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Abstract

We investigate the performance of the parallel block Jacobi method for the symmetric eigen-
value problem with dynamic ordering both theoretically and experimentally. First, we present
an improved global convergence theorem of the method that takes into account the effect of
annihilating multiple blocks at once. Next, we compare the dynamic ordering with two repre-
sentative parallel cyclic orderings experimentally and show that the former can speedup the
convergence for ill-conditioned matrices considerably with little extra cost.
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1. Introduction

Let A be an n×n real symmetric matrix and suppose
that we want to compute all the eigenvalues and eigen-
vectors of A. Such a problem arises in various fields of
science and engineering. The standard procedure for this
problem consists of three steps, namely, transformation
of A to a tridiagonal matrix, solution of the resulting
tridiagonal eigenvalue problem and back-transformation
to recover the eigenvectors of A. However, in highly par-
allel environments, the tridiagonalization step can be-
come a severe performance bottleneck due to its small
parallel granularity [1]. As an alternative to the tridi-
agonalization based methods, the block Jacobi method
has attracted attention recently. It is a natural extension
of the (point) Jacobi method for the symmetric eigen-
value problem to the block case and is based on the idea
of making the matrix closer and closer to diagonal by
annihilating off-diagonal blocks step by step. Thanks to
blocking, the block Jacobi method has larger parallel
granularity than tridiagonalization based methods and
can outperform the latter in some cases [2].
There are many variants of the block Jacobi meth-

ods, which differ by the order of annihilating the off-
diagonal blocks. In cyclic ordering methods, each off-
diagonal block is annihilated once in a period called
sweep in a predetermined order. In dynamic ordering
methods, the off-diagonal block to be annihilated at each
step is determined based on the run-time information,
such as the Frobenius norms of the blocks. Among the
latter class of methods, the classical ordering, in which
the off-diagonal block with the largest Frobenius norm
is annihilated at each step, is expected to achieve faster
convergence than other orderings, based on the analogy
of the point Jacobi methods. This ordering has been ex-
tended by Bečka et al. to parallel dynamic ordering [3,4],
which chooses multiple off-diagonal blocks so that the
sum of their squared Frobenius norms is maximal under

the constraint that they can be annihilated simultane-
ously, and annihilates them in parallel. Although this
ordering was originally proposed for the block Jacobi
SVD (singular value decomposition) method, it should
be promising also for the eigenvalue problem because it
can attain both fast reduction of the off-diagonal norm
and large-grain parallelism at the same time.
The aim of this paper is twofold. First, we will present

an improved global convergence theorem for the block
Jacobi method for the eigenvalue problem with paral-
lel dynamic ordering. Such a theorem has been given
in [5], but there, the constant appearing in the linear
convergence bound is the same as that for the sequen-
tial classical ordering. Hence, the bound does not re-
flect the convergence acceleration effect due to annihi-
lating multiple off-diagonal blocks at once. We will de-
rive a tighter bound by taking into account the effect
of multiple-block annihilation. Second, we compare the
parallel performance and convergence speed experimen-
tally with those of parallel cyclic orderings. The parallel
dynamic ordering requires extra costs to compute the
Frobenius norms of off-diagonal blocks and to find the
set of off-diagonal blocks to be annihilated simultane-
ously. These costs need to be sufficiently small for the
ordering to be competitive. In addition, it is of interest
to see how the convergence speed of the parallel dynamic
ordering differs from those of cyclic orderings for differ-
ent types of matrices. We investigate these aspects ex-
perimentally in a shared memory parallel environment.
The rest of this paper is structured as follows. In Sec-

tion 2, we introduce the parallel block Jacobi method
with dynamic ordering and its so-called greedy imple-
mentation. In Section 3, an improved global convergence
theorem for the method is presented. Experimental re-
sults that show the superiority of the parallel dynamic
ordering to cyclic orderings are provided in Section 4.
Finally, Section 5 gives some conclusion.
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2. The parallel block Jacobi method us-

