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Abstract

Understanding nonhyperbolicity in dynamical systems is important, yet, it is usually difficult
to see whether a system is hyperbolic or not. In this letter, angles between stable and unstable
directions on a point of a chaotic attractor of the Lorenz system with some sets of various
parameter values are calculated through identifying Lyapunov vectors numerically. Then we
estimate the parameter value where the system becomes nonhyperbolic in one parameter
family.
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1. Introduction

1.1 Basic background

A dynamical system is said to be hyperbolic if the sta-
ble and unstable manifolds are everywhere transversal to
each other; otherwise a system is nonhyperbolic. Theory
of hyperbolic dynamics have been developed by Smale
[1] and many other researchers. In hyperbolic systems
approaches by symbolic dynamics and cycle expansion
theory always work. It is usually difficult to characterize
nonhyperbolic dynamics [2,3], because those approaches
are sometimes useless in analyzing a nonhyperbolic sys-
tem [4, 5]. Therefore to distinguish between hyperbolic
and nonhyperbolic dynamical systems is important.
However, it is difficult to see whether a given sys-

tem is hyperbolic or not, because manifold structures
are usually very complicated in chaotic systems. There
are, however, some studies to prove hyperbolicity from
both rigorous and non-rigorous approaches. Davis et al.
[6] conjectured that the real Hénon family with some
parameter region is hyperbolic. Later, Arai [7] proposed
a rigorous computational method to prove hyperbolicity
of discrete dynamical systems. He applied the method to
the real Hénon family and proved the existence of many
regions of hyperbolic parameters in the parameter plane
of the family. Kuptsov and Kuznetsov [8] studied a cou-
pled Ginzburg Landau equation from the viewpoint of
hyperbolicity and nonhyperbolicity through Lyapunov
vectors calculated by the numerical algorithm proposed
by Ginelli et al. [9]. In this letter, we try to investigate
the validity of Lyapunov vectors and the occurrence of
nonhyperbolicity in the well known Lorenz system.

1.2 Lyapunov vectors

Lyapunov vectors are the vectors invariant under both
forward and backward time iterations, and the expan-
sion and the contraction rates of the vectors correspond
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Fig. 1. Conceptual figure of calculating Lyapunov vectors ((i)
Identifying “orthogonal Lyapunov vector” from the calculation
of positive time direction (ii) Identifying Lyapunov vectors from

the calculation of inverse time direction).

to Lyapunov spectra [10–12]. They indicate stable and
unstable directions of the tangent space at each point of
an invariant set. The local (un)stable manifold at each
point is spanned by the (un)stable directions.
Ginelli and co-workers recently proposed a nice algo-

rithm to compute Lyapunov vectors and named them
covariant Lyapunov vectors (CLVs) [9]. The algorithm
enables us to study local manifold structures for various
systems including high dimensional systems. The Lya-
punov vectors are computed in the following way (see
Fig. 1). Let’s consider an N -dimensional map xn+1 =
F(xn). For the forward procedure, we compute a set of
orthogonal vectors vk

n (k = 1, 2, . . . , N) at time n ac-
companied by the QR procedure [13]. vk

n corresponds
to the k-th column of the Qn at the phase space point
xn. To calculate Lyapunov vectors, we basically use
vn and Rn which are stored for the forward proce-
dure. Let uj

n be a generic vector inside the subspace
spanned by vk

n, k = 1, 2, . . . , j. We iterate this vector
backward in time by inverting the matrix Rn: one has
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ci,jn−1 =
∑

k[Rn]
−1
i,kc

k,j
n , where [R]i,j is a matrix element

of R and ci,jn = (vi
n,u

j
n) are the expansion coefficients.

After iterating uj
n backward for a long time, the vec-

tor eventually gives the most expanding direction within
the subspace spanned by vk

n, k = 1, 2, . . . , j. In fact uj
n

gives j-th expanding direction for the forward time it-
eration and thus uj

n are j-th Lyapunov vectors at the
phase space point xn . The knowledge of the Lyapunov
vectors allows testing hyperbolicity by determining an-
gles between subspaces Es spanned by contracting CLVs
and ones Eu spanned by expanding CLVs. The angle is
defined as follows [8]:

∠(Es, Eu) = cos−1 max
|us|=|uu|=1

us∈Es,uu∈Eu

(|us,uu|).

To see the validity of the Lyapunov vectors we first
apply them to the Hénon map. Hénon map is a two-
dimensional map on R2, which is described by

xn+1 = a− x2
n + byn, yn+1 = xn

where the parameters a, b (∈ R) are constants. This is a
diffeomorphism if b ̸= 0, and the Jacobian of the system
is −b. Hénon map is the only one diffeomorphism on R2

described by a polynomial of order 2 and the inverse of
which is also written by a polynomial.
Fig. 2 shows the distribution of the angle between sta-

ble and unstable directions at each point of a chaotic
attractor of the Hénon map with two parameter values,
which is calculated from Lyapunov vectors. This shows
that both parameters give nonhyperbolic structures. It
is already known that if the Hénon map is hyperbolic
the system cannot have a chaotic attractor. So our re-
sults are consistent with this known result and the result
by Arai [7] in which both of these parameters are out-
side the parameter regions in R2 at which the system is
proved to be hyperbolic.

2. Lyapunov vectors of the Lorenz sys-

tem

The Lorenz system

dx

dt
= σ(y − x),

dy

dt
= rx− y − xz,

dz

dt
= xy − bz

is one of the most famous chaotic systems. The system
with the classical parameter values (σ = 10, b = 8/3,
r = 28) have been extensively studied [14]. It is known
that the system with the classical parameter values is
(singular) hyperbolic and has a chaotic attractor which
includes an infinite number of unstable periodic orbits
[2, 15, 16]. It is also an interesting problem to see the
structure change by varying some parameter values.
Here, we only change the parameter r from the classical
parameter value and investigate the change of manifold
structures by calculating Lyapunov vectors.

