are expressed by

$$f_l(x) = x^t F_l x + (\text{linear form of } x),$$

where

$$F_{l} = (\Theta_{N,v}S)^{t} \begin{pmatrix} *_{N} & & & * \\ & \ddots & & \vdots \\ & & *_{N} & & * \\ \hline & & & & *_{N} & \\ \hline & & & & & & *_{v} \end{pmatrix} (\Theta_{N,v}S). \quad (6)$$

In the next two subsections, we discuss the security of HMFEv against the rank attacks based on these facts.

3.2 Min-rank attack

Let  $F_1, \ldots, F_m$  be the coefficient matrices of the quadratic forms  $f_1(x), \ldots, f_m(x)$  respectively. The *min-rank attack*, introduced by Kipnis-Shamir [8] and developed by Bettale et al. [3], is an attack to recover T (partially) by finding  $\alpha_1, \ldots, \alpha_m \in K$  such that the rank of  $H := \alpha_1 F_1 + \cdots + \alpha_m F_m$  is at most R if there exist such  $\alpha_1, \ldots, \alpha_m \in K$  and an integer  $1 \leq R < n$ . For HMFEV, due to (4) and (5), we see that there exist such  $\alpha_1, \ldots, \alpha_m \in K$  with R = N + v and H is one of the following forms with high probability.

$$(\Theta_{N,v}S)^{t} \begin{pmatrix} *_{N} & & * \\ & & 0_{m-N} & \\ & & *_{v} \end{pmatrix} (\Theta_{N,v}S), \\ (\Theta_{N,v}S)^{t} \begin{pmatrix} 0_{N} & & & \\ & *_{N} & & * \\ & & 0_{m-2N} & & \\ & & & *_{v} \end{pmatrix} (\Theta_{N,v}S), \\ \dots, (\Theta_{N,v}S)^{t} \begin{pmatrix} 0_{m-N} & & \\ & & *_{N+v} \end{pmatrix} (\Theta_{N,v}S).$$

Once such a matrix H is given, the attacker can recover keys equivalent to (S, T) easily (see [3]).

To find such  $\alpha_1, \ldots, \alpha_m \in K$ , the attacker generates a system of polynomial equations of m variables  $z_1, \ldots, z_m$  derived from the condition that the rank of  $H(z_1, \ldots, z_m) := z_1F_1 + \cdots + z_mF_m$  is at most N+v and solve it by, e.g., the Gröbner basis algorithm. Since the condition that the rank of A is at most R is equivalent that the determinants of arbitrary  $(R+1) \times (R+1)$ minor matrices in A are zero, the min-rank attack requires to solve a system of polynomial equations of degree (at most) N + v + 1 and of m variables. Based on the result in [3], the authors in [5] claimed that the complexity of the min-rank attack is  $O\left(\binom{m+N+v+1}{N+v+1}^w\right)$ where  $2 \leq w < 3$  is an exponent of the Gaussian elimination. This means that, if one takes v sufficiently large, HMFEv is secure enough against the min-rank attack.

#### 3.3 High-rank attack

The high-rank attack, introduced in [9, 10], is to find  $\beta_1, \ldots, \beta_L \in K$  such that the rank of  $P := F_m + \beta_1 F_1 + \cdots + \beta_L F_L$  is at most R if there exist such integers  $1 \leq L, R < n$  and  $\beta_1, \ldots, \beta_L \in K$ . For HMFEV, recall that  $F_1, \ldots, F_m$  are as written in (6). Due to (4) and (5), we see that the first N columns and lows of the central matrix in (6) are derived from linear sums of N polynomials  $\mathcal{G}_1(X, u), \ldots, \mathcal{G}_N(X, u)$ . Then, removing the contributions of such N polynomials, we can get a matrix of rank at most n - N. This means that the high-rank attack is available on HMFEV with (L, R) = (N, n - N). We now describe how to recover an equivalent key of HMFEV.

**Input.** The public matrices  $F_1, \ldots, F_m$ .

**Output.** Invertible matrices  $S' \in M_n(k)$ ,  $T' \in M_m(k)$ such that  $\phi_N \circ T' \circ F \circ S' \circ \phi_{N,v}^{-1} : K^N \times k^v \to K^N$  is a quadratic map similar to (2).