ing dynamic ordering

Let p be the number of processors and q = 2p. We par-
tition the matrix A(0) = A into a q × q block structure
and denote the (I, J) block by AI,J . We also denote the
submatrix of A consisting of the I1, I2, . . . , Iℓ block rows
and J1, J2, . . . , Jm block columns by AI1I2...Iℓ,J1J2...Jm .
The set of all block rows or columns is denoted by ’*’.
In the kth step of the classical block Jacobi method, we

pick up an off-diagonal block A
(k)
X,Y (X ̸= Y ) with the

largest Frobenius norm and apply an orthogonal simi-

larity transformation that annihilates A
(k)
X,Y and A

(k)
Y,X

to A(k). Specifically, let

A
(k)
XY,XY =

(
A

(k)
X,X A

(k)
X,Y

A
(k)
Y,X A

(k)
Y,Y

)

and P
(k)
XY,XY be the orthogonal eigenvector matrix of

A
(k)
XY,XY . Moreover, let P (k) be the n × n orthogonal

matrix obtained by embedding P
(k)
XY,XY into the n × n

identity matrix, in the same way as A
(k)
XY,XY is embed-

ded in A(k). Then, A(k+1) =
(
P (k)

)⊤
A(k)P (k) is the de-

sired orthogonal similarity transformation. We also let
V (0) = In and update V (k) by V (k+1) = V (k)P (k) to
compute the eigenvector matrix of A.

Let A
(k)
X′,Y ′ be another off-diagonal block such that

X ′ ̸= X,Y and Y ′ ̸= X,Y and P ′(k) be the

n × n orthogonal matrix to annihilate A
(k)
X′,Y ′ and

A
(k)
Y ′,X′ . Since P (k) updates only the Xth and Y th

block rows (or columns), while P ′(k) updates only the
X ′th and Y ′th block rows (or columns), they com-

mute with each other and the two blocks A
(k)
X,Y and

A
(k)
X′,Y ′ (along with A

(k)
Y,X and A

(k)
Y ′,X′) can be anni-

hilated simultaneously. More generally, if the indices
X1, Y1, X2, Y2, . . . , Xp, Yp are all different, that is, if they
are some permutation of 1, 2, . . . , 2p, the p off-diagonal

blocks A
(k)
X1,Y1

, A
(k)
X2,Y2

, . . . , A
(k)
Xp,Yp

can be annihilated

in parallel, along with A
(k)
Y1,X1

, A
(k)
Y2,X2

, . . . , A
(k)
Yp,Xp

. If
X1, Y1, X2, Y2, . . . , Xp, Yp can be chosen to maximize∑p

ℓ=1 ∥A
(k)
Xℓ,Yℓ

∥2F , a generalization of the classical block
Jacobi method will result. This is the idea of parallel
dynamic ordering proposed by Bečka et al [3].

The problem of maximizing
∑p

ℓ=1 ∥A
(k)
Xℓ,Yℓ

∥2F un-
der the constraint {X1, Y1, X2, Y2, . . . , Xp, Yp} =
{1, 2, . . . , 2p} can be formulated as a maximum weight
matching problem of a complete graph with 2p ver-
tices, if we regard the Ith block row/column as ver-
tex I, the (I, J) off-diagonal block as an edge be-

tween vertices I and J , and wI,J = ∥A(k)
I,J∥2F as

the weight attached to the edge. We can solve this
problem approximately by the greedy algorithm, that
is, by first choosing X1 and Y1 so that wX1,Y1 =
max1≤X<Y≤q wX,Y , then choosing X2 and Y2 so that
wX2,Y2 = max1≤X<Y≤q,X2 ̸=X1,Y1, Y2 ̸=X1,Y1 wX,Y , and so
on. The algorithm of parallel block Jacobi method us-
ing dynamic ordering is shown as Algorithm 1. Here,

Algorithm 1 Parallel block Jacobi method with dy-
namic ordering

1: A(0) = A
2: V (0) = In
3: k = 0
4: while wmax > ϵ do
5: Compute wI,J = ∥A(k)

I,J∥F for 1 ≤ I < J ≤ q.
6: wmax = max1≤I<J≤q wI,J .
7: (X1, Y1), (X2, Y2), . . . , (Xp, Yp)=MWM({wI,J}).
8: for ℓ = 1, 2, . . . , p do ▷ parallel loop

9: Compute the eigenvector matrix P
(k)
XℓYℓ,XℓYℓ

.

