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Abstract

We consider a quadrature-based eigensolver to find eigenpairs of Hermitian matrices arising
in lattice quantum chromodynamics. To reduce the computational cost for finding eigenpairs
of such Hermitian matrices, we propose a new technique for solving shifted linear systems
with complex shifts by means of the shifted CG method. Furthermore, by using integration
paths along horizontal lines corresponding to the real axis of the complex plane, the number of
iterations for the shifted CGmethod is also reduced. Some numerical experiments illustrate the
accuracy and efficiency of the proposed method by comparison with a conventional method.
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1. Introduction

Eigenproblems arise in many scientific applications
and in some cases, only a limited set of eigenpairs is
needed. For example, to calculate all-to-all propagators
in lattice quantum chromodynamics (QCD) [1], it is
known that the contribution of some low-lying eigenval-
ues of a large sparse Hermitian matrix called “Hermitian
fermion matrix” is dominant.
For such eigenproblems, the Implicitly Restarted

Lanczos method or generally, the Implicitly Restarted
Arnoldi method (IRAM) [2] is one of the conventional
choices. On the other hand, to find eigenvalues in a given
region and corresponding eigenvectors with contour inte-
grations, the Sakurai-Sugiura (SS) method [3] has been
proposed. The SS method translates a problem of find-
ing eigenvalues in a domain surrounded by an integra-
tion path into a problem of solving systems of linear
equations for some matrices with shifts corresponding
to quadrature points of the contour integration. There-
fore solving shifted linear systems efficiently plays an
important role in high performance of the SS method.
In this paper, we improve the SS method by reducing
computational cost for solving shifted linear systems.
To solve such shifted linear systems efficiently, there

are some ways. One is solving each linear system in par-
allel since all shifted linear systems arising in the SS
method can be solved independently. This high paral-
lelism is one of the important features of the SS method.
Another way is reducing matrix-vector multiplications in
a Krylov subspace linear solver. We consider the latter

in this paper.
To this end, we propose following two ideas: first we

adopt a Krylov subspace method for shifted linear sys-
tems [4] which requires matrix-vector multiplications
only for one seed linear system to solve all shifted linear
systems because of shift invariance of Krylov subspace.
Moreover we show that the shifted CG method, which
requires no more than one matrix-vector multiplication
in each iteration, can be applied to solve such shifted
linear systems if a coefficient matrix of a seed linear sys-
tem is Hermite although coefficient matrices of the other
shifted systems are non-Hermite. We show the detail in
Section 2. Next, in Section 3, we consider appropriate
configurations of quadrature points for less iterations for
a Krylov subspace solver because the number of itera-
tions depends on a shift parameter corresponding to each
quadrature point. Section 4 shows some numerical test to
investigate the properties of the proposed method and its
efficiency by comparison with PARPACK [5], the soft-
ware package to solve eigenvalue problems with IRAM
in parallel, with a Hermitian fermion matrix of lattice
QCD and Section 5 concludes.

2. The SS method with a Krylov sub-

space method for shifted linear sys-

tems

2.1 The SS method

We consider an eigenvalue problem Ax = λx where
A ∈ Cn×n is a Hermitian matrix and (λ,x) is an eigen-
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pair of A. Let Γ be a positively oriented closed Jordan
curve in the complex plane and we introduce a contour
integration

sk ≡ 1

2πi

∫
Γ

zk(zI −A)−1vdz, k = 0, 1, . . . , (1)

where I is an n × n unit matrix and v ∈ Cn is any
nonzero vector. According to the residue theorem, sk
has only the contribution corresponding to eigenvalues
inside Γ.
In the moment based method [3], a moment µk ≡

vHsk is defined and let the Hankel matrix Hm ∈ Cm×m

and the shifted Hankel matrix H<
m ∈ Cm×m be

Hm ≡ [µi+j−2]
m
i,j=1, H<

m ≡ [µi+j−1]
m
i,j=1,

respectively, where m is the number of eigenvalues inside
Γ. Here let S ≡ [s0, · · · , sm−1] ∈ Cn×m, eigenvalues of
the pencil (H<

m, Hm) are given by λ1, . . . , λm and an
eigenvector corresponding to λl is given by xl = Sul

where ul is an eigenvector of (H<
m,Hm).

