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Abstract

This paper empirically shows that in the days near the last trading day of Nikkei 225 Futures
the best bid/ask prices follows the highly negatively correlated first order Markov process,
and has no trend up to four ticks based on the total p-variation. This is consistent with the
model by Endo et al. and the empirical results therein by different approach. It also derives
the theoretical asymptotic formula for the total p-variation when the process follows the first
order random Markov walks, and shows that its fit is satisfactory for p < 4.
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1. Introduction

In the liquid market of the Nikkei 225 Futures in the
OSE (Osaka Stock Exchange), the bid-ask spread is al-
most always just one tick. (See [2].) Arrival of a market
buy order triggers the settlement at the ask quote, while
that of a sell order triggers the settlement at the bid
quote. The transaction price oscillates between the high-
est bid and the lowest ask quotes, which causes seeming
strong negative serial correlation in the sequence of con-
secutive transaction prices. One is interested in the tem-
poral price changes of the best bid/ask quote or their
mid-price rather than the transaction price itself.

To analyze the price changes under this situation,
Endo et al. [1] proposed a simple double auction model,
which predicts that the price changes of the best bid/ask
quotes again follows a first order Markov random walk.
This prediction is ascertained empirically in the same
paper: the null hypothesis of the first order Markov prop-
erty is not rejected by the Anderson and Goodman test
statistics.

In financial markets, one is interested in possible exis-
tence of trend in the price path. Short time strong neg-
ative correlation caused by intrinsic nature of double
auction property does not exclude the possible existence
of trend. The target of the Anderson and Goodman test
statistics is not to detect the existence of trend. One
wishes to test directly the possible existence of longer
scale trend. It is just the purpose of this paper.

The Alexander’s filter rule [3] is a classical approach
to detect the existence of trend in the academic world.
This paper works on a variant version of this concept the
total p-variation proposed in Kishimoto and Iri [4], which
seems to be more natural as a mathematical quantity.
(See also Kishimoto [5].)

This paper takes up 72 paths of the best ask price
of tick-by-tick data of Nikkei225 futures in 2007 in the
OSE, and tests whether we can regard them as paths of
first order Markov chains. We also derive the formula for
the expectation of the total p-variation of a locus of the
first order Markov random walk to check what extent
actual loci of price paths of Nikkei225 Futures follow
this formula.

2. Markov random walk and the total p-
variation

2.1 Markov random walk

In the model by Endo et al., the tth price change X ()
(t=1,2,...) takes either +1 or —1. We associate “+1”
(resp. “—17) with the term “Up” (resp. “Down”). We de-
noted “Up” (resp. “Down”) simply by U (resp. D). Their
model explains price changes of securities in terms of the
arrival of two types of orders: buy and sell. In conclusion,
the tth changes X (t) of the best bid/ask price follow the
two state Markov chain whose transition probability ma-

trix is
pup
) 1)

p_ < puu
PpD

PpDU

Here, pyy and pyup (resp. ppu and ppp) are the condi-
tional transition probabilities of U and D when the last
move was U (resp. D). The security price S(t) at t is
given by S(t) = S(0) + Zizo X,. We denote the path
of S(t) (t € [to,tl]) by C[to,tl].

2.2 Definition of the total p-variation

Let A = {tg <t1 <--- <tn} beasubset of {0,1,...,
T%}. In our case of the path of piecewise linear function,
the total p-variation V(p; C([0,¢])) (p > 0,t € [0,T7]) is
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defined by
Vip; C([0,1]))

m

= sup Z|S(t;€)) = S(Ti-1)|-

{AI(R) [S(t)=S(Tu-1)|>p} 12
(2)

We notice that V(0; C[0,¢]) is equal to the total varia-
tion in the ordinary sense. For p > 0, the supremum is
attained for some A*. We say that p-extremum is at-
tained at S(t*) if t* € A*. S(¢*) is called p-maximum
(resp. p-minimum) if it is a maximum (resp. minimum)
point in the ordinary sense. Let us fix p at a constant.
We understand the X (t) is positively (resp. negatively)
correlated if V(p; C([0,1])) is large (resp. small).

3. Theoretical value of E[V (p; C([0,1]))]

Let us derive theoretical value of lim;_, - E[V (p; C[0,
t])] as a function of transition matrix P. We consider the
case where E[X (t)] = 0, because our preliminary empir-
ical calculations show that it produce little difference in
our results during the period under consideration. Thus,

we put
. ™ 1—m
T\ 1—-7 T ’

8.1 Construction of an auzxiliary Markov chain

In our case where V(p;C([0,¢])) is a piecewise con-
stant right continuous function, we need V(p; C([0,t]))
only for p = 0,1,2,.... Without loss of generality, we
assume that S(0) = 0 holds.