10: Â
(k)
XℓYℓ,∗ =

(
P

(k)
XℓYℓ,XℓYℓ

)⊤
A

(k)
XℓYℓ,∗.

11: end for
12: for ℓ = 1, 2, . . . , p do ▷ parallel loop

13: A
(k+1)
∗,XℓYℓ

= Â
(k)
∗,XℓYℓ

P
(k)
XℓYℓ,XℓYℓ

.

14: V
(k+1)
∗,XℓYℓ

= V
(k)
∗,XℓYℓ

P
(k)
XℓYℓ,XℓYℓ

.
15: end for
16: k := k + 1
17: end while

MWM({wI,J}) is a function that finds the maximum
weight matching (X1, Y1), (X2, Y2), . . . , (Xp, Yp) by the
greedy algorithm given the weights wI,J (1 ≤ I < J ≤
q).

3. Improved global convergence theorem

In [5], the following global convergence theorem has
been proved for the parallel block Jacobi method with
dynamic ordering.

Theorem 1 In the parallel block Jacobi method with
dynamic ordering and greedy strategy, the off-diagonal
elements of A(k) converges to zero as k → ∞.

More specifically, the following linear convergence bound
has been shown in the proof.∑

I ̸=J

∥A(k+1)
I,J ∥2F ≤

(
1− 2

q(q − 1)

)∑
I ̸=J

∥A(k)
I,J∥

2
F . (1)

Although (1) is sufficient to guarantee global conver-
gence, the constant 1 − 2/[q(q − 1)] on the right-hand
side is not satisfactory because it is the same as the con-
stant appearing in the linear convergence bound of the
sequential classical ordering (see [5, Theorem 3.1]). This
means that the bound (1) does not reflect the conver-
gence acceleration effect due to annihilating 2p blocks
at each step. We will improve this in this section.
To this end, we first note that the q× q blocks of A(k)

can be divided into p2 mutually disjoint 2 × 2 blocks,

A
(k)
XℓYℓ,XmYm

(1 ≤ ℓ,m ≤ p). By the orthogonal transfor-
mation at step k, each of these 2 × 2 blocks are trans-
formed as

A
(k+1)
XℓYℓ,XmYm

=
(
P

(k)
XℓYℓ,XℓYℓ

)⊤
A

(k)
XℓYℓ,XmYm

P
(k)
XmYm,XmYm

.

Since P
(k)
XℓYℓ,XℓYℓ

(1 ≤ ℓ ≤ p) is orthogonal, this
transformation does not change the Frobenius norm of

A
(k)
XℓYℓ,XmYm

. When ℓ ̸= m, the four blocks contained in

A
(k)
XℓYℓ,XmYm

are all off-diagonal blocks, so the contribu-
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tion from A
(k)
XℓYℓ,XmYm

to the change of
∑

I ̸=J ∥A(k)
I,J∥2F

is zero. When ℓ = m, only two of the four blocks,

namely A
(k)
Xℓ,Yℓ

and A
(k)
Yℓ,Xℓ

, are off-diagonal blocks and
they are annihilated. So the contribution to the change

of
∑

I ̸=J ∥A(k)
I,J∥2F is −

(
∥A(k)

Xℓ,Yℓ
∥2F + ∥A(k)

Yℓ,Xℓ
∥2F
)

=

−2∥A(k)
Xℓ,Yℓ

∥2F . By summing up this over ℓ, we have

∑
I ̸=J

∥A(k+1)
I,J ∥2F =

∑
I ̸=J

∥A(k)
I,J∥

2
F − 2

p∑
ℓ=1

∥A(k)
Xℓ,Yℓ

∥2F .