On the other hand, in a Rayleigh-Ritz type approach
[6], by constructing an orthonormal basis Q ∈ Cn×m via
the orthogonalization of S, approximate eigenvalues are
given by the Ritz values of a projected matrix pencil
(Ã, B̃) where Ã ≡ QHAQ ∈ Cm×m and B̃ ≡ QHQ ∈
Cm×m, respectively, and corresponding eigenvectors are
given by xl = Qwl where wl is an eigenvector of (Ã, B̃).
The Rayleigh-Ritz projection method is rather accu-

rate than the moment-based method, however there is
trade-off between accuracy and memory consumption.
To calculate (1) numerically, the N -point trapezoidal

rule is applied and we approximate sk by

ŝk =

N−1∑
j=0

wjζ
k
j (zjI −A)−1v, (2)

where zj and wj are a quadrature point and a weight,
respectively, and ζj ≡ (zj−γ)/ρ is a normalized quadra-
ture point satisfying the condition −1 ≤ Re ζj ≤ 1 with
a shift parameter γ ∈ C and a scale parameter ρ > 0.
In the case of an integration on a circle C with a center
γ and a radius ρ, a quadrature point and a weight are
defined by

zj = γ + ρ e
2πi
N (j+ 1

2 ), j = 0, 1, . . . , N − 1,

and

wj =
zj − γ

N
, j = 0, 1, . . . , N − 1,

respectively. Here let ηl ≡ (λl − γ)/ρ and suppose v =∑
l αlxl. We can rewrite (2) as ŝk =

∑
l fk(ηl)αlxl/ρ by

means of a filter function defined by

fk(x) ≡
N−1∑
j=0

wjζ
k
j

ζj − x
. (3)

In the case of a unit circle, it has been shown that
fk(x) = xk/(1+xN ) [7] and it suppresses as O(|x|−N+k)
outside the circle. This means that ŝk has nonnegligi-
ble contribution corresponding to the eigenvalues out-
side the circle due to the approximation of the contour
integration. When we construct Ŝ ≡ [ŝ0, · · · , ŝM−1], M

should be more than m.
Note that a block version of the SS method is proposed

in [7], i.e. S is extended to Cn×(M×L) with L different
arbitrary nonzero vectors v1, . . . ,vL. Using this method,
we can obtain L degenerate eigenvalues and it is known
that the accuracy is higher than just increasing M .

2.2 The SS method with the shifted CG method

To calculate (2), shifted linear systems such that

(zjI −A)yj = v (4)

should be solved for each quadrature point zj . In what
follows, we propose some ideas to reduce the computa-
tional cost for solving (4) by the shifted CG method [4].
It is known that there is a shift invariance of Krylov

subspace Kk(A, r0) ≡ span(r0, Ar0, . . . , A
k−1r0) with

any shift σ ∈ C such that

Kk(A, r0) = Kk(A+ σI, r0). (5)

In a Krylov subspace linear solver such as the CG
method, matrix-vector multiplications should be per-
formed to update a residual vector rk ∈ Kk+1(A, r0).
Because of (5), a residual vector rσk ∈ Kk+1(A+ σI, r0)
corresponding to a matrix A+ σI can be given by

rσk = ξσk rk,

with some scalar ξσk , namely once a residual vector of
a seed linear system rk is calculated with matrix-vector
multiplications, residual vectors of any other shifted lin-
ear systems rσk , what is more, corresponding solution
vectors are given without additional matrix-vector mul-
tiplications. Suppose the computational cost of matrix-
vector multiplications is dominant, the computational
cost of the SS method is drastically reduced by 1/N .
In addition, we show that only one matrix-vector mul-

tiplication in each iteration is necessary to solve shifted
linear systems when a coefficient matrix is a Hermitian
matrix with any shift. Consider the BiCG method to
solve a system of linear equations with a coefficient ma-
trix σI − A. The BiCG method requires two matrix-
vector multiplications in each iteration to update a resid-
ual vector rk ∈ Kk+1(σI−A, r0) and its shadow residual
vector r∗k ∈ Kk+1((σI − A)H, r∗0). When A is Hermite,
we find that

(σI −A)H = (σI −A) + (σ̄ − σ)I.

Because of the shift invariance (5), r∗k is calculated by rk
without matrix-vector multiplications and accordingly,
the computational cost is reduced by half, if r∗0 = r0.
Applying this technique to the shifted BiCG method,
we can solve many shifted linear systems with only one
matrix-vector multiplication in each iteration. If a shift
σ for the seed system is real, (σI − A)H = σI − A, i.e.
the seed system and its shadow system are coincident. In
this case, we can apply the CG method to solve the seed
system. This means that any shifted linear systems with
arbitrary complex shift can be solved with the shifted
CG method when a coefficient matrix corresponding to
a seed system consists of a Hermitian matrix with some
real shift. For the above reason, we adopt the shifted CG
method in this paper.
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Fig. 1. The distribution of eigenvalues for the Hermitian fermion
matrix which we use in Section 4 and the contour of the number
of iterations for the shifted CG method for zjI−A with tolerance
for the relative residual ||rk||2/||v||2 ≤ 10−12.