Step 1. Find  $\beta_1, \ldots, \beta_N \in K$  such that  $P := F_m + \beta_1 F_1 + \cdots + \beta_N F_N$ .

Step 2. Find a matrix  $Q \in M_{n,N}(K)$  with  $PQ = 0_{n,N}$ . Step 3. Choose  $Q_0 \in M_{n,v}(k)$  randomly and put  $\tilde{Q} := (Q, Q^{(q)}, \dots, Q^{(q^{r-1})}, Q_0) \in M_n(k)\Theta_{N,v}^{-1}$ . If  $\tilde{Q}$  is not invertible, change  $Q, Q_0$ . Compute  $F'_l := \tilde{Q}^t F_l \tilde{Q}$  for  $1 \leq l \leq m$ .

**Step 4.** Find a matrix  $W = (w_{ij})_{i,j} \in \mathcal{M}_{N,m}(K)$  with

$$F_i'' := \sum_{1 \le j \le m} w_{ij} F_j' = \begin{pmatrix} *_N & & * \\ * & 0_{m-N} & \\ & *_v \end{pmatrix}$$
for  $1 \le i \le N$ . Put  $\tilde{W} := \begin{pmatrix} W \\ W^{(q)} \\ \vdots \\ W^{(q^{r-1})} \end{pmatrix} \in \Theta_N \mathcal{M}_m(k)$ . If

 $\tilde{W}$  is not invertible, change W.

**Step 5.** Output  $S' := \tilde{Q}\Theta_{N,v}$  and  $T' := \Theta_N^{-1}\tilde{W}$ .

We explain why this attack recovers an equivalent key. As discussed before, there exist  $\beta_1, \ldots, \beta_N \in K$  in Step 1 and we can easily check that P is one of the following forms with high probability.

$$(\Theta_{N,v}S)^{t} \begin{pmatrix} 0_{N} & & \\ & \ast_{n-N} \end{pmatrix} (\Theta_{N,v}S),$$

$$(\Theta_{N,v}S)^{t} \begin{pmatrix} \ast_{N} & & \ast & \\ & 0_{N} & & \\ & & \ast_{n-2N} \end{pmatrix} (\Theta_{N,v}S),$$

$$\cdots, (\Theta_{N,v}S)^{t} \begin{pmatrix} \ast_{(r-1)N} & & \ast & \\ & & 0_{N} & & \\ & & & \ast_{v} \end{pmatrix} (\Theta_{N,v}S).$$

$$(7)$$

Since P is of rank at most n - N, there exists a matrix Q in Step 2 and it can be found by linear operations. Due to (7), we see that a matrix  $\tilde{Q} = (Q, *)$ satisfies  $\tilde{Q}^t P \tilde{Q} = \begin{pmatrix} 0_N \\ 0 & * \end{pmatrix}$  and then  $(\Theta_{N,v}S)\tilde{Q}$  is in the form  $\begin{pmatrix} *_N & * \\ 0 & * \end{pmatrix}$  or its permutation. Lemma 3.2 in [4] tells that the matrix  $\tilde{Q}$  in Step 3 is in  $M_n(k)\Theta_{N,v}^{-1}$  and  $(\Theta_{N,v}S)\tilde{Q} \in \Theta_{N,v}M_n(k)\Theta_{N,v}^{-1}$ . Thus  $(\Theta_{N,v}S)\tilde{Q}$  must be  $\begin{pmatrix} *_N & & * \\ \vdots & & *_N \\ & & *_v \end{pmatrix}$  or its permutation. This means,  $\begin{pmatrix} *_N & & & * \\ \vdots & & & *_v \\ & & & *_v \end{pmatrix}$  or its permutation. This means,

 $l \leq m$ . Since  $F'_l$  is a linear sum of matrices similar to the coefficient matrices given in (5), a matrix W in Step 4 exists and it is found by linear operations. The matrices  $F''_1, \ldots, F''_N$  are similar to the coefficient matrices of  $\mathcal{G}_1(X, u), \ldots, \mathcal{G}_N(X, u)$ . We thus conclude that (S', T')in Step 5 is an equivalent key.  $\Box$ 