Eq. (1) is obtained by combining this with the following
loose lower bound:

p∑
ℓ=1

∥A(k)
Xℓ,Yℓ

∥2F ≥ ∥A(k)
X1,Y1

∥2F

≥ 2

q(q − 1)

∑
I<J

∥A(k)
I,J∥

2
F , (2)

where we used the fact that A
(k)
X1,Y1

is the off-diagonal
block with the largest Frobenius norm.
In the following, we will derive a tighter lower bound

on the left-hand side of (2). Let G2p be a complete graph
with 2p vertices and nonnegative edge weights wI,J =

∥A(k)
I,J∥2F and M2p its approximate maximum weight

matching obtained by the greedy algorithm. Moreover,
for an edge-weighted graph G = (V,E,w), we denote its
sum of weights by S(G) =

∑
e∈E w(e). Then,∑

I<J

∥A(k)
I,J∥

2
F = S(G2p),

p∑
ℓ=1

∥A(k)
Xℓ,Yℓ

∥2F = S(M2p).

We will prove the following lemma.

Lemma 2 For any complete graph G2m, m ≥ 1,
with nonnegative weights and its approximate maximum
weight matching M2m obtained by the greedy algorithm,

S(M2m) ≥ S(G2m)

4m− 3
. (3)

Proof We show (3) by induction.
When m = 1, G2 has only one edge and the greedy

algorithm chooses it. So, S(M2) = S(G2) and (3) is sat-
isfied.
Next, assume that (3) holds for some m ≥ 1. Let us

consider applying the greedy algorithm to a complete
graph G2(m+1). This is equivalent to choosing the edge
e with the heaviest weight, removing it from G2(m+1)

along with other 4m edges incident to the endpoints of e,
and applying the greedy algorithm recursively to the re-
maining complete graph, which we call G2m. Now, write
the sum of the weights of the 4m+1 edges removed from
G2(m+1) as tS(G2(m+1)), where 0 ≤ t ≤ 1. Then, since
e is the heaviest edge, w(e) ≥ tS(G2(m+1))/(4m + 1).
On the other hand, from the induction hypothesis, the
matching M2m of G2m obtained by the greedy algorithm
satisfies

S(M2m) ≥ S(G2m)

4m− 3
= (1− t)

S(G2(m+1))

4m− 3
.

Thus, the matching M2(m+1) of G2(m+1) obtained by

the greedy algorithm satisfies

S(M2(m+1)) = w(e) + S(M2m)

≥ t
S(G2(m+1))

4m+ 1
+ (1− t)

S(G2(m+1))

4m− 3
.

Minimizing the right-hand side with respect to t ∈ [0, 1]
gives

S(M2(m+1)) ≥
S(G2(m+1))

4(m+ 1)− 3
.

Hence, the induction is completed and the lemma is
proved.

(QED)

This lemma enables us to replace 2/[q(q − 1)] with
1/(4p− 3) in the right-hand side of (2). As a result, we
have the following improved global convergence theorem.

Theorem 3 In the parallel block Jacobi method with
dynamic ordering and greedy strategy, the off-diagonal
elements of A(k) satisfies the following inequality and
therefore converges to zero as k → ∞.∑

I ̸=J

∥A(k+1)
I,J ∥2F ≤

(
1− 1

4p− 3

)∑
I ̸=J

∥A(k)
I,J∥

2
F . (4)

Note that (4) and (1) are valid even when p = 1. In
this case, q = 2 and A(k) is partitioned into a 2 × 2
block structure. Thus there are only two off-diagonal
blocks and they become zero after one step of annihila-
tion. Consequently, both sides of (4) and (1) vanish and
the equations hold.

4. Performance evaluation

In this section, we evaluate the parallel execution time
and convergence properties of the parallel block Jacobi
method with dynamic ordering experimentally. To this
end, we implemented the block Jacobi method with three
different ordering strategies: the parallel dynamic (PD)
ordering, round robin (RR) ordering [6] and the modified
modulus (MM) ordering [7]. The latter two are represen-
tative parallel cyclic orderings. The programs were writ-
ten in C and parallelized using OpenMP. The stopping

criterion was max1≤i<j≤n |a(k)ij | < 10−10. To compute

the orthogonal eigenvector matrix P
(k)
XℓYℓ,XℓYℓ

(see line 9
of Algorithm 1), we used LAPACK routine DSYEVD,
which employs the Householder tri-diagonalization and
the divide-and-conquer methods. The computational en-
vironments are listed in Table 1.
As a test matrix, we used a symmetric matrix A with