Suppose that we are at time t¢. For any € > 0 we can
find T, such that for any ¢ > T, there are p-extremum
points between [0, ¢] with probability more than 1 — e.
Thus, we assume that S(t) takes its p-extremum points
at tp < t1 < -+ < tp—1 < t* in [0,t]. We remark that,
in interval [0,¢'] D [0,t], S(t) takes p-extremum value at
tr (0 <k <n-—1) and not necessarily at ¢t*.

Let us introduce a new random variable U(t) =
[S(t) — S(t*)| (¢ > ¢*). A pair of random variables
(U(t),X(t)) define a new Markov chain whose state
space is {0,1,...,p} x {=1,1}.

We have the following six cases: (Fig. 1)

1) (U(t),X(t)) = (0,+1): This will never happen.
2) (U(t),X(t)) = (0,—1): We have two cases:
a. With probability ppy, X (t+1) = +1 takes place,
and we have a new state (1,+1).
b. With probability ppp, X (t+1) = —1 takes place.
S(t) becomes the last p-extremum point in [0,¢+
1], while S(¢*) is no more a p-extremum point.
We have new state (0, —1) with side effect

Vi(p; S(t+1)) = V(p; C([0,2])) + 1.
3)1<U({#)<p—1and X(t)=+1:

a. With probability pyy, we have a new state (U(t)
+1,+1) with no side effect.

b. With probability pup, we have a new state (U (t)
—1,—1) with no side effect.

4) 1<U(t)<p—1land X(t) =-1:

p—( Puu PuD
PpUu  PDD
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Fig. 1. Four cases 2)-5) out of six cases 1)-6), when ¢t is incre-
mented by 1.

a. With probability ppy, we have a new state (U(t)
+1,+1) with no side effect.

b. With probability ppp, we have a new state (U(t)
—1, —1) with no side effect.

5) (U®), X(t)) = (p, +1):

a. With probability pyy, X (¢+1) = +1 takes place.
S(t+1) is the last p-extremum point in [0, ¢+ 1],
and we rename S(t*) as S(fy,+1). We have new
state (0,—1) with side effect V(p;S(t + 1)) =
Vip;C([0,1])) + p+ 1.

b. With probability pup, X (t4+1) = —1 takes place,
and we have a new state (1,+1) with no side ef-
fect.
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6) (U(t),X(t)) = (p,—1): This will never happen. W¢,27-1
Let us define the state probability vector w; = (w1, pp"—
We2y -y wtﬁg(m_l)) at t by (p—l)p —
wiop—1 =PrlU) =k—1,X(t) = —1], (p-2)p —
(k:172a7p+1),
wyok =PriU) =k —1,X(t) = +1], 3 |
(k=1,2,...,p+1). 2p —
The transition matrix A = (a;;) is given by P g}
0 > n
All A12 0 0 1 2 3 s p-2p-1 p p+l
Aoy 0 Ass 0 0 ) . . .
Fig. 2. Scaling relation among the points of w¢ 2n—1.
A= 0 Asg 0 ,
Wy,2n
0 0 0 Ay, “
Apr1p 0O Aptip 0 1+(p-1)p —_—
A, — ( PoD 0 Ay — 0 ppu 1+(p-2)p =
= o0 o) 2 0o 0 ) L+(p-3)p —
0 ppu
A23 =A p+1 = ( ) )
"’ 0 puv 1+2p _
ppp O 1+p e
Agy = Azp =
21 32 ( PUD 0 ) ’ 1 o
0 > 1
1 2 3 s p-2p-1 p p+l

0 0 0 0
Aprr1 = ( pup O >’ Aptrp = < 0 pop >

8.2 Asymptotic probability

From the standard theory on the finite state Markov
chain, A has one and only one characteristic value 1
whose characteristic vector gives the asymptotic proba-
bility of w; at ¢ — oo if normalized as

2(p+1)

Z Wtk = 1.
k=1
Let “T” denote the transposition of a vector. Asymptotic
probability is given by the solution of
w(I - A)=0.
Thus, we have

( Wt 2p4+1, Wt 2p+2 )

B (0’ p(p — 1w +7r(2p—1)”+1 )

and

( Wt on—-1, Wt2n )

+1—n
™ T—1 )p

= ( Wt 2p+1, Wt 2p+2 ) ( 1—7 2—1

(n=1,2,...,p+1).