2.1 Hyperbolic and nonhyperbolic structure

Fig. 3 shows the distribution of the angle between sta-
ble and unstable directions at each point of a chaotic
attractor of the Lorenz system. Practically points of a
chaotic attractor are replaced by points on a chaotic or-
bit with time length T=30000 calculated by the fourth
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Fig. 2. Distribution of the angle(degree) between stable and un-
stable directions at each point of a chaotic attractor of the Hénon

map (30000 iterations, bin size=0.1).
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Fig. 3. Distribution of the angle (degree) between stable and

unstable directions at each point of a chaotic attractor of the
Lorenz system (r = 28, 60).

order Runge-Kutta method with time step width 0.001.
In the case of r = 28 the PDF does not seem to take
positive around zero angle, whereas the PDF for r = 60
seems to take positive around zero angle. Fig. 4 shows
the minimum angle between stable and unstable direc-
tions along a segment of a chaotic orbit (time length T )
of the Lorenz system (r = 28, 60) for three initial con-
ditions. In the case of the Lorenz system with classical
parameter values (r = 28) the minimum angle seems to
converge to some positive value. However, in the case
of the Lorenz system with r = 60, the minimum an-
gle seems to decrease toward 0. This implies that the
system is hyperbolic in r = 28 and nonhyperbolic in
r = 60. It is known that the Lorenz system with the clas-
sical parameter values is (singular) hyperbolic [2,15,16],
whereas the system with r = 60 is thought to be nonhy-
perbolic where the cycle expansion theory [17] does not
work [4, 5]. Sparrow [14] conjectured that the system
generates a homoclinic tangency as r increases from 28.
The results obtained in Figs. 3 and 4. which are cal-
culated from the Lyapunov vectors are consistent with
these facts.
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Fig. 4. Minimum angle (degree) between stable and unstable di-

rections at each point along a segment of a chaotic orbit (time
length T ) of the Lorenz system from three initial conditions
(r = 28(red), 60(green)).

2.2 First tangency

The occurrence of the nonhyperbolicity by changing
some parameter values is an important phenomenon of
a structure change. Especially the determination of the
first tangency point is one of the most important but
difficult problems [3,18]. In this subsection we try to ap-
proach the first tangency problem that appears when r
is increased from 28 in the Lorenz system by numerically
calculating the Lyapunov vectors at points of a chaotic
attractor. Remark that in the usual case the term first
tangency refers to a first bifurcation on the boundary of
uniformly hyperbolic parameter region, but the problem
here is not the case.
Fig. 5 is the minimum angle between stable and un-

stable directions at points of a chaotic attractor approx-
imated by a chaotic orbit with time length T = 30000
for the Lorenz system for various r (24.5 < r < 124.5).
In the range from r = 40 to 70 minimum angles seem
not to be small enough, but if we use a longer orbit for
representing points of a chaotic attractor, the minimum
angles tend to become smaller as we have seen in Fig.
4 (r = 60). It seems that the structure change is mono-
tonic by increasing r in the range 24.5 < r < 124.5 and
that after the occurrence of nonhyperbolicity the sys-
tem keeps nonhyperbolicity for r which realizes a chaotic
attractor. Fig. 6 is the detailed figure of Fig. 5 for
28 < r < 33 which is calculated by a chaotic orbit with
time length T = 106. As r increases the minimum angle
decreases, and the system seems to become nonhyper-
bolic around 32. In fact from Fig. 7 PDF of the angle
between stable and unstable directions of the Lorenz sys-
tem at r = 32 takes positive around zero angle, whereas
PDFs at r = 28, 30 do not take positive around zero an-
gle. This means that the Lorenz system becomes nonhy-
perbolic between r = 30 and 32. The result is consistent
with the estimation from the observation of the Poincaré
section without calculating manifolds [14].
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Fig. 5. Minimum angle (degree) between stable and unstable di-
rections at each point on a chaotic attractor for various r.
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Fig. 6. Minimum angle (degree) between stable and unstable di-
rections at each point on a chaotic attractor for various r.

3. Concluding remarks

3.1 Conclusion

In this letter, the validity of the Lyapunov vectors is
confirmed from the Hénon map and the Lorenz system.
At first we confirmed the hyperbolicity and nonhyper-
bolicity of the systems for well known parameter values.
Hyperbolicity and nonhyperbolicity are identified from
the angles between stable and unstable directions on a
point of a chaotic attractor which are determined by the
numerically calculated Lyapunov vectors.
Next the ranges of hyperbolic and nonhyperbolic pa-

rameter values of the Lorenz system are studied in detail.
It is conjectured, from the calculation of Lyapunov vec-
tors, that the first tangency parameter of r is between
30 and 32, which was estimated from the observation of
the Poincaré section without calculating manifolds.

3.2 Recent works

Yang et al. [19] obtained Lyapunov vectors of the
Kuramoto-Sivashinsky equation numerically and dis-
cussed physical modes in relation to the nonhyperbol-
icity of the system. This seems to be one of the inter-
esting ways to use Lyapunov vectors. Identification of
global manifolds are very difficult, but Doedel et al. [20]
numerically identified the global stable manifold of the
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Fig. 7. Distributions of the angle (degree) between stable and unstable directions at each point on a chaotic attractor (r = 28, 30, 32)
(left) and its detailed figure (right).

origin of the Lorenz system. It will also give us some
interesting features in relation to nonhyperbolicity. In
addition, from our recent study, it is found that the gen-
eration of nonhyperbolicity in the Lorenz system can be
understood well by employing periodic orbits. Results
will be reported in our papers in preparation [21,22].
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