3. Integrations along straight lines

Empirically, the number of iterations for the shifted
CG method depends on distribution of eigenvalues near
zero. In terms of shifted matrix zjI − A, the number of
iterations for the shifted CG method tends to increase
if the number of eigenvalues of A close to zj becomes
larger. Fig. 1 shows the distribution of eigenvalues for
the Hermitian fermion matrix which we use in Section
4 and the contour of the number of iterations for the
shifted CG method to solve a shifted matrix zjI−A with
tolerance for the relative residual ||rk||2/||v||2 ≤ 10−12.
Actually, the number of iterations for the shifted CG
method gets larger as zj becomes closer to the real axis
and its absolute value of real part becomes larger, which
is consistent with the expectation from the distribution
of eigenvalues as mentioned above. Then to reduce the
number of iterations for the shifted CG method, quadra-
ture points should be as far from the real axis as possible.
In order to control the number of iterations for the

shifted CG method and accuracy of eigenpairs, we in-
troduce a new integration path as follows: let L± be two
horizontal lines such that

L± : z = γ + ρ(x± iβ), −1 ≤ x ≤ 1,

where γ is real. Then N/2 equally-spaced quadrature
points z0, z2, . . . , zN−2 and z1, z3, . . . , zN−1 are located
on L+ and L−, respectively. Using this integration path,
distance between a quadrature point and the real axis
depends only on βρ unlike the case of C. In this case,
a set of weights for a integration {w0, w1, . . . , wN−1} is
defined by solving following linear equations,

N−1∑
j=0

wjζ
k−1
j =

{
1, k = 0,

0, k = 1, · · · , N − 1.

Fig. 2 shows filter functions f0(x) defined by (3) for
N = 32 quadrature points on L± with β = 0.2, 0.6, 1.0,
1.4. For comparison, f0(x) in the case of C is also shown.
In the case of C, f0(x) has a plateau in [−1, 1] and expo-
nentially suppresses in the other region. However in the
case of L±, there is no plateau and the slope of dump-
ing parts depends on β which controls the size of the
gap between L+ and L−. Therefore it is expected that
the accuracy of eigenvalues is the highest right in the
middle of L± and gets lower at the edges, so we accept
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Fig. 2. Filter functions f0(x) for N = 32 quadrature points on
L± with β = 0.2, 0.6, 1.0, 1.4. For comparison, f0(x) in the case
of C is also shown as a solid line.

the eigenvalues only in the rectangular formed by N ′

quadrature points near the center γ where N ′ ≥ 4 is an
even number.
Note that when we introduce more than two integra-

tion paths lying next to each other L±
1 ,L

±
2 , . . . which

have the same N , ρ and β, quadrature points can be
reused by just shifting them from one integration path
L±
k to another L±

k+1 by N ′ − 2 points. This is advantage
of using the integration path L±.

4. Numerical experiments

A Hermitian fermion matrix is defined as A = γ5(I −
κD) where κ is a hopping parameter and D is a com-
plex non-symmetric sparse matrix explained in [8]. γ5
is one of the Dirac γ matrices. We employ the lattice
size 123 × 24 which corresponds to a 497, 664 dimen-
sional matrix with 25, 380, 864 nonzero components. Our
choice of κ = 0.13600 is rather close to the critical value
κc = 0.136116(8).
Our experiments are carried out on a single node of

T2K-TSUKUBA which has totally 648 nodes providing
95.4 Tflops of computing capability. Each node has 4
sets of a 2.3 GHz Quad-Core AMD Opteron Model 8356
processor and a 8 GBytes DDR2-667 memory.
Let us first compare the efficiency of the SS method

between the conventional integration path C and the
new integration path L± by calculating low-lying 6
eigenvalues and corresponding eigenvectors. In both
cases, we set γ = 0.0004, ρ = 0.0102, N = 32 and M =
24. The gap size between L+ and L− is varied as β =
0.2, 0.6, 1.0. We employ the shifted CG method with the
stopping criterion for the relative residual ||rk||2/||v||2 ≤
10−12 choosing a shift σ = 0 for the seed. Eigenpairs are
obtained with the Rayleigh-Ritz projection method.
We show the efficiency and the accuracy of the SS

method with C and L± in Table 1, where resl ≡ ||Axl−
λlxl||2, ||xl||2 = 1 is the residual for the l-th smallest
eigenvalue λl. In the case of L±, we obtain the lower
accuracy of eigenpairs toward the edges of the integra-
tion interval as expected in Section 3. We also find that
accuracy of eigenpairs is increased at the cost of the
number of matrix-vector multiplications as β becomes
smaller. This allows us to choose an optimal value of
β to minimize the computational cost for the required
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Table 1. The efficiency and the accuracy of the SS method with
C and L± for calculating 6 low-lying eigenvalues and corre-
sponding eigenvectors.