It is easy to see that Step 2-5 require only linear operations. Then the complexity of Step 1 is important in this attack. To find  $\beta_1, \ldots, \beta_N$  in Step 1, we state a system of polynomial equations of N variables  $y_1, \ldots, y_N$  derived from the condition that the rank of  $P(y_1, \ldots, y_N) := F_m + y_1F_1 + \cdots + y_NF_N$  is at most n - N and solve it by, e.g., the Gröbner basis algorithm. Since this condition is equivalent that the determinants of arbitrary  $(n - N + 1) \times (n - N + 1)$ -minor matrices of  $P(y_1, \ldots, y_N)$  are zero, the attacker needs to solve a system of polynomial equations of degree at most n - N + 1 and of N variables. Then we can consider that the complexity of the high-rank attack on HMFEv highly depends on N and the contribution of v for the security seems not too much.

Note that, for integers  $M_1, N_1, d \geq 1$  with  $M_1 \geq N_1$  and a *semi-regular* system of polynomials  $\{p_1(x), \ldots, p_{M_1}(x)\}$  of  $N_1$ -variables and of degree d, it is known (e.g. [6,7]) that the complexity of the Gröbner basis algorithm on this polynomial system is bounded by  $O\left(\binom{N_1+d_{\text{reg}}}{N_1}^w\right)$ , where  $d_{\text{reg}}$  is a constant, called the *degree of regularity*, given by the index of the first non-

Table 2. Running times of high-rank attack on HMFEv.

| q   | n   | m   | N | r  | v  | Time  | (Security) |
|-----|-----|-----|---|----|----|-------|------------|
| 31  | 44  | 36  | 2 | 18 | 8  | 2.20s | (80bit)    |
| 256 | 39  | 27  | 3 | 9  | 12 | 13.2s | (80bit)    |
| 31  | 68  | 56  | 2 | 28 | 12 | 19.1s | (128 bit)  |
| 256 | 61  | 45  | 3 | 15 | 16 | 261s  | (128 bit)  |
| 31  | 97  | 80  | 2 | 40 | 17 | 113s  | (192bit)   |
| 256 | 90  | 69  | 3 | 23 | 21 | -     | (192bit)   |
| 31  | 131 | 110 | 2 | 55 | 21 | 701s  | (256 bit)  |
| 256 | 119 | 93  | 3 | 31 | 26 |       | (256bit)   |

positive coefficient of the univariate polynomial  $C(t) := (1-t^d)^{M_1}(1-t)^{-N_1}$ . This means that, if  $M_1$  is sufficiently larger than  $N_1$ , we have  $d_{\text{reg}} = d$ . We thus expect that the complexity of the high-rank attack on HMFEv is

$$O\left(\binom{n+1}{N}^{w}\right) \tag{8}$$

since  $(N_1, d) = (N, n - N + 1)$  for the polynomial system in the high-rank attack and  $M_1$  can be taken at most  $\binom{n}{n-N+1}^2$ . Remark that (8) is the number of operations on K and then the real running time seems at most  $(r \log q)^2$  times larger than (8). While, on this paper, we avoid to give a concrete proof for the estimate (8) of the high-rank attack, we consider that (8) is not far from the real complexity of the high-rank attack.

## 3.4 Experiments of the high-rank attack

We implemented the high-rank attack on HMFEv by Magma [11] ver.2.22-3 on Windows 8.1, Core(TM)i7-4800MQ, 2.70GHz for the parameters in Table 1 ([5]). In our implementation, we first choose an integer M sufficiently larger than N, and generate M equations of Nvariables  $(y_1, \ldots, y_N)$  by the determinants of  $(n - N + 1) \times (n - N + 1)$  minor matrices of  $P(y_1, \ldots, y_N)$ . Next, we find a common solution  $(y_1, \ldots, y_N) = (\beta_1, \ldots, \beta_N)$ of such M equations by the Gröbner basis algorithm. Finally, we check whether the rank of  $P(\beta_1, \ldots, \beta_N)$  is at most n - N.

Remark that the Gaussian elimination is not efficient to compute a determinant of a polynomial matrix of large size. We then used an algorithm introduced in [12] instead of the Gaussian elimination for computations of polynomial matrices.