The proportional relationship among asymptotic proba-
bilities are shown in Figs. 2 and 3.

3.8 Formula for E[V (p; C([0,¢]))]
As t — oo, we have

E[V(p; S(t +1)) = V(p; C([0,]))]

Fig. 3. Scaling relation among the points of w¢ 2x.

E[V(1;C[0,1])]
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Fig. 4. E[V(1;C]0,¢])] for a Markov random walk.

= (w2 + pWe2p+1),

where the first term on the right-hand side is due to Case
2 in Fig. 1 and the second term is due to Case 5. The
expectation of total p-variation is

2
T t o
plo—D7m2+2(p—1)m+1

as t — oo. A graph E[V(1;C]0,t])] as a function of 7 is
given in Fig. 4.

E[V(p; C([0,2]))] =

4. Empirical test on Nikkei 225 futures
trade

4.1  The data set
We used tick-by-tick data of Nikkei 225 Futures on the
OSE in 2007 provided by Nikkei Media Marketing Inc.
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Fig. 6. Histogram for the ratio of calculated value to real value
asp=1p=2p=3,p=4.

The contract months of Nikkei 225 Futures are March,
June, September and December. The last trading day
is the business day preceding the second Friday of each
contract month. We deal only with the data of 10 days
before the last trading day for 4 delivery months in 2007.
Due to incompleteness of data, we only calculate from
March 1st to 8th for the delivery month of March 2007.

Trading hours are composed of two sessions: 9:00-
11:00 (morning session) and 12:30-15:10 (afternoon ses-
sion). Their opening prices and the closing prices are de-
termined by the periodic double auction called “itayose”,
while the other transactions prices are determined by
continuous auctions. We only work on the transactions
by the continuous auctions, and discard the transactions
at opening and closing of the morning and the after-
noon sessions. We analyze morning and afternoon ses-
sions separately. Thus we have 72 samples.

We worked on the changes of the best ask price. When
the best ask price moves kticks (k > 1) instantaneously,
we regard it as consecutive k times transitions in the
same direction.

4.2 Basic statistics

For each of 72 sample paths, we can directly estimate
m. We give the histogram of the estimated values of m
in Fig. 5, which suggests that X (¢) has strong negative
serial correlation.

One is also interested whether the theoretical asymp-
totic formula (3) well predicts the observed total p-
variations, or not. In Fig. 6, we give the histogram of
the ratios of observed total p-variations (p = 1,2,3,4) to
their asymptotic predictions. To remove the initial point
effect, we used (m24+mp)(T—t*)/[p(p—1)72+2(p—1)7+1]

Table 1. The time on finding the first p-extremum point. The
time is divided by the total time of a path.

p=1 p=2 p=3 p=4
Mean | 1.67TE—03 8.79E—03 1.71E—02 3.16E—02
Var 5.92E—06 2.05E—04 1.06E—03 3.91E—03

Table 2. Numbers of rejections at the significance level 5 percent.
p=1 p=2 p=3 p=4
ratios of rejection  5/72  2/72 1/72 1/72

as theoretical prediction, where t* is the location of the
first extremum point. We give its average and variance
in Table 1.

We see that the best fit is given for p = 1, and the
asymptotic formula seems to predicts the reality for all
p’s, though its variance must be further investigated.

4.8  Method for testing and its results

Suppose that 72 original paths of the best ask price
are given. For each path, we randomly generated 999
paths of the same path length based on the estimated
w. We calculated 1000 total p-variation. If the rank r
of V(p; C[0,m]) of the original path satisfies 25 < r <
975, we judges that the null hypothesis is accepted for
this path at the significance level 5 percent. The null
hypothesis that the best ask path follows the first order
Markov process seems to be accepted for p = 1,2, 3, 4.
For p more than 5, we do not have enough p-extremum
points for testing.

We give the numbers of rejections in Table 2. It seems
that the null hypothesis is accepted.

5. Conclusion

We tested whether the best ask price path of the
Nikkei 225 Futures in the OSE follows the first order
Markov chain or not, based on the total p-variation for
p =1,2,3,4. The null hypothesis is not rejected. We also
calculated the asymptotic theoretical expectation of the
total p-variation. Its fit seems to be satisfactory though
its variance must be further investigated.
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