a prescribed condition number α generated as follows:
we first constructed a diagonal matrix D with condi-
tion number α by setting its ith diagonal element to
α−(i−1)/(n−1) (1 ≤ i ≤ n) and then computed A as
A = QDQ⊤, where Q is a random orthogonal matrix.
We set n = 1600 and varied the block size n/q from 10
to 80. Since there were only 10 cores in the CPU, we
allocated multiple values of ℓ to one core in lines 8 and
12 of Algorithm 1 when n/q = 10, 20 and 40.
Convergence properties We varied the condition

number as α = 10, 105 and 1010. For α = 10, the con-
vergence speed of PD was much the same as that of
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Table 1. The computational environment.

Item Specification

CPU Intel Xeon E5-2660V2 2.2GHz (10 cores)
Compiler icc version 16.0.0
Library MKL version 11.3.0

(a) block size = 10

(b) block size = 40
Fig. 1. Convergence history for the ill-conditioned matrix.

MM, while RR was significantly slower. As the condi-
tion number was increased, however, the convergence of
MM deteriorated rapidly and a marked difference was
seen between the convergence speed of PD and MM.
The convergence histories for the case of α = 1010 are
shown in Fig. 1. Here, we picked up only the results
for block size = 10 and 40 due to limitation of space.
These results suggest that PD is more robust against ill-
conditioned matrices than cyclic orderings. The graphs
for the α = 10 and α = 105 cases, as well as the results
for random matrices, can be found in [8].
Parallel execution time Compared with cyclic or-

dering strategies, PD requires two extra steps for each
k: computation of the weights wI,J and computation of
the approximate maximum weight matching. The for-
mer requires O(n2/p) work per processor, while the lat-
ter requires O(p3) work, if a naive implementation of
the greedy algorithm (scanning all the remaining edges
to determine each edge in the matching) is employed.
Both of these are of smaller order than the work for the
update of A(k) and V (k), which are of O(n3/p2) per pro-
cessor. Hence, it is expected that the time for these extra
steps are negligible. We confirm this by comparing the
execution times for the three ordering strategies.
The total execution times for the case of n = 1600

and α = 1010 are shown in Fig. 2. As can be seen from
the graph, the times for the Frobenius norm computa-
tion and maximum weight matching computation ac-
count for only small portion of the total execution time,
as expected theoretically. Combining this result with the

0

5

10

15

20

25

30

35

40

PD RRMM PD RRMM PD RRMM PD RRMM

10 20 40 80

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

others
Frobenius norm
Matching
Computation of w_max 
Column update of V 
Column update of A 
Row update of A 
Computation of P 

block size
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excellent convergence property of PD, we can conclude
that the parallel dynamic ordering is a promising order-
ing strategy for parallelizing the block Jacobi method.

5. Conclusion

In this paper, we presented an improved global conver-
gence theorem for the parallel block Jacobi method with
dynamic ordering. We also confirmed the effectiveness
of the method, especially for ill-conditioned matrices,
by numerical experiments. Future work includes perfor-
mance evaluation of the method using a larger number
of processors and matrices from real applications.

Acknowledgments

We express our sincere gratitude to the anonymous
referee, whose comments helped us to improve the
paper. This study is supported by JSPS KAKENHI
Nos. 16KT0016, 17H02828, 17K19966 and 17J07747.
The present affiliation of Shuhei Kudo is RIKEN Center
for Computational Science.

References

[1] T. Fukaya and T. Imamura, Performance evaluation of the
Eigen Exa eigensolver on Oakleaf-FX: tridiagonalization ver-

sus pentadiagonalization, in: Proc. of IPDPS 2015 Workshops,
pp.960–969, IEEE Computer Society, 2015.

[2] S. Kudo, Implementation of the block Jacobi method for the
symmetric eigenvalue problem on the K computer and verifica-

tion of its performance (in Japanese), Master’s Thesis, Grad-
uate School of System Informatics, Kobe University, 2015.
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