We also remark that, if q is even, we use  $F_l + F_l^t$  instead of the coefficient matrix  $F_l$ . The matrix  $F_l + F_l^t$ is symmetric and skew-symmetric since the field k is of even characteristic. It is known (e.g. [13]) that the determinant of a skew-symmetric matrix is zero when the size of the matrix is odd and is a square when that is even. We then have to arrange our attack based on this fact. Fortunately, the arrangement for even characteristic cases was already discussed in [3] for the min-rank attack and we can apply it also for the high-rank attack.

We describe the running times of the high-rank attack in Table 2 by taking M = 3 for (q, N) = (31, 2)and M = 10 for (q, N) = (256, 3). These results show that HMFEv with N = 2 is not secure at all. While the complexities for the cases of N = 3 is much more than the cases of N = 2, we can consider that the security is far from  $80 \sim 256$  bit. Though one requires a larger Nto generate a secure HMFEv, it lacks the efficiency of signature generation.

#### 4. Conclusion

The signature scheme HMFEv is a vinegar variant of multi-HFE. It is known [5] that, if the vinegar parameter v is larger, HMFEv against the min-rank attack is exponentially more secure. However, the security against the high-rank attack does not highly depend on v and then HMFEv with the parameters selected in [5] (Table 1) is much less secure than expected. While HMFEv with larger N is secure enough, it lacks the efficiency of the signature generation. We thus conclude that this scheme has a serious trade-off between the security and efficiency.

## Acknowledgments

The author was supported by JST CREST no. JP-MJCR14D6 and JSPS Grant-in-Aid for Scientific Research (C) no. 17K05181. He would like to thank the anonymous referee(s) for reading the previous draft carefully and giving helpful comments.

## References

- C.H.O. Chen, M.S. Chen, J. Ding, F. Werner and B.Y. Yang, Odd-char multivariate hidden field equations, http://eprint.iacr.org/2008/543, 2008.
- [2] M.D.A. Huang, M. Kosters, Y. Yang and S.L. Yeo, On the last fall degree of zero-dimensional Weil descent systems, arXiv:1505.02532 [math.AC], 2015.
- [3] L. Bettale, J.C. Faugere and L. Perret, Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic, Des. Codes Cryptogr., 69 (2013), 1–52.
- [4] Y. Hashimoto, Key recovery attacks on multivariate public key cryptosystems derived from quadratic forms over an extension field, IEICE Trans. Fundamentals, 100-A (2017), 18– 25.
- [5] A. Petzoldt, M.S. Chen, J. Ding and B.Y. Yang, HMFEv An efficient multivariate signature scheme, in: Proc. of PQCrypto 2017, T. Lange, T. Takagi eds., LNCS, Vol. 10346, pp. 205– 223, Springer-Verlag, Cham, 2017.
- [6] M. Bardet, J.C. Faugère, B. Salvy and B.Y. Yang, Asymptotic expansion of the degree of regularity for semi-regular systems of equations, MEGA'05 (2005).
- [7] L. Bettale, J.C. Faugère and L. Perret, Solving polynomial systems over finite fields: Improved analysis of the hybrid approach, in: Proc. of ISSAC 2012, J. van der Hoeven and M. van Hoeij eds., pp.67–74, ACM, New York, 2012.
- [8] A. Kipnis and A. Shamir, Cryptanalysis of the HFE public key cryptosystem by relinearization, in: Proc. of CRYPTO 1999, M. Wiener eds., LNCS, Vol. 1666, pp.19–30, Springer-Verlag, Berlin, 1999.
- [9] S. Hasegawa and T. Kaneko, An attacking method for a public-key cryptosystem based on the difficulty of solving a system of non-linear equations (in Japanese), in: Proc. of 10th Symposium on Information Theory and Its Applications, JA5-3, 1987.
- [10] D. Coppersmith, J. Stern and S. Vaudenay, Attacks on the birational permutation signature schemes, in: Proc. of CRYPTO 1993, D.R. Stinson eds., LNCS, Vol. 773, pp.435– 443, Springer-Verlag, Berlin, 1994.
- [11] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265.
- [12] E. V. Krishnamurthy, Error-free polynomial matrix computations, Texts and Monographs in Computer Science, Springer-Verlag, New York, 1985.
- [13] A. Cayley, Sur les determinants gauches (On skew determinants), J. Reine Angew. Math. 38 (1849), 93–96.