path C L±

β - 0.2 0.6 1.0

# matvec 4352 4268 3560 2886
time [sec] 399.1 424.8 355.5 293.2

res1 1.8E−11 5.2E−10 3.1E−08 1.5E−06
res2 2.8E−10 1.8E−12 1.2E−09 3.0E−07
res3 4.0E−10 1.9E−12 1.6E−09 3.3E−07
res4 2.9E−10 3.0E−12 7.1E−10 1.1E−07

res5 5.6E−11 2.5E−12 4.0E−10 6.7E−08
res6 7.8E−12 6.6E−10 1.6E−08 5.8E−07

precision of eigenpairs. We observe similar efficiency be-
tween the C and L± cases. An intriguing finding is that
the elapsed time for L± with β = 0.2 is larger than that
for C even if the number of matrix-vector multiplications
of the former is less than that of the latter. The reason
is that the vector operations in the shifted CG method
require nonnegligible computational cost compared to
the matrix-vector multiplication which contains only 51
nonzero components in each row in our case.
We also compare the efficiency between PARPACK

and the SS method with C and L± by calculating 20
low-lying eigenvalues and corresponding eigenvectors.
The parameters of the SS method are chosen to sat-
isfy the tolerance resl ≤ 10−9 and the stopping crite-
rion for PARPACK tol = 10−10. For the SS method
with C we employ 4 circles with N = 32, M = 24
choosing γ = −0.02485,−0.00964, 0.01181, 0.02575 and
ρ = 0.00435, 0.00960, 0.00860, 0.00431, each of which
contains 5 eigenvalues. The SS method with L± uses 6
pair of lines with N = 32,M = 24, N ′ = 16, ρ = 0.02121
and β = 0.2. The other setup for the SS method is the
same as the previous experiment. For PARPACK, the
number of the Arnoldi vectors is chosen to be four times
the number of eigenvalues, i.e. 80, in the regular mode.
Table 2 shows the efficiency and the accuracy of three

methods. resmax and resmin are the maximum and min-
imum value of resl, respectively. There are two impor-
tant points. One is that the SS method shows similar
or better efficiency and accuracy in comparison with
PARPACK thanks to the shifted CG method which re-
duces the number of matrix-vector multiplications by
about 1/100. Another is that the SS method with L±

requires less numbers of matrix-vector multiplications
and quadrature points compared to the C case. This is
because the L± case requires less number of iterations
for the shifted CG method and allows us to reuse the
quadrature points.

5. Conclusions

We introduce a shifted Krylov subspace method to re-
duce the computational cost for the SS method. More-
over, we propose a new integration path along straight
lines which decreases both the number of iterations for
a Krylov subspace solver and the number of quadrature
points.
We calculate some low-lying eigenvalues and cor-

responding eigenvectors of a Hermitian fermion ma-

Table 2. The efficiency and the accuracy of the SS method with
C and L± and PARPACK for calculating 20 low-lying eigenval-
ues and corresponding eigenvectors.

SS (C) SS (L±) PARPACK

# matvec 7542 6680 7384
Total # quad. points 128 102 -

Total time [sec] 1159.4 1020.7 1277.4
Time for matvec [sec] 421.2 365.5 406.1

resmax 7.7E−10 2.6E−10 2.8E−12
resmin 1.4E−12 7.7E−13 3.6E−15

trix with the SS method and PARPACK. We show
that the SS method becomes efficient comparable with
PARPACK thanks to the shifted CG method and our
new integration path is more efficient than the conven-
tional one on a circle.
Investigating more efficient integration paths and

quadrature rules to reduce computational cost for the
SS method is our future plan.

Acknowledgments

Numerical calculations for the present work have been
carried out on the T2K-TSUKUBA computer under
the “Interdisciplinary Computational Science Program”
of Center for Computational Sciences, University of
Tsukuba. This work is supported in part by Grants-in-
Aid for Scientific Research from the Ministry of Edu-
cation, Culture, Sports, Science and Technology (Nos.
18540250, 20105002, 21105502 and 21246018).